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Abstract. Starting with the notion that a typical program test set en-
codes the input/output behavior of a program, we use machine learning
techniques to induce a first-order equational theory from the test set
that abstractly characterizes this behavior. A program can be consid-
ered correct if the induced theory implements the program specification
and holds for all test cases in the test set. In terms of test set properties
developed in this paper: a program is correct if a test set is adequate and
coherent. We show formally that, if a test set is adequate and coherent,
then the program can be considered a model of the program specifica-
tion. Our approach based on machine learning addresses the adequate
test data selection problem by providing an effective decision procedure
and avoids the oracle problem usually associated with formal testing.

1 Introduction

Formal software development in general and algebraic specification and system
development in particular is concerned with building systems that are demon-
strably correct with respect to a specification. One way to develop a demonstra-
bly correct system from a specification is by successive refinements [20]. Briefly,
a specification S’ refines a specification S, write S 30 §’, if and only if [S'] C [S]
where [S] and [S’] denote the model classes of specifications S and S’, respec-
tively. Refinements can be composed and the correctness of the overall refinement
follows from the transitivity property of the refinement relation. Now, a program
P implements a specification S correctly if and only if S 3 P. Unfortunately,
this correctness argument is only valid for programs that have a formal seman-
tics so that [P] is defined. Therefore, this approach to demonstrable correctness
is unsatisfactory in most production settings, since the majority of industrial
programming languages have partially formalized semantics at best.

Another approach to establish the correctness of a system with respect to a
specification is through appropriate testing strategies. This was first proposed
by Goodenough and Gehart [11] and further developed in the algebraic setting
in [8,7,15] among other places. Informally, given a set of test cases T, then a
program P is correct with respect to a specification S if and only if

(Vt e T) [pass(P,t) AN S=t] = P=S



where pass is a predicate with the value true if P passes a test ¢ and false
otherwise, S |= t denotes the fact that S semantically entails test ¢, and we
also let P = S denote the fact that program P can be considered equivalent to
the specification S. In other words, a program is correct if and only if a set of
successful test cases imply that the program can be considered equivalent to its
specification.

Designing the test set 7' in such a way that the implication above holds is
known as the adequate test data selection problem and was first identified by [11].
If the test set T is exhaustive then the above implication holds trivially. However,
exhaustive test sets are typically infinite and therefore of limited practical use-
fulness. In order to limit the size of the test set, most contemporary approaches
select test cases based on some kind of a priori case analysis of the specification
[8]. This has some interesting ramifications, since a particular test case derived
from a specification might not be directly testable in a given program. This raises
the next issue.

Designing an effective procedure that evaluates the expression “pass(P,t) A
S = t” is known as the oracle problem. Given the fact, that a particular test
case might not be directly testable in a program, computing the predicate pass
can be particularly tricky. Also, typically a program and its specification are
based on very different formalism and therefore it is not always straightforward
to show that the above conjunction holds for a particular test case. Solutions to
this problem have been proposed by considering observational equivalence and
allowing the developer of a specification to supply additional information in the
specification [15].

Here we propose an approach of demonstrating the correctness of a system
with respect to a specification through testing based on machine learning. Our
approach can be summarized as follows: given a test set for a particular program
that consists of input and output values for each test case, we can induce a theory
that fits these data points using machine learning techniques. The induced theory
abstractly characterizes the input/output behavior of the program encoded in
the test set. Program correctness follows from demonstrating that the induced
theory implements the original specification. This is due to the fact that it can be
formally shown that, if the induced theory implements the program specification,
then the program can be considered a model of the program specification.

We develop two characteristics a test set has to posses in order to demonstrate
program correctness:

— we say that a test set is coherent if and only if we can induce a theory that
satisfies each test case in the test set,

— we also say that a test set is adequate if and only if we can show that the
induced theory implements the specification.

Given this, a program is correct with respect to a specification, if a test set is
coherent and adequate.

It is interesting to note that we do not derive test sets from specifications,
rather we construct coherent and adequate test sets around programs. Therefore,
we avoid the oracle problem since our test sets are testable by construction and



our test results are never directly compared to an evaluation of the test cases
in the program specification. We also address the adequate test data selection
problem by providing an effective decision procedure based on our notion of
adequacy rather than relying on an a priori case analysis.

The rest of the paper is structured as follows. Section 2 introduces the al-
gebraic notions necessary to make this paper as self-contained as possible. In
Section 3 we outline as much machine learning theory as is necessary for this
paper. Our notion of program correctness based on testing in introduced in Sec-
tion 4. We look at a couple of simple, illustrative examples in Section 5 and we
finally conclude with Section 6.

2 Algebraic Specification

Algebraic specification is based on equational logic with algebras as models [16,
21,4]. Here we define the basic algebraic notions necessary for the development
of the current paper.

An equational signature defines a set of sort symbols and a set of operator
or function symbols!.

Definition 1. An equational signature is a pair (S, X), where S is a set of
sorts and X is an (S* x S)-sorted set of operation names. The operator o € Xy, 5
is said to have arity w € S* and sort s € S. Usually we abbreviate (S,X) to X.

We define X-algebras as models for these signatures as follows:

Definition 2. Given a many sorted signature X, o X-algebra A consists of
the following:

— an S-sorted set, usually denoted A, called the carrier of the algebra,

— a constant A, € A; for each s € S and 0 € Xy ,,

— an operation A,: A, — A,, for each non-empty list w = sl...sn € S*,
and each s € S and 0 € Xy, 5, where Ay = A1 X ... X Agp.

Mappings between signatures map sorts to sorts and operator symbols to oper-
ator symbols.

Definition 3. An equational signature morphism is a pair of mappings
o=(f,9): (S,X) = (5,2, we write p: X — X'.

A theory or specification is an equational signature with a collection of equations.

! Notation: Let S be a set, then S* denotes the set of all finite lists of elements from
S, including the empty list denoted by [|. Given an operation f from S into a set B,
f: S — B, the operation f* denotes the extension of f from a single input value to
a list of input values, f*: S* — B, and is defined as follows: f*(sw) = f(s)f* (w)
and f*([]) =[], where s € S and w € S*.



Definition 4. A Y-theory or specification is a pair (X, E) where X is an
equational signature and E is a set of Y-equations. Fach equation in E has
the form

VX)l=r,

where X is a set of variables distinct from the equational signature X and
l,r € Ts(X) are terms over the set X and X. If X = (), that is, | and r contain
no variables, then we say the equation is ground. When there is no confusion
XY -theories are referred to as theories and are denoted by their collection of equa-
tions, in this case E.

The above can easily be extended to conditional equations?. However, without
loss of generality we continue the discussion here based on unconditional equa-
tions only.

The models of a theory are the X-algebras that satisfy the equations. Intu-
itively, an algebra satisfies an equation if and only if the left and right sides of
the equation are equal under all assignments of the variables. More formally:

Definition 5. A X-algebra A satisfies o X-equation (VX) 1 =r iff 6(1) = 8(r)
for all assignments 0: Tx(X) — A. We write A = e to indicate that A satisfies
the equation e.

We define satisfaction for theories as follows:

Definition 6. Given a theory T = (X, E), a X-algebra A is a T-model if A
satisfies each equation e € E. We write Al=T or AE E.

In general, there are many algebras that satisfy a particular theory. We also say
that the class of algebras that satisfy a particular equational theory represent
the denotational semantics of that theory.

Semantic entailment of an equation by a theory is defined as follows.

Definition 7. An equation e is semantically entailed by a theory (X, E),
write E = e, iff A |= E implies A |= e for all ¥-algebras A.

Mappings between theories are defined as theory morphisms.

Definition 8. Given two theories T = (X, E) and T' = (X', E'), then a theory
morphism ¢: T — T’ is a signature morphism ¢: ¥ — X' such that E' =
¢(e), for alle € E.

In other words, the signature morphism ¢ is a theory morphism if the translated
equations of the source theory T are semantically entailed by the target theory
7.

Burstall and Goguen have shown within the framework of institutions [4]
that the following holds for many sorted algebra?:

% Consider the conditional equation, (VX) I = r if ¢, which is interpreted as meaning
the equality holds if the condition c¢ is true.

3 Actually, Burstall and Goguen have shown the much more powerful result that the
implication holds as an equivalence relation. However, for our purposes here we only
need the implication.



Theorem 1. Given the theories T = (X, E) and T' = (X', E'), the theory
morphism ¢: T — T', and the T'-algebra A', then A' x5 ¢(e) = ¢A' =5 e,
for alle € E.

In other words, if we can show that a given model of the target theory satisfies
the translated equations of the source theory, it follows that the reduct of this
model, pA’, also satisfies the source theory.

3 Machine Learning and Theory Induction

Among other things, the discipline of machine learning concerns itself with the
induction of first-order theories from positive and negative examples [18]. In
the case of first-order logic this has been extensively studied under the name
of inductive logic programming [6,19]. Recently, systems that induce first-order
equational theories from ground equations have been introduced [14,13].

Theory induction can be thought of as a search over all admissible theories
for an optimal theory that satisfies a given set of examples [17]. The notion of
an optimal theory is usually defined to be the simplest theory that satisfies the
examples. Theories that satisfy the given examples are usually referred to as
hypotheses.

It is possible to give a more abstract characterization to the induction of first-
order theories as follows: given a theory P of positive examples, and a theory NV
of negative examples, then an induced theory H can be considered an hypothesis

if
H = p, for every p € P (Completeness),
H £ n, for every n € N (Consistency).

In our case H is an equational theory and P and N are equational ground
theories, i.e., every equation in P and N is a ground equation*. Completeness
states that an hypothesis satisfies the positive examples. Consistency states that
an hypothesis does not satisfy the negative or counter examples. Typically we
refer to the positive and negative examples as training examples. Please note
that this abstract characterization does not address optimality issues outlined
above.

Central to machine learning is the inductive learning hypothesis [18] stated
here in terms of first-order theories:

If an induced theory satisfies the completeness and consistency criteria
for a sufficiently large set of training examples, then the induced theory
will satisfy unseen examples appropriately.

The key notion here is that machine learning allows us to generalize beyond a
finite set of training examples. By sufficiently large we mean that the training
examples are chosen in such a fashion that they represent the domain to be
learned appropriately.

* A more algebraic formulation of this characterization can be found in [12].



4 Program Correctness and Testing

Our notion of program correctness views programs as X-algebras that satisfy an
equational specification or theory. Formally,

Definition 9. Given a program P and o specification S, we say that P is cor-
rect with respect to the specification S iff P satisfies the specification S, we write
P =x S. If it is clear from the context that we view program P as a X-algebra
we simply write P = S.

In the following we show that given a specification and a program it is possible
to establish that the program is correct with respect to the specification by
appropriate testing. We define a set of criteria a set of tests has to fulfill in order
to establish the correctness of a program.

We define a test set to be a set of input/output pairs with respect to a
program P. Formally,

Definition 10. Let program P be a X' -algebra with signature X'p, then we define
a test set to be the set T of pairs

(U (U) ) ta(v) ) ’

where v denotes an input value and o(v) denotes the application of the input
value to the program P with o,v € Xp; t,,) € Txp denotes the result of eval-
wating the input in the program P. FEach pair in the test set is referred to as a
test case.

It is straight forward to see that we can interpret each test case as an equation®.
Therefore, we can make the following assertion: a specification satisfies a test set
if and only if each test case is satisfied by the specification. Formally,

Definition 11. A specification S satisfies a test set T iff S =t for eacht € T,
we write S |=T.

Now, we say that a test set is coherent if and only if there exists at least one
specification that satisfies the test set. We can state this property in machine
learning terms formally as,

Definition 12. A test set T is coherent iff we can induce a theory H such
that H =T.

Coherency expresses the fact that we can characterize the input/output behavior
of a program encoded in the test set with an hypothesis, that is, an induced
theory that satisfies all the test cases. It is interesting to note that our current
notion of test set only embodies positive examples, the set of negative examples
is empty.

The second property for test sets is defined as follows: a test set is adequate
if and only if an induced theory implements the original program specification.
Formally,

® This can be made precise by considering assignments ¢: Tx, — P where ¢(a(v)) =
¢(to'(1))) = PG'(PU)



Definition 13. We say that a test set T is adequate iff there exists a theory
morphism ¢: S — H, where S is the program specification and H is a theory
induced from the test set T.

This allows us to propose program correctness,

Proposition 1. Given a program specification S, a program P, and a test set
T; if the test set T is coherent and adequate, then P is correct with respect to
the specification S.

Proof. Let us assume that H is an induced theory such that H = T, i.e., T is
coherent. Then by the inductive learning hypothesis we have P |= H. Let us also
assume that there exists a theory morphism ¢: S — H, i.e., T is adequate. It
follows from ¢ and P |= H that ¢P = S.

The approach taken and the notions defined here were inspired by Weyuker’s
work on program inference and data adequacy [22]. However, there are some
fundamental differences. Weyuker considers equivalence relations between the
original specification, the induced program and the program to be tested based
on particular test values approximating an ideal test set. Instead, our approach
relies on the inductive learning hypothesis and the notion of implementation
to show that a program satisfies a specification. Also, since Weyuker’s work
was published, machine learning has advanced tremendously. Today’s machine
learning algorithms tend to be fairly robust and will induce sensible theories
even in the presence of errors. Therefore, we introduced the notion of coherency
to reinforce that for program correctness an induced theory has to satisfy the
complete test set.

5 Simple Examples

For exposition purposes we will consider some simple examples here. It is inter-
esting to note that non-trivial software specifications have been induced from
programs [5, 1] albeit with different formalisms than the induction of equational
theories considered here. Neither of these approaches, however, go beyond the
induction of theories to consider formal notions of program verification.

Now, consider the following specification of a stack module. The specification
is given in OBJ syntax [10] where the op keyword introduces new operations, the
keyword var defines variables, and the keyword eq allows one to define operations
with equations:

obj STACK is sorts Stack Element .
op push : Stack Element -> Stack .

op top : Stack —> Element
var X : Element . var S : Stack .
eq top(push(S,X)) =X .

endo

This specification states that the top of a stack is the last element pushed.



Example 1. Consider the following test set

T1 = { (top(push(v,a)),a),
(top(push(push(v,b),a)),a) }

and the induced theory

obj STACKI is sorts Stack Element .
ops a b : —> Element .
op v : -> Stack .
op top : Stack -> Element .
var X : Stack .
eq top(X) = a .
endo

It is easy to see that the test set is coherent with respect to the induced theory.
It is also straight forward to see that the induced theory does not implement the
original stack specification above. Therefore, T'1 is a coherent but not adequate
test set for the stack module.

It could be argued that the test set T'1 violates the inductive learning hypothesis
due to the fact that it can be considered “insufficiently large”. However, it serves
to illustrate the point.

Ezample 2. Consider the following test set

T2 = { (top(push(v,a)),a),
(top(push(push(v,a),b)),b),
(top(push(push(v,b),a)),a),
(top(push(push(v,d),c)),c) }.

Given this test set, the system in [13] is able to induce a theory like the following:

obj STACKI is sorts Stack Element .
ops abcd: -> Element .
op v : -> Stack .
op push : Stack Element -> Stack .

op top : Stack —> Element
var X : Element . var S : Stack .
eq top(push(S,X)) =X .

endo

It is easy to see that the test set T2 is coherent, since the induced theory sat-
isfies each test case. It is also straight forward to see that the induced theory
implements the original specification by considering a theory inclusion from the
specification to the induced theory. Therefore, the test set is adequate.

6 Conclusions

Starting with the notion that a typical program test set encodes the input/output
behavior of a program, we use machine learning techniques to induce a first-order



equational theory that abstractly characterizes this behavior. A program can be
considered correct if the induced theory implements the program specification
and holds for all test cases in the test set. In terms of test set properties elabo-
rated in this paper: a program is correct if a test set is adequate and coherent.

Our approach based on machine learning addresses two major drawbacks in
other formal testing approaches: we avoid the oracle problem altogether and we
mitigate the test data selection problem by building test sets around programs
using our adequacy and coherency criteria as a guide rather than deriving test
cases from specifications through some kind of a priori case analysis.

A powerful extension to testing is the notion of negative testing, that is, tests
which are designed to fail. This kind of test strategy can be easily handled in our
framework by considering negative tests to be negative examples to the machine
learning algorithm, i.e., examples that an induced theory should not entail.

Here we have only considered algebraic specifications in the sense of abstract
data types. An extension to these notions are behavioral equational specifica-
tions [9,2,3]. How these specification mechanisms can be used in the context
of this framework together with the notion of inducing behavioral theories from
examples is an open research question at this point.
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