Introducing TRIM

Tech Report TR01-283

Lutz Hamel
Dept. of Computer Science and Statistics
University of Rhode Island, Kingston, R.I. 02881, USA

email: hamel@cs.uri.edu

July 25, 2001

Abstract

We present TRIM, an abstract machine capable of executing a sub-
set of the algebraic speci cation language OBJ3. A speci cally designed
compiler translates the order sorted conditional equations of an OBJ3
speci cation into TRIM code. The fact that TRIM supports order sorted
term rewriting natively di erentiates it from many other abstract term
rewriting machines. To obtain more e cient abstract machine code we
discuss and include two optimizers in our compiler system; a peep-hole op-
timizer and a rule-base optimizer. The whole TRIM system is seamlessly
integrated into the OBJ3 environment. Compiling OBJ3 speci cations
provides roughly an order of magnitude speed-up over interpreted speci-

cations.

Contents
1 Introduction

2 The TRIM Abstract Machine

2.1 The Abstract Machine Instruction Set
2.2 The Basic Operational Model of the Abstract Machine

3 The Translation Scheme

4 Optimizing the Code

5 System Implementation

5.1 Implementing the Components

5.2 System Integration
5.3 Evaluating the Performance

6 Related Work
7 Further Work

A Compiler Translation Scheme

11

11
12
14
15

16
17
18
21

24

25

29

1 Introduction

Here we present TRIM, an abstract machine capable of executing a subset of
the algebraic specification language OBJ3 [9]. The subset of OBJ3 was chosen
in such a way that it reflects all the semantic components of the language but
omits some of the syntactic constructs present in the current version of OBJ3. A
specifically designed compiler translates the order sorted conditional equations
of an OBJ3 specification into the abstract term rewriting machine code — the
TRIM code.

To obtain more efficient target code we include two optimizers in our com-
piler system; a peep-hole optimizer and a rule-base optimizer. Peep-hole op-
timizers improve the efficiency of programs by successively applying behavior
preserving optimization rules to the original program. The rule-base optimizer
prevents unnecessary attempts of equation application to an input term for
which one knows the application will fail. It accomplishes this by splitting the
set of equations in an OBJ3 specification into partitions such that, if one equa-
tion application in a particular partition fails, then none of the other equations
in the same partition are tried.

The compiler, optimizer, and the abstract term rewriting machine have been
seamlessly integrated into the OBJ3 environment. The implementation in C++
comprises about 15,000 lines of code. The system provides a speedup of about
one order of magnitude over the interpreted OBJ3 equations.

In this paper we assume familiarity with OBJ3 specifications and term
rewriting systems. For further discussion of either please refer to the OBJ3
User Manual [9]. The integrated OBJ3/TRIM system can be downloaded from

http://www.kindsoftware.com.

2 The TRIM Abstract Machine

Abstract machines! have proved successful in the implementation of very high
level logic and functional programming languages; in particular, we have the
G-machine [14] for functional programming languages and the WAM [4, 22] for
Prolog. Here we develop an abstract machine appropriate for the implementa-
tion of algebraic specification languages.

Our abstract machine is the term rewriting machine TRIM? first sketched
in the paper [12] and fully developed (including a formal correctness proof) in

1Here we have an unfortunate clash of terminology between the term abstract machines
as developed in [18] where the term denotes objects with hidden states and visible behavior
and the term abstract machine as deployed by language implementors representing abstract
instruction sets to be used for the implementation of very high level languages.

2TRIM stands for Term Rewrite Instruction Machine; this is different from the original
meaning which was: Tiny Rewrite Instruction Machine. The name change is due to the fact
that order sorted and conditional rewriting has added a number of features to the original
instruction set so that it is no longer plausible to talk about a tiny machine. However, we
feel that the acronym TRIM is still appropriate, since the native support of order sorted and

the thesis [10]. It is a stack based machine and natively supports order sorted
conditional rewriting. This native support of order sorted rewriting is unusual
in the sense that most other abstract rewriting machines use some encoding
scheme to support order sorted rewriting at the abstract machine code level
rather than supporting it as a built-in feature of the machine itself.

As with most abstract machines, the TRIM instruction set reflects the com-
putational characteristics of the source language which it is meant to imple-
ment. In this case where the source language is algebraic specifications, we find
instructions for primitives such as matching an operator symbol to an input
term or binding a term to a variable. However, compared to the semantics of
the source language, the semantics of our abstract machine is defined in terms
of much more concrete data structures and therefore may be implemented more
efficiently on conventional computer architectures.

2.1 The Abstract Machine Instruction Set

TRIM is an abstract term rewriting machine. To convey the flavor of its syntax,
let us take a look at how a term rewriting rule could be implemented on this
abstract machine.

Example 1 Consider the rewrite rule
(var X:Int) eq X *x 1 => X

One way to implement this rule on TRIM is?:

MATCH * 2 ;
JUMPF L5 ;

BIND X [Int] ;
JUMPF L5 ;
MATCH 1 0 ;
JUMPF L5 ;
KILLOP ;

GET X ;

APPLY ;

L5 :

The generated code attempts to match the input term by doing a prefix,
depth-first traversal of the left-hand side term of the given rewrite rule. In this
case, it attempts to first match the * operator to the input term, then it tries to
bind the variable X observing its sort Int, and lastly it attempts to match the
constant operator 1. Should a match or binding fail, then control is passed to

conditional rewriting results in tight (or rather trim) abstract machine code.
3For simplicity’s sake we ignore all kinds of start-up, initialization, and run-down code.

signature
sort_decl_list

sort_decl_list sort_rel_list op_decl_list var_decl_list
sort sort_name . sort_decl_list

€

subsort sort_name < sort_name . sort_rel_list

€

op op_name : sort_list => sort_name . op_decl_list
€

var var_name : sort_name . var_decl_list

€

sort_rel_list
op_decl_list

var_decl _list

sort_list sort_name sort_list
€

sort_name identifier

op_name ‘= identifier

var_name ‘= identifier

Figure 1: A context-free grammar for order sorted signatures.

the code following the rule with the JUMPF instruction (short for “jump if false”).
Once the input term is matched it is removed with the KILLOP instruction and
the replacement term is computed. Here this is simply a retrieval of the term
bound to the variable X. Finally, the replacement term is inserted into the input
term via the APPLY instruction. O

Let us take a look at the concrete syntax of the TRIM instruction set. A
context-free grammar for the syntax appears in Fig. 2. A couple of general
remarks; the non-terminal integer denotes the predefined class of integers, the
non-terminal identifier denotes the class of all character strings, and e denotes
the empty production. From the grammar we see that a TRIM module consists
of a signature and a program. The productions for the non-terminal signature
are given in the grammar in Fig. 1; i.e., the grammar for the signature part
of our source language. The signature part of a TRIM module is identical to
the signature declaration in an OBJ3 module. TRIM programs consist of a
sequence of, possibly labeled, instructions. Furthermore, there are four classes
of instructions:

init_instr — instructions for book keeping and general maintenance of the internal
machine state,

compute_instr — instructions that actually manipulate terms,
mode_instr — instructions which allow the direct manipulation and interrogation of
machine states,
jump_instr — instruction which transfer control from one point in a program to an-
other.
We assume that the labels in jump instructions refer to labeled instructions
appearing in the program under consideration. In general, it is the responsibility

module
program
labeled _instr
nstr
inat_instr

compute_instr

mode_instr

Jump_instr

mode

label

Figure

signature program

labeled _instr ; program | €
label : instr | instr
init_instr | compute_instr | mode_instr | jump_instr
LINK

APPLY

LOAD

EXIT

ABORT

RESTORE

SAVEOP

KILLOP

PUSHFRAME

POPFRAME

MATCH op_name integer
BIND var_name [sort_namel
GET x

BUILD op_name sort_name integer
NOP

SET mode

IS mode

PEEK op_name sort_name integer
JUMPT label

JUMPF label

JUMP label

CALL label

RETURN

NORMAL

MATCHED

REDUCED

FAILURE

DONE

NFORM

identifier

2: A context-free grammar for TRIM.

of the assembler to check that this assumption holds.

2.2 The Basic Operational Model of the Abstract Machine

TRIM is a stack based machine and each of the instructions manipulate a fairly
complex machine state. A machine state is a tuple with the following elements:

EK — eval stack { contains the term to be reduced.

OPK — operand stack { contains rewritten operands to be used in the reduction of
non-nullary operators.

WK — work stack { a scratch area for the machine.

E — variable binding environment.

R — state register { holds states such as matched, reduced, or failure.

B — ‘is’ register { a boolean ag which some of the instructions set.
RA — ‘return address’ stack { used in call/return instructions.

SO — sort order { contains the sort relation declared in the signature.
OT — operator table { contains the operators declared in the signature.

The most unusual aspect of the machine state is the presence of the two
tables; the sort order and the operator table. These are necessary in order to
be able to maintain the appropriate sort information in terms.

Let us sketch what happens during the execution of a TRIM program. More
precisely, let us take a closer look how TRIM effects reductions. In order to
gain some insight into the workings of the machine let us consider a simple term
rewriting system, namely, the Peano numbers with addition:

sort Nat .

op O : -> Nat .

op s : Nat -> Nat .

op plus : Nat Nat -> Nat .

var M : Nat .

var N : Nat .

eq plus(M,0) => M .

eq plus(M,s(N)) => s(plus(M,N))

This is essentially the same rewriting system considered before with the infix
addition operation replaced by a prefix plus operation. The TRIM code for this
term rewriting system looks as follows:

--- Generated by TRIMOPT Rev 1.3 -- Sat Nov 25 17:57:35 1995
--- /usr/tmp/cca00633.trm => PEANO.trm

op plus : Nat Nat -> Nat
op s : Nat -> Nat
op 0 : -> Nat

--- prologue code

BEGINMOD :
IS NFORM ;
JUMPF L1 ;
SAVEQP ;
JUMP BEGINMOD ;

--- eq plus(M,0) => M .
L1 :

LINK ;

RESTORE ;
MATCH plus 2 ;
JUMPF L11 ;
BIND M [Nat] ;
JUMPF L5 ;
MATCH 0 O ;
JUMPF L5 ;
KILLOP ;

GET M ;

APPLY ;

JUMP L11 ;

--- eq plus(M,s(N)) => s(plus(M,N))
L5 :
RESTORE ;
MATCH plus 2 ;
JUMPF L11 ;
BIND M [Nat] ;
JUMPF L11 ;
MATCH s 1 ;
JUMPF L11 ;
BIND N [Nat] ;
JUMPF L11 ;
KILLOP ;
GET M ;
GET N ;
BUILD plus Nat 2 ;
BUILD s Nat 1 ;
APPLY ;

--- epilogue code

L11
IS DONE ;
JUMPT L12 ;
IS FAILURE ;
JUMPF BEGINMOD ;
SAVEQP ;
JUMP BEGINMOD ;

L12
RESTORE ;
RETURN ;

The TRIM program begins with the signature declaration. Following that,
the translated code for the first and the second rewrite rules appears between
labels L1 and L5, and between labels L5 and L11, respectively. Besides this, we
have some control code which allows the machine to loop until the term has
reached an irreducible form.

In order to study this process closer, let the term plus(s(0),s(0)) be an input
term to our program. Now, since the detail and tedium of stepping through
the actual TRIM code and observing the changes in the machine state would
bury all the interesting aspects of the rewriting process, we will look at it more
abstractly. First of all, we ignore everything in the machine state except the eval
stack and the operand stack. Furthermore, we pretend that we are executing the
rewrite rules directly. This allows us to talk more about the conceptual ideas
behind the operational model rather than every concrete detail of the actual
execution of the translated rewrite rules. The following illustrates the basic
steps involved in rewriting a term. Below, the left stack represents the eval
stack and the right stack the operand stack of the machine state. At start-up
time the eval stack is initialized by pushing the function symbols of the input
term in prefix order. The operand stack is initialized to the empty stack. The
rewriting process proceeds as follows:

Step 1:
0
s
0 There are no rules to rewrite the function symbol
S 0; push unchanged onto the operand stack.
plus
Step 2:
s 0 There are no rules to rewrite the function sym-
0 bol s; push onto the operand stack taking into
s account that S is a unary function symbol; thus,
plus we build a term using the terms which are on the
operand stack as arguments and push the com-
pleted term onto the operand stack.
Step 3:
0 s(0)
lsus Similar to Step 1, there are no rules to rewrite
p the function symbol O; push unchanged onto the
operand stack.
Step 4:
5 0 Similar to Step 2, there are no rules to rewrite the
plus s(0)

function symbol S; push onto the operand stack
taking into account that 8 is a unary function
symbol; thus we build the a term using the terms
which are on the operand stack as arguments.

Step 5:

plus s(0) If you consider that the two terms on the operand
s(0) stack are the subterms of the plus operation

symbol on the eval stack, then the second rule

applies. The function symbols of the rewritten

term are then pushed in prefix order onto the eval

stack.
Step 6:
0
S
0 Function symbol O cannot be rewritten.
plus -
s
Step 7:
s 0
0
plus Function symbol S8 cannot be rewritten.
s
Step 8:
0 s(0)
plsus Function symbol O cannot be rewritten.
Step 9:
plus 0
s s(0) Apply the first rule.
Step 10:
0
z Function symbol O cannot be rewritten.
Step 11:
s 0
s Function symbol S cannot be rewritten.
Step 12:
s s(0) Function symbol s cannot be rewritten.
Step 13:
s(s(0)) The result term is constructed on the operand
stack.

The basic functionality outlined here is very similar to the workings of the
abstract rewriting machine developed at CWI in Amsterdam [15]. However,
in addition to the basic term rewriting summarized above, our machine also

10

offers native support for order sorted and conditional term rewriting making it
a convenient platform for the implementation of order sorted conditional term
rewriting systems and consequently also for algebraic specification languages.

3 The Translation Scheme

The translation scheme for our TRIM compiler is given in Appendix A. The
scheme is given in an OBJ3-like specification format. Briefly, phiSyn is the
translation function that takes syntactic constructs of the source language to
the syntax of our abstract term rewriting machine. Variables are defined over
the appropriate elements of the source syntax. We are not only translating the
modules and lists of equations, but also signature declarations.

Here is the translation scheme for a single, unconditional equation:

eq phiSyn(LHS => RHS) =

phiSyn(LHS) ;

IS FAILURE ;

JUMPT get.label.push(’EQLABEL) ;
KILLOP ;

phiSyn(RHS) ;

APPLY ;

get.label.pop(’EQLABEL) : NOP .

First we generate the match code for the left side of the equation (rewrite
rule). Then we generate the test code. If we have a failure we jump to the end
of the equation, otherwise we remove the input term and build the appropriate
right side term and apply it. For more detail please refer to the appendix.

4 Optimizing the Code

The code generated by our compiler is quite inefficient. This is due to the fact
that we simply map each syntactic source language construct into an appropri-
ate target language construct without taking any context into account. Such a
simple minded translation scheme leads to many repeated instructions and an
inefficient flow of control in the target code. It is well known that the efficiency
of the target code generated in this construct-by-construct manner can be dra-
matically improved by applying local transformation rules to the code [1, 2].
This is usually accomplished by sliding a window over the program code and
allowing a set of transformation rules to rewrite the code within this window.
This method of optimization is called “peep-hole optimization” and derives its
name from the fact that we treat the window like a peep-hole on the code in
which we look for optimization opportunities.

Another optimization which we consider here is rule-base optimization. This
is an optimization particularly geared towards term rewriting systems. Consider

11

a term rewriting system and an appropriate input term, it should be clear that
we should only try to match rewrite rules with left sides which are similar to
a particular subterm of the input term. Thus, we may partition the rewrite
rules according to their “left side similarities” and when looking for matches
we only search for rewrite rules in the appropriate partition cutting down the
search space. The rewrite rule partitions are called rule-bases and the process
of constructing them is called the rule-base optimization.

4.1 What is Peep-Hole Optimization?

Assume that we have a programming language where programs are simply se-
quences of instructions. Furthermore, assume we have a set of code rewrite
rules. Now, given a program, peep-hole optimization is accomplished by sliding
a window over the program instruction sequence and allowing the rewrite rules
to rewrite the instructions within the window. It is typical for this approach
that the application of one optimization rule to the code creates new oppor-
tunities for other optimization rules in the rule set; thus, this process has an
iterative flavor and multiple passes of sliding the window over the instruction
sequence should be made until no further rule applications can be identified. A
sketch of this process is given in Fig. 3. Here, the sequence of small rectangles
represents the program instruction sequence. The set of optimization rules is
represented by the set of rules in the big square brackets. The square sliding
across the code represents the peep-hole code window. The implementation
of the iterative nature is accomplished by conceptually attaching a flag to the
peep-hole. This flag is initially set to false. However, every time an optimization
rule fires, the value of the flag is set to true. Once the peep-hole reaches the
end of the code, the flag is examined. If it is true, then the peep-hole is reset to
the beginning of the code, the flag is reinitialized to false, and the whole process
is repeated. Should the flag be false once the peep-hole reaches the end of the
code, the optimization process terminates.

In general we do not require the window to be contiguous or even of fixed size.
We assume that it always is “just the right size” in order to find matches for the
optimization rules within the code. Furthermore, the optimization rules should
be reductive in character in order to be considered optimizing transformations.
By this we mean, that they should reduce some aspect of the resources used by
the program, such as memory, registers, machine cycles, etc.

One of the simplest measures of the resources consumed by a program is
the number of instructions in a program. However, this is not always adequate.
For example, consider a machine that has both a multiplication and a shift-
left instruction. Here, a multiplication by two can be represented by both, the
straight forward multiplication instruction or a shift-left-by-one instruction. It
is clear that the general multiplication instruction is much more complicated
than a simple shift-left, but a simple instruction count on the program will not
reveal the difference in efficiency. In cases like this a much more revealing “cost”

12

if flag is true

B

|

flag

JUIINDOUODOOHOoL;

(

code end

Figure 3: A peep-hole optimizer.

11

1n

rules __

=>ri

=>rn

IS FAILURE IS FAILURE
JUMPT (1 JUMPT [2
instrsl instrsl

l1: l1:
IS FAILURE = IS FAILURE
JUMPT [2 JUMPT [2
nstrs2 nstrs2

2: 2:
nstrs3 mnstrs3

Figure 4: The jump retargeting optimization rule.

function needs to be devised; possibly taking machine cycles into account.

From this, it is clear that the reductive character of an optimization rule can
be somewhat elusive. On the other hand, in practical peep-hole optimizers, it
is usually immediately clear what the optimization rules need to look like and
that they are in fact reductive. We therefore assume that the optimization rules
which we consider here are reductive.

4.2 A Peep-Hole Optimizer for TRIM

The peep-hole optimizer for our compiler has about half a dozen rewrite rules.
Let us take a look at some of the optimization rules in the TRIM peep-hole
optimizer. For example, the rule in Fig. 4 attempts to eliminate repeated, un-
necessary IS FAILURE tests by retargeting the appropriate jump destinations.
Here, the instruction JUMPT L (short for “jump if true”) transfers control to
some label L if the previous test instruction yields a true in the machine ‘is’
register. The names instrsi, instrs2, and instrs3 represent variables quantified
over sequences of instructions, whereas the names [1 and [2 are variables quan-
tified over program labels. It should be evident that the right side of the rule
represents more efficient code, since on encountering the first IS FAILURE test,
control is directly passed to the code following label [2 instead of first jumping
to label /7 and then transferring control to label 2.

Let us take a look at another rule. The rule in Fig. 5 removes redundant
tests from the source code. As in the previous figure, names in #talic represent
variables. The property which this rule exploits is the fact that the machine
state can never be in a failure state immediately after a RESTORE instruction.
Thus, the IS FAILURE test is redundant and we may remove it without changing
the behavior of the program. It should be clear that the program resulting from
applying this rule is more efficient by the mere fact that it has less instructions.

Let us look at one more rule. The rule in Fig. 6 makes use of the fact

14

RESTORE

IS FAILURE RESTORE
JUMPT [= mnstrs
nstrs

Figure 5: Eliminating redundant tests.

MATCH op ar

IS FAILURE N 1\;3:‘:;? ;’p ar
JUMPT | .

. nstrs

1nstrs

Figure 6: Rewriting a failure test into a more efficient test.

that the MATCH instruction not only generates a failure state if the match is
unsuccessful, but also generates the appropriate boolean value in the machine
‘is’ register. This boolean value may be used in test-and-jump instructions such
as JUMPT and JUMPF. Thus, instead of first explicitly testing for failure we may
immediately use the boolean value generated by the match instruction.

4.3 The Rule-Base Optimizer

Consider the following scenario: Given some rewriting system R and an appro-
priate term t, it should be immediately clear that it is very inefficient to attempt
to apply every single rule in R to some subterm of ¢, let us call it ¢/, in order to
reduce t. It would be much more efficient to try to apply only rules in R which
look similar to subterm ¢’. Thus, cutting down on failed match attempts and
therefore increasing the rewriting efficiency.

One way to achieve this is by factoring the rules according to their “similar-
ities”; in particular, the similarities of their left sides. This induces partitions,
also called rule bases, on the set of rules of a rewriting system. Now, should the
application of a rule in a particular partition fail due to the fact that its left
side is dissimilar to the input term, none of the other rules in this particular
partition are tried, since they also would fail for the same reason.

Lets make this a little bit more concrete. Consider the following rewriting
system:

sort Nat .
op O : -> Nat .
op s : Nat -> Nat .

15

op _ + _ : Nat Nat -> Nat .
vars M N : Nat .

eq M+ 0=>M.

eq M+ s(N) =>sM + N

Given the input term s(s(0)), any attempt to apply the rewrite rules to this
term will fail. In order to keep these attempts to a minimum we may factor
the rules according to their similarities. In this case, both rules share the +-sign
inducing a single partition on the set of rules. Therefore, if a rule application
fails due to the fact that we could not match the +-sign to the input term,
then there is no need to check the other rule in the partition. Given the input
term above, this reduces the attempted matches from six to three, which is a
substantial saving.

This process of partioning the set of rules is called rule-base optimization
and in our compiler it proceeds in two distinct phases. The first phase is the
partitioning of the set of rules of a given rewriting system. Here, the rules are
partitioned and grouped together according to their top-level left-hand opera-
tors. That is, two rules are in the same partition if they share the same top-level
left-hand operator. This is done in the compiler front-end before the rules are
translated into machine code. The front-end treats the set of rules as a list
of rules and rules in the same partition are grouped together into a contigu-
ous sublist. This regrouping of the rewrite rules is legal, since the language
of term rewriting systems we are considering here does not put any ordering
assumptions on the set of rewrite rules.

Once the rules have been translated into abstract machine code, the second
phase of the rule-base optimization is accomplished as part of the peep-hole
optimization. Here we try to eliminate redundant rule application attempts
within the same partition. Fig. 7 shows the relevant peep-hole optimization
rule. The optimization rule makes use of the fact that the top-level left-hand
operator of a rewrite rule is the first thing to be matched by the generated code.
Should this match fail and the following rewrite rule attempts to match the same
operator, i.e., the following source program rewrite rule is in the same partition
as the first rewrite rule, then the peep-hole optimizer rewrites the code sequence
in such a way, as to skip the second rewrite rule application attempt altogether.
This brings about the desired effect: if the first rewrite rule in the sublist of
rewrite rules forming a partition fails due to the fact that the discriminating
operator could not be matched, none of the other rules in the same partition
are tried. Note, because the peep-hole optimizer is iterative, the optimization
rule in Fig. 7 is sufficient to optimize rule bases with more than two rules.

5 System Implementation

We take a brief look at the actual implementations of the above components
and their integration into the OBJ3 environment. We compare the efficiency of

16

rulel : rulel :
RESTORE RESTORE
MATCH op ar MATCH op ar
JUMPF rule2 JUMPF next-rule
rulel-code rulel-code
rule2 : N rule2 :
RESTORE RESTORE
MATCH op ar MATCH op ar
JUMPF next-rule JUMPF next-rule
rule2-code rule2-code
next-rule : next-rule :
rest-of—code rest-of-code

Figure 7: Eliminating unnecessary match attempts in a rule-base.

our implementation with the OBJ3 interpreter itself and an industrial strength
equational programming system called UCG-E.

5.1 Implementing the Components
The complete compiler package for OBJ3 consists of four components:
e compiler,
e optimizer,
e assembler,
e TRIM runtime library.

These components are implemented in C++ and comprise about 15,000 lines
of code. One interesting aspect of the compiler package which has not been
mentioned is the assembler. The assembler maps TRIM instructions into C++
code making use of the translation scheme in Fig. 8. This scheme is quite
powerful, since there is no need for actual TRIM instruction interpretation at
runtime; TRIM instructions are directly mapped into C+4 code and then in
turn are translated into native machine code by the appropriate C++ compiler.
This means that given a particular OBJ specification module, the compiler
package will generate an actual, highly optimized native machine executable for
that module.

The more traditional way of looking at this in terms of compiler technology
is, that the TRIM machine language is an intermediate representation during
the compilation of OBJ3 modules into native machine code providing a stopgap

17

Assume that for each TRIM instruction, INSTR, there exists a C++
function, instr, appropriately implementing its semantics:

INSTR opl op2 = state’ = instr(opl, op2, state),

where state and state’ are the abstract machine states before and after
the execution of the instruction, respectively. Then, given a list of TRIM
instructions we may compose the corresponding C++ functions to obtain
an implementation of the list:

INSTR' opl’ op2’; state2 = instr’ (opl’, op2’, statel);

INSTR opl op2; } { statel = instr(opl, op2, state);
=
INSTR" opl” op2”,; state3 = instr” (opl”, op2”, state2);

Figure 8: The TRIM assembler translation scheme.

between the abstraction levels of the very-high-level OBJ3 specification language
and the extremely concrete native machine code.

Our choice of C++ as the implementation language had a direct impact on
the overall system architecture. Consider the fact that the OBJ system is written
in Lisp and C which does not lend itself for the direct integration of our compiler
components written in C+4. To understand this we have to briefly consider
C++. The C++ language provides the programmer with an object-oriented
programming paradigm, thus, it provides high-level programming concepts such
as classes and class instantiations, i.e., objects. Because these concepts do not
exist in Lisp or C and because C++ compilers rename function calls in order
to provide typesafe linkage it is very difficult to incorporate code written in
C++ into programs written in other languages*. To circumvent this integration
problem we decided to run our compiler components as subprocesses to the
actual OBJ system. The OBJ system communicates with these subprocesses
over UNIX pipes in a specially designed Term Description Language (TDL).

5.2 System Integration

Fig. 9 depicts a very high-level view of the TRIM/OBJ3 system architecture
disregarding the fact that the actual compiler consists of various components
and runs as a subprocess to OBJ. One can easily see from this diagram that
the compiler takes advantage of the OBJ3 module system. The user readable
output is also generated by a shared component which we call here the pretty

4Since procedural or functional programming may be considered a subset of the C-++
object-oriented programming paradigm (after all, in C++ objects communicate via function
calls) and one is able to turn off the C++ ‘name mangling’ facility for external program units,
one can easily import code written in either Lisp or C into C++ programs.

18

Interpreter
Module ‘ ‘ Pretty

— Parser — —

System —L J’ Printer
TRIM

Figure 9: Integration of the TRIM compiler package into OBJ3.

Compiler

printer. Both the interpreter and the TRIM compiler package coexist within
the OBJ3 environment.
Two new commands have been added to the OBJ3 command line interface:

run [verboselkeep] <term> .
compile [verbose|noopt|keep] [<module-expression>]

The compile command allows the user to compile any module currently
loaded into the environment. The run command works analogously to the OBJ
reduce command: given a term, it will attempt to reduce the term using the
equations in the appropriate module as rewrite rules. The main difference being,
that run evokes a compiled version of the module in order to reduce the term.
The argument keep forces the compiler subsystem to keep any intermediary
files it generates. The other arguments are self-explanatory. More information
on these and other OBJ3 commands can be retrieved from the command line
interface by typing “?” at the command line prompt.

It is never necessary to leave the OBJ3 environment to accomplish any of the
tasks necessary to construct an appropriate user environment. All the tasks may
be interleaved and repeated in an arbitrary manner. To conclude this section,

the following is an example session in the OBJ3 system with the integrated
TRIM compiler:

client48.comlaby), trimobj
NARRRARRRRRRRRAREYS
-—- Welcome to 0BJ3 ---
AN RN RRRRAREAN
0BJ3 version 2.03.1 (TRIM) built: 1995 Mar 3 Fri 13:56:40
Copyright 1988,1989,1991 SRI International
1995 Aug 25 Fri 17:00:55
0BJ> in peano

set include BOOL off

19

obj PEANO
0BJ> show PEANO .
obj PEANO is
sort Nat .
op _ + _ : Nat Nat -> Nat [strat (2 0 1)]
op s : Nat -> Nat .
op O : -> Nat .
var M : Nat .
var N : Nat .
eqM+0=NM.
eq M+ s(N) = s(M + N)
endo
0BJ> *x*x
0BJ> *** use the interpreter
0BJ> **x*
0BJ> open PEANO .
0BJ> reduce s(0) + s(0)
reduce in PEANO : s(0) + s(0)
rewrites: 2
result Nat: s(s(0))
0BJ> close
0BJ> *x*x
0BJ> *** compile the PEANO module
0BJ> **x*
0BJ> compile PEANO .
Warning: operator attributes ignored.
0BJ> **x*
0BJ> ***x run the PEANO executable
0BJ> **x*
0BJ> open PEANO .
0BJ> run verbose s(0) + s(0)
run PEANO: s(0) + s(0)
PEANO -r -v < /tmp/0BJ1871.wr > /tmp/0BJ1871.rd
TRIM Rev 1.2a -- (c) Copyright 1995, Lutz H. Hamel
Program : ‘PEANO’
Reductions : 2
CPU Time : 0.016666 sec.
Reductions/sec. : 120.004800
result Nat: s(s(0))
0BJ> close
0BJ> q
Bye.
client48.comlab}

Having started a version of OBJ3 which incorporates the interface to the
TRIM compiler, the first thing we do is to read in a file with contains a module
of interest. In this case, this is a specification of the Peano numbers. The

20

command in peano searches for a file ‘peano.obj’ in the user’s local directory.
Once found, the file is read into OBJ3. Next, we list the Peano module just
for completeness sake. This is of course not a necessary step when working
with the system. One interesting observation here is, that OBJ3 attaches a
default reduction strategy attribute to the +-operator. Due to this, we will find
that the TRIM compiler issues a warning at compile time that it ignores all
operator attributes. In the next step we use the OBJ3 interpreter for the simple
computation: s(0) + s(0). On the following line the compile PEANO command
produces a machine executable for the Peano module. Once this is accomplished,
we are free to use this executable to effect computations. In this case we run the
executable on the same input term as the OBJ3 interpreter and observe that
we obtain the same result. Note that, since the computation only consists of
two rewrites, the actual performance of the abstract machine is quite low due
to image startup time and inter-process communication overhead.

5.3 Evaluating the Performance

In order to measure the efficiency of our compiled TRIM abstract machine code
we ran the following benchmark program on a SUN SPARC Station 2.

obj FIB is

sort Nat .

op _ + _ : Nat Nat -> Nat .

op s : Nat -> Nat .

op 0 : -> Nat .

op fib : Nat -> Nat .

vars M N : Nat .

eqM+0=M.

eq M+ s(N) = s(M+N) .

eq fib(0) = 0 .

eq fib(s(0)) = s(0) .

eq fib(s(s(N))) = £fib(N) + £fib(s(N))
endo

The program computes the Fibonacci number of a given natural. The nat-
ural numbers are represented in the usual Peano form, e.g., the natural 3 is
represented by s(s(s(0))). To get a better feel for the efficiency we compared
the performance of the compiled TRIM code with the performance of the OBJ
interpreter itself, with the performance of the functional programming language
Orwell [5] and with the efficiency of an industrial strength equational program-
ming system called UCG-E [11]. The UCG-E system also compiles an equational
specification into C++ code. However, UCG-E only supports single sorted equa-
tional specifications. Thus, the comparison might seem somewhat contrived but
it allows us to establish some idea of the efficiency of our generated code.

In the following tables the measurements for the TRIM code, the OBJ in-
terpreter, the Orwell language, and the UCG-E system are referred to as the

21

fib(10) | fib(15) | fib(20)

OBJ 0.483 5.783 HoAAK

ORWELL 0.120 1.440 18.270

TRIM 0.050 0.650 9.350

UCG-E 0.017 0.267 3.850

Table 1: Runtime in CPU Secs.

TRIM, OBJ, ORWELL, and UCG-E rows, respectively. A “***** in a data field
indicates that this particular data point could not be measured due to a stack
overflow in the Lisp system underlying OBJ. The tables display the data for the
calculation of three Fibonacci numbers, namely: £ib(10), £ib(15), and £ib(20).

The first table, Tab. 1, displays the run times in raw CPU seconds for the
various systems. Table 2 displays just this ratio of reductions/sec. The compiled
TRIM code is roughly ten times faster than the OBJ interpreter and twice as fast
as Orwell. The UCG-E system produces code which is three times faster than
the TRIM code, six times faster than Orwell, and thirty times faster than the
OBJ interpreter. Curiously, the UCG-E system looses speed as the Fibonacci
numbers to be computed get larger. We postulate that this is due to memory
allocation problems in UCG-E’s runtime system.

The last table, Tab. 3, is a study of the impact of the different levels of
optimization on the efficiency of the generated TRIM code. High-level opti-
mizations are optimizations implemented in the TRIM compiler, and low-level
optimizations are machine specific optimizations within the native C+4 com-
piler. There are a couple of interesting observations here. First, compiling the
TRIM code without any optimizations still gives us an efficiency gain of a fac-
tor of roughly four over the OBJ3 interpreter. That implies that just moving
from the interpreter to the more concrete abstract machine (implemented in an
efficient programming language) provides us with a speedup of a factor of four.
Second, it is interesting to note that both the high-level optimizations and the
low-level optimizations contribute about equally to the final efficiency of the
generated code.

22

fib(10) | fib(15) | fib(20)
OBJ 1000 1200 HAok Rk
ORWELL 4600 5200 5400
TRIM 10000 10000 10000
UCG-E 30000 26000 24000

Table 2: Reductions/Sec.

High | Low | fib(10) | fib(15) | fib(20)

— — 3800 3800 3700

+ — 6000 5500 5400
— + 6000 6700 6300
+ + 10000 10000 10000

+/— High — high-level optimization on/off
+/— Low — low-level optimization on/off

Table 3: Impact of Optimizations (reductions/sec.)

23

6 Related Work

There are two main approaches to compiling term rewriting systems: First,
translating a term rewriting system into a subset of a more traditional pro-
gramming language such as Lisp or Pascal. Second, compiling term rewriting
systems onto a specifically designed abstract term rewriting machine.

The first approach was made popular by Kaplan in his seminal paper [16].
Here, Kaplan develops a scheme which translates rewrite rules into Lisp code.
The paper also develops a number of optimizations such as common sub-expression
elimination. The speed improvements of the order of magnitude of two which
Kaplan reports over the interpreted code are quite impressive.

Another approach is taken by Geser, Hussmann, and Miick [7]. They show
that by restricting the algebraic specification language to sequential, recursive
function definitions they can translate the resulting rewriting system into very
efficient Pascal code. They also report impressive speed improvements (a factor
of 200).

The work by Heuillard [13] is another interesting approach. He develops
a scheme which translates pattern matching into straightforward IF THEN ELSE
code with the semantics of IF THEN ELSE defined as expected. By specifying a
number of additional functions and predicates such as subterm selector functions
and equality predicates for terms he defines a fairly universal translation scheme
for pattern matching, since IF THEN ELSE code can be represented with ease in
almost any modern programming language®.

There have been many proposals for abstract term rewriting machines as tar-
get machines for the implementation of algebraic specification languages. More
notably the abstract machine ARM [15] which is very similar to our TRIM
machine with the exception that it does not support native order sortedness.
Another important effort is the Equational Machine [20, 21] developed by Sher-
man and Strandh. By restricting the form of the term rewriting systems induced
by an algebraic specification (left linear and orthogonal) and by developing a
highly specialized abstract machine instruction set, their approach promises a
level of analysis and optimization not witnessed in other approaches. However,
we are not quite sure what these restriction mean to the user of the system;
do these restriction on the underlying term rewriting system lead to unnatural
specifications?

Two other approaches which are related to our own effort in that they also
chose abstract stack machines as their target machines are [17] and [19]. How-
ever, neither of these machines have native support for order-sorted rewrite
rules.

Another project which deserves mention is the Rewrite Rule Machine project
at SRI [3, 8]. This is an effort to design an abstract term rewriting machine

5Tt is interesting to note that the UCG-E system [11] employs a very similar scheme which
generates IF THEN ELSE statements in C++-.

24

running on massively parallel hardware. The project shares our aim to design
a machine appropriate for the implementation of OBJ3.

7 Further Work

How can we improve target code efficiency?

Our current abstract term rewriting machine maintains three stacks, and it per-
forms a large amount of book keeping in order to keep these stacks coherent.
We propose to go to a simpler abstract machine model where terms are possi-
bly kept on the heap using pointers and pointer arithmetic instead of stacks.
The term structure designed for fast rewriting in theorem provers advocated by
Christian [6] might be considered here.

The most time consuming activity of any abstract term rewriting machine
is pattern matching. Thus, the faster the pattern matching algorithm the faster
the machine. A key insight we gained is the fact that the pattern matching
process has a lot of structure which optimizers could exploit in order to increase
code efficiency. However, because we currently compile to a fairly low-level
machine, the inherent high-level structure of pattern matching is lost and our
optimizers lose some of the important contexts for powerful optimizations. One
possible solution is to stage the compilation process as a succession of compi-
lation steps. Each step compiles the current abstract machine into a slightly
lower level abstract machine such that each level provides unique optimization
opportunities.

Our current machine maintains variable binding environments. Maintain-
ing these environments during rewriting is very expensive. By realizing that
variables are essentially place holders for subterms, the equation parser could
compute the subterm addresses of the variables and exploit this knowledge dur-
ing compilation (this is very much in the same spirit as determining the type of
a term at parse time). Once we know the subterm address of a particular vari-
able on the left side of an equation, the compiler may use this to generate code
which copies an appropriate subterm directly into a right side instance of that
variable. Clearly, this is more efficient than generating code which first assigns
a subterm to a variable name in an environment and then fetches the subterm
from the environment for each right side instance of that variable name.

Currently unsupported OBJ3 features

Built-ins: There are certain theories for which it is important to have a very ef-
ficient implementation. Consider for example the integers or the booleans.
OBJ3 allows the user to custom build such theories and integrate them di-
rectly into the reduction engine as built-ins. To completely conform to the
current OBJ3 programming environment, TRIM and its compiler should
support such built-in theories in some way. In particular, built-in boolean

25

A/C

operations such as term equality and inequality need to be provided to
make conditional equational reasoning more useful with TRIM.

rewriting: During the specification of a particular system it is often con-
venient to be able to specify certain operators as either associative or com-
mutative, or both. It is in general not possible to specify associativity and
commutativity as rewrite rules, since this will give rise to non-terminating
term rewriting systems and thus would destroy any possibility of executing
the pertinent specification in order to study its runtime behavior. There-
fore, associativity and commutativity must be given as operator attributes.
Unfortunately, the compilation of term rewriting systems which incorpo-
rate such operator attributes is not yet well understood. On the other
hand, one might envision compiling associative operators by mapping any
input term containing associative operators into its left-associative nor-
mal form which is then used during the actual reduction steps. However,
we cannot employ the same trick for the compilation of term rewriting
systems containing commutative operators, since there is no particular
term such as the left-associate normal form which stands out as a can-
didate to be used as the representative of the commutative equivalence
class. On the other hand, one could implement commutative rewriting by
lexicographically ordering all subterms.

Evaluation strategies: Depending on the problem at hand it is sometimes

convenient to have a flexible way of defining the evaluation strategies for
particular operators during the specification of a system. In general, eval-
uation strategies fall into two classes: lazy (also called top-down or out-
ermost) and eager (also called bottom-up). OBJ3 allows each operator in
a specification to have its own evaluation strategy and the TRIM com-
piler should support this feature. Currently the compiler simply ignores
user defined evaluation strategies and assumes a default, eager evaluation
strategy for each operator.

Left-Linearity: OBJ3 allows non-left-linear equations in its specifications which

our compiler currently does not support. However, the simple transfor-
mation from a non-left-linear equation such as

(var N:Int) eq N + (- N) =0 .
into the left-linear equation
(vars N M:Int) eq N + (- M) = 0 if N ==

would allow us to compile even non-left-linear equations. This transfor-
mation is due to Aida et al. [3].

26

References

1]

Alfred Aho, Ravi Sethi, and Jeff Ullman. Code optimization and finite
church-rosser systems. In Randall Rustin, editor, Design and Optimization
of Compilers, pages 92-105. Prentice Hall, 1972. Fifth Courant Computer
Science Symposium, 1971.

Alfred Aho, Ravi Sethi, and Jeff Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, Massachusetts, 1986.

Hitoshi Aida, Joseph Goguen, and José Meseguer. Compiling concurrent
rewriting onto the rewrite rule machine. In S. Kaplan and M. Okada, ed-
itors, Conditional and Typed Rewriting Systems (CTRS Workshop, Mon-
treal, Canada, June 1990), volume 516 of Lecture Notes in Computer Sci-
ence, pages 320-332. Springer-Verlag, 1990.

Hassan Ait-Kaci. The WAM: A (real) tutorial. Technical Report 5, DIGI-
TAL Paris Research Laboratory, 1990.

Richard Bird and Philip Wadler. Introduction to Functional Programming.
Prentice Hall, 1988.

Jim Christian. Flatterms, discrimination nets, and fast term rewriting.
Journal of Automated Reasoning, 10:95-113, 1993.

Alfons Geser, Heinrich Hussmann, and Andreas Miick. A compiler for a
class of conditional term rewrite systems. Lecture Notes in Computer Sci-
ence, 308:84-90, 1988.

Joseph Goguen. Semantic speicifations for the rewrite rule machine. In
A. Yonezawa and T. Ito, editors, Concurrency: Theory, Language, and Ar-
chitecture (Workshop, Ozford, UK, September 1989), volume 489 of Lecture
Notes in Computer Science, pages 216-234. Springer-Verlag, 1990.

Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futat-
sugi, and Jean-Pierre Jouannaud. Introducing OBJ. In Joseph Goguen
and Grant Malcolm, editors, Software FEngineering with OBJ: alge-
braic specification in action, pages 3-167. Kluwer, 2000. http://www-
cse.ucsd.edu/users/goguen/ps/iobj.ps.gz.

Lutz Hamel. Behavioural Verification and Implementation of an Optimising
Compiler for OBJ3. PhD thesis, University of Oxford, 1996.

Lutz H. Hamel. UCG-E: An equational logic programming system. In Pro-
ceedings of the Programming Language Implementation and Logic Program-
ming Symposium 1992, Lecture Notes in Computer Science 631. Springer-
Verlag, 1992.

27

[12]

[17]

[18]

Lutz H. Hamel and Joseph A. Goguen. Towards a provably correct compiler
for OBJ3. In Manuel Hermenegildo and Jaan Penjam, editors, Program-
ming Language Implementation and Logic Programming, Lecture Notes in
Computer Science, Volume 844, pages 132-146. Springer, 1994.

Thierry. Heuillard. Compiling conditional rewriting systems. Lecture Notes
in Computer Science, 308:11-128, 1988.

Simon Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice-Hall, 1987.

J.F.Th. Kampermann and H.R. Walters. ARM — Abstract Rewriting Ma-
chine. Technical report, CWI, P.O. Box 4079, 1009 AB Amsterdam, The
Netherlands, 1994. http://www.cwi.nl/ftp/gipe.

Stéphane Kaplan. A compiler for conditional term rewriting systems. In
P. Lescanne, editor, Rewriting Techniques and Applications, volume 256 of
Lecture Notes in Computer Science, pages 25—41. Springer-Verlag, 1987.

H. Klaeren and K. Indermark. Efficient implementation of an algebraic
specification language. Lecture Notes in Computer Science, 394:69-89,
1989.

José Meseguer and Joseph Goguen. Initiality, induction and computabil-
ity. In Maurice Nivat and John Reynolds, editors, Algebraic Methods in
Semantics, pages 459-541. Cambridge, 1985.

Karel Richta and Simon Nesvera. The abstract rewriting machine. Research
Report DC-91-04, Dept. of Computers Czech Technical University, Prague,
September 1991.

David Sherman. EM code semantics, analysis, and optimisation. Technical
Report Rapport 94-01, GRECO de Programmation, August 1993.

David Sherman and Robert Strandh. An abstract machine for efficient im-
plementation of term rewriting. Technical Report TR-90-12, University of
Chicago, Dept. of Computer Science, March 1990.

David H. Warren. An Abstract Prolog Instruction Set. Technical Report
309, Artificial Intelligence Centre, SRI International, 1983.

28

A Compiler Translation gt 1abe1.popEnoron

RESTORE ;

Scheme RETURN .

***% equation lists.

var LHS : LTerm . eq phiSyn(Q * QL) =

var RHS : RTerm .

var COND : RTerm . phiSyn(Q) ;
vars LT1 LT2 : LTerm IS REDUCED ;
vars RTL RT2 : RTerm . JUMPT get.label.push(’CONTINUE) ;
var Q : Eq ’ ’ RESTORE ;
var QL : Eqlist . phiSyn(QL) ;’
vars I K L : Int get.label.pop(’ CONTINUE)
N NOP .

var OP : OpName .

var SO : SortName .

var X : VarName .

vars S1 S2 : SortName .
var R : SortRel .

*** equations
*** unconditional
eq phiSyn(LHS => RHS) =

: i phiSyn(LHS) ;
Xzi EL'.MizrtRelLlst . oS FATLURE ;
var SL.' Sori.:List JUMPT get.label.push(’EQLABEL) ;
var OPS : OpList KIPLUP ;
phiSyn(RHS) ;
APPLY ;
*** make the following global H
*xx labels for the ‘call’ instr. ge;ml)abel.pop(’EQLABEL)

op BEGINMOD : -> Label .

op MORPHMOD : -> Label . *%% conditional

#+% order—sorted modules. eq phiSyn(LHS => RHS if COND) =

r hiSyn(LHS) ;
eq phiSyn(RL,0PS,M) = ESIFX?EURE)'
[phiSyn(RL) 1 ; [phiSyn(0PS)] ; JUMPT get.label.push(’EQLABEL) ;
phiSyn (M) PUSHFRAME ;
eq phiSyn(OPS,M) = phiSyn(CONB) ;
[phiSyn(OPS) 1 ; phiSyn(M) LOAD ; ’

CALL BEGINMOD ;
PEEK ’TRUE ’BOOL O ;
JUMPF get.label(’CONDFAIL) ;

*** sort relations - identity
eq phiSyn(RL) = RL .

***% operator declarations - identity E?EiggMF :
eq phiSyn(0OPS) = OPS . phiSyn(éHS) ;
APPLY ;

*** sort lists - identity

’ .
eq phiSyn(SL) = SL . JUMP get.label (’EQLABEL) ;

get.label (’CONDFAIL)

**%* modules POPFRAME ;
) b
% empty module gegééabel.pop(EQLABEL)

eq phiSyn({ }) =

EXIT . *x* left side terms

**% variables
eq phiSyn(x.1(X,SL)) =
IS FAILURE ;

*** regular module
eq phiSyn({ QL }) =

BE(I;;NEggRl;I) JUMPT get.label.push(’LABEL) ;
JUMPF get.label.push.reset(’CONTMOD) ; BIND X [phl?yn(SL) s
SAVEOP get.label.pop(’LABEL)

JUMP BEGINMOD ; NP

get.label (’CONTMOD)
k constants

RESTON eq phiSyn(k.1(0P,S0)) =
RESTORE ;
hiSyn(QL) ; IS FAILURE ;
I ’ JUMPT get.label.push(’LABEL) ;
NPT et MATCH QP O ;
JUMPT get.label(’ENDMOD) ; © label E’LABEL)
IS FAILURE ; get.1abel.pop
JUMPF BEGINMOD ; .
SAVEQP ;

JUMP BEGINMOD ; *%% unary ops

29

eq phiSyn(uop.1(0P,S0,LT1)) =
IS FAILURE ;
JUMPT get.label.push(’LABEL) ;
MATCH OP 1 ;
IS FAILURE ;
JUMPT get.label (’LABEL) ;
phiSyn(LT1) ;
get.label.pop(’LABEL)
NOP .

*** binary ops

eq phiSyn(bop.1(0P,S0,LT1,LT2)) =
IS FAILURE ;
JUMPT get.label.push(’LABEL) ;
MATCH OP 2 ;
IS FAILURE ;
JUMPT get.label (’LABEL) ;
phiSyn(LT1) ;
phiSyn(LT2) ;

get.label.pop(’LABEL)

NOP .

*** right side terms
*** variables
eq phiSyn(x.r(X,SL)) =
IS FAILURE ;
JUMPT get.label.push(’LABEL) ;
GET X ;
get.label.pop(’LABEL)
NOP .

*** constants
eq phiSyn(k.r(0P,S0)) =
IS FAILURE ;
JUMPT get.label.push(’LABEL) ;
BUILD OP SO O ;
get.label.pop(’LABEL)
NOP .

*%% unary ops
eq phiSyn(uop.r(0P,S0,RT1)) =
IS FAILURE ;
JUMPT get.label.push(’LABEL) ;
phiSyn(RT1) ;
BUILD OP SO 1 ;
get.label.pop(’LABEL)
NOP .

*** binary ops

eq phiSyn(bop.r(0P,S0,RT1,RT2)) =
IS FAILURE ;
JUMPT get.label.push(’LABEL) ;
phiSyn(RT1) ;
phiSyn(RT2) ;
BUILD OP SO 2 ;

get.label.pop(’LABEL)

NOP .

30

