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Abstract. Inductive machine learning suggests an alternative approach
to the algebraic specification of software systems: rather than using test
cases to validate an existing specification we use the test cases to induce a
specification. In the algebraic setting test cases are ground equations that
represent specific aspects of the desired system behavior or, in the case of
negative test cases, represent specific behavior that is to be excluded from
the system. The induction of a specification that satisfies the positive
test cases and does not satisfy the negative test cases can be viewed as
a search problem over all possible theories. We have implemented such
an induction system in the functional part of the Maude specification
language using evolutionary computation as a search strategy. In order
to facilitate the implementation we developed an algebraic semantics
for equational theory induction. Our system sets itself apart from other
inductive systems in that we consider both multi-concept learning and
robustness to be vital characteristics of a practical system.

1 Introduction

Inductive machine learning [1, 2] suggests an alternative approach to the alge-
braic specification of software systems: rather than using test cases to validate
an existing specification we use the test cases to induce a specification. In the
algebraic setting test cases are ground equations that represent specific aspects
of the desired system behavior or, in the case of negative test cases, represent
specific behavior that is to be excluded from the system. Acceptable specifica-
tions must satisfy the positive test cases and must not satisfy the negative test
cases. It is interesting to observe that in this alternative approach the burden
of constructing a specification is placed on the machine. This leaves the system
designer free to concentrate on the quality of the test cases for the desired system
behavior. In addition, the induction process can be viewed as a coherence test
for the test cases. For example, a failure of the system to induce a specification
that satisfies all the (positive) test cases can be due to the fact that some of the
test cases are contradictory.

Inductive logic programming [3] and in particular inductive equational logic
programming [4, 5] seem well suited for this task. In the equational setting a
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learning system is asked to search for an equational theory H , called the hy-
pothesis, such that,

H ∪ B |= p, for every p ∈ F+, (1)

H ∪ B 6|= n, for every n ∈ F−, (2)

where B is a possibly empty equational theory representing background knowl-
edge, F+ is the set of ground equations representing the positive test cases
or facts, and F− is the set of ground equations representing the negative test
cases or facts. Posterior sufficiency (1) states that the theory H ∪B has to sat-
isfy all the positive test cases and posterior satisfiability (2) states that none
of the negative test cases can be a logical consequence of the induced theory
together with the background. We require that two additional constraints are
satisfied in this induction framework. We require that the positive facts are not
a logical consequence of the background theory, B 6|= p, for every p ∈ F+ (prior
necessity), and we require that none of the negative facts are satisfied by the
background theory, B 6|= n, for every n ∈ F− (prior satisfiability). This inter-
pretation of theory induction is usually referred to as the normal semantics for
inductive logic programming [3]. Although this semantics provides an adequate
interpretation for the theory induction problem, from a system implementation
point of view an algebraic semantics would be preferable. We address this by
developing an algebraic semantics which is the basis of our implementation.

Please note that the above semantic definition does not say anything about
the quality of a particular hypothesis. In fact, it is interesting to note that this
semantic definition admits a trivial solution of the form H = F+. Here the
theory induction system simply memorizes all the positive facts. Typically, the
weighing of one hypothesis over another is left to the search strategy of a partic-
ular induction system. In practical systems trivial solutions like the one above
are usually immediately dismissed on its search for an “optimal” hypothesis,
since these trivial solutions tend not to pass a set of performance criteria when
compared to other more general hypotheses. The search strategy for the system
described in this paper is based on evolutionary computation.

fmod STACK-FACTS is

sorts Stack Element .

ops a b : -> Element .

op v: -> Stack .

op top : Stack -> Element .

op pop : Stack -> Stack .

op push : Stack Element -> Stack .

eq top(push(v,a)) = a .

eq top(push(push(v,a),b)) = b .

eq top(push(push(v,b),a)) = a .

eq pop(push(v,a))= v .

eq pop(push(push(v,a),b)) = push(v,a) .

eq pop(push(push(v,b),a)) = push(v,b) .

endfm

(a)

fmod STACK is

sorts Stack Element .

op top : Stack -> Element .

op pop : Stack -> Stack .

op push : Stack Element -> Stack .

var S : Stack . var E : Element .

eq top(push(S,E)) = E .

eq pop(push(S,E)) = S .

endfm

(b)

Fig. 1. (a) Positive test cases for the inductive acquisition of the specification for the
stack operations top, push, and pop. (b) An hypothesis that satisfies the test cases.
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We briefly illustrate theory induction with the inductive acquisition of a stack
specification from a set of positive test cases for the stack operations top, push,
and pop. In Figure 1(a) the positive facts are given as a theory in the syntax
of the Maude specification language [6]. Here the function symbol push can be
viewed as a stack constructor and each of the test cases gives an instance of
the relationship between the constructor and the function top or pop. The set
of negative examples and the background knowledge are empty. A hypothesis
specification that satisfies the positive facts is given in Figure 1(b). It is note-
worthy that our implementation of an inductive equational logic system within
the Maude specification system induces the above hypothesis specification unas-
sisted.

Our system sets itself apart from other induction systems in that we con-
sider multi-concept learning [7] and robustness vital aspects for the usability
of an induction system. Multi-concept learning allows the system to induce the
specifications of multiple function symbols at the same time (see Figure 1).
Robustness enables the system to induce specifications even in the presence of
inconsistencies in the facts.

This paper is structured as follows. Section 2 describes the algebraic seman-
tics that underlies the design of our system. In Section 3 we sketch its implemen-
tation. We describe some experiments using our system in Section 4. Section 5
describes our notion of robustness in more detail. In Section 6 we describe work
closely related to the system described here. And finally, Section 7 concludes the
paper with some final remarks and future research.

2 An Algebraic Semantics

Many sorted equational logic, at the foundation of algebraic specification, is the
logic of substituting equals for equals with many sorted algebras as models and
term rewriting as the operational semantics [8, 9]. Briefly, an equational theory is
a pair (Σ,E) where Σ is an equational signature and E is a set of Σ-equations.
Each equation in E has the form (∀X)l = r, where X is a set of variables distinct
from the equational signature and l, r ∈ TΣ(X) are terms. If X = ∅, that is, l
and r contain no variables, then we say the equation is ground. When there is no
confusion theories are denoted by their collection of equations, in this case E. We
say that a theory E semantically entails an equation e, E |= e, iff A |= e for all
algebras A such that A |= E. Given two theories T = (Σ,E) and T ′ = (Σ′, E′),
then a theory morphism φ : T → T ′ is a signature morphism φ : Σ → Σ′ such
that E′ |= φ(e), for all e ∈ E. Soundness and completeness for many-sorted
equational logic is defined in the usual way [10]: E |= e iff E ⊢ e. We denote the
deductive closure of a set of equations E with E•.

Inductive logic programming concerns itself with the induction of first-order
theories from facts and background knowledge [3]. Although it is possible to in-
duce theories from positive facts only, including negative facts helps to constrain
the domain. Therefore, both positive as well as negative facts are typically given.
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Before we develop our semantics we have to define what we mean by background
knowledge and facts.

Definition 1. A theory (Σ,F ) is called a Σ-facts theory (or simply facts)
if each f ∈ F is a ground equation. A theory (Σ,B) is called a background
theory if it defines auxiliary concepts that are appropriate for the domain to be
learned. The equations in B do not necessarily have to be ground equations.

In the algebraic setting it is cumbersome to express theories in terms of a sat-
isfaction relation that does not satisfy a set of equations. Therefore, we need a
little bit more machinery in order to deal with negative facts more readily.

Definition 2. Given a many-sorted signature Σ, then an equation of the form
(∀∅)t 6= t′ = true is called an inequality constraint, where t, t′ ∈ TΣ(∅)
and {6=, true} ⊂ Σ with the usual boolean sort assignments. A theory (Σ,E) is
called an inequality constraints theory iff all equations in E are inequality
constraints.

We use inequality constraints to rewrite a negative Σ-facts theory as an inequal-
ity constraints theory. Let E be some Σ-theory and let N be a Σ-facts theory
such that E 6|= e, for all e ∈ N . We can now rewrite every equation (∀∅)l = r inN
as an inequality constraint (∀∅)(l 6= r) = true. Call this new set of equations N̂ ,
the inequality constraints theory. Observe that E |= ê, ê ∈ N̂ iff E 6|= e, e ∈ N .
The following proposition establishes the equivalence between these two nota-
tions.

Proposition 1. Given a theory (Σ,E) and an equation (∀∅)l = r, where l, r ∈
TΣ(∅), such that E 6|= (∀∅)l = r, then E |= (∀∅)(l 6= r) = true iff E 6|= (∀∅)l = r.

Proof.

E |= (∀∅)(l 6= r) = true ⇔ {soundness and completeness}
(∀∅)(l 6= r) = true ∈ E• ⇔ {equality, deductive closure}
(∀∅)l = r 6∈ E• ⇔ {soundness and completeness}
E 6|= (∀∅)l = r

⊓⊔

In the inductive logic programming literature induced theories are usually re-
ferred to as hypotheses. We adopt this terminology here and we define our alge-
braic notion of hypothesis as follows,

Definition 3. Given a background theory B = (ΣB, B), facts F = (ΣF , F ), and

an inequality constraints theory N̂ = (ΣN , N̂) derived from negative facts N ,
then an hypothesis H = (ΣH , H), is a theory for which the following diagram
holds,

H

B

�

/

>>~~~~~~~

F

φ

``@@@@@@@

N̂

ψ

__???????
�

/

??�������
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where,

1. φ : F → H is a theory morphism,
2. ψ : N̂ → B is a theory morphism,
3. and a theory morphism from F to B does not exist.

A number of observations are in order. The hypothesis H is a theory that incor-
porates the background knowledge via a theory inclusion morphism and satisfies
the facts F via the theory morphism φ. Also notice that F is intended to be an
amalgamation of the positive facts and the inequality constraints. The theory
morphism φ gives rise to a notion similar to completeness in the normal seman-
tics for inductive logic programming given in the introduction, that is, H has to
satisfy all the positive facts in F . It also follows from Prop. 1 that the morphism
gives rise to notion similar to consistency, that is, H needs to also satisfy all the
inequality constraints in F .

The third condition in the definition is not very intuitive but it gives rise to
a notion similar to the prior necessity in the normal semantics. However, our
notion of prior necessity is slightly weaker than the one given in the normal
semantics. Consider that we have a signature morphism from F to B, then the
normal semantics states that none of the equations in F should be a consequence
of B whereas our semantics states that not all equations in F should be a con-
sequence of B. This directly follows from the definition of a theory morphism.
Another way of interpreting the third condition is that it disallows hypotheses
that essentially look like the background knowledge, or in more technical jar-
gon, the third condition does not admit hypotheses that are isomorphic to the
background knowledge.

Proposition 2. Hypotheses admitted by Def. 3 are not isomorphic to the back-
ground knowledge.

Proof. Given an hypothesis H , a background theory B, and fact theories F and
N that fulfill the definition, assume that H is isomorphic to B, that is, the
inclusion morphism B →֒ H is an isomorphism. Now, the theory morphism φ

from F to H and the properties of the isomorphic mapping B → H imply that
there exists a morphism F → B. This is a contradiction and therefore H is not
isomorphic to B. ⊓⊔

The morphism ψ : N̂ → B in Def. 3 expresses the fact that B satisfies the the
inequality constraints in N̂ and therefore gives rise to a notion similar to prior
satisfiability in the normal semantics.

Our last observation is that our semantics explicitly requires the positive and
negative facts to be consistent. This is expressed with the morphism N̂ →֒ F .
The normal semantics for theory induction does not state this explicitly, even
though, it is implied in the overall definition, since it would not be possible to
induce a hypothesis if the positive and negative facts were inconsistent. It is a
nice side effect of our semantic definition that this requirement is made explicit.

Our algebraic formulation of the semantics for theory induction retains the
features of the normal semantics usually associated with inductive logic pro-
gramming. In particular, we do not make quantitative statements on the quality
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of a particular hypothesis. Similar to the normal semantics, we admit hypoth-
esis where φ is essentially an inclusion morphism. The quality of a particular
hypothesis is evaluated based on the search strategy of a particular induction
system.

3 Implementation

We have implemented an equational theory induction system within the func-
tional part of the Maude specification language [6] based on the algebraic seman-
tics developed in the previous section. The induction system is accessible from
the Maude prompt via the induce command. The induce command returns an
equational theory given a set of fact theories (a positive and a negative fact
theory) as well as a background theory,

> induce theory-name pfacts nfacts background-theory parameters

where theory-name is the name to be given to the induced theory, pfacts is the
name of the positive fact theory, nfacts is the name of the negative facts theory,
and background-theory is the name of the background theory. Finally, parameters
denotes parameters that allow the user to assert some control over the induction
process.

The induction of theories can be viewed as a search over all possible the-
ories for suitable hypotheses [11]. Our induction system employs evolutionary
computation techniques in order to search the associated theory space. More
specifically, our system is based on genetic programming [12]. Genetic program-
ming distinguishes itself from other evolutionary techniques in that it directly
manipulates abstract syntax trees making it well suited for the induction of
equational theories.

One key aspect of any search strategy and in particular evolutionary search
strategies is that it needs to quantitatively distinguish between “good” and “bad”
hypotheses. In order to accomplish this we endowed our induction system with
the following objective function:

fitness(H) = facts2(H) +
1

length(H)
, (3)

where H denotes a candidate hypothesis, facts(H) is the number of facts satis-
fied by the candidate hypothesis, and length(H) is the number of equations in
the candidate hypothesis. The fitness function is designed to primarily exert evo-
lutionary pressure towards finding candidate hypothesis that satisfy all the facts
(the first term of the function). In addition, in the tradition of Occam’s Razor,
the fitness function also exerts pressure towards finding the shortest hypothesis
(second term), i.e., the most general theory.

From a semantic point of view, computing the first term of the fitness function
reduces to a proof obligation that the morphism φ : F → H (Def. 3) is indeed
a theory morphism. Candidate hypotheses for which the theory morphism con-
dition does not hold (call them pre-hypotheses) will score a lower fitness value
than candidate hypotheses for which the theory morphism condition does hold.
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From an evolutionary computation point of view it is important to not simply
discard the theories for which the theory morphism condition does not hold,
because these pre-hypotheses could represent important partial solutions that
upon later genetic recombination with other partial solutions could represent
interesting candidate hypotheses in their own right. In the evolutionary frame-
work it is sufficient to simply label theories according to their fitness instead of
discarding low performing ones outright.

Our search strategy based on genetic programming can be summarized as
follows:

1. Compute an initial (random) population of candidate hypotheses;
2. Evaluate the fitness of each candidate hypothesis;
3. Perform theory reproduction using genetic crossover and mutation opera-

tors;
4. Compute new population of candidate hypotheses;
5. Goto step 2 or stop if target criteria have been met.

This series of steps does not significantly differ from the standard genetic pro-
gramming paradigm [12]. The only real difference being that the fitness evalua-
tion is mainly a proof obligation that the theory morphism condition H |= φ(f)
for all f ∈ F holds for candidate hypotheses H and facts F . Soundness and
completeness of many-sorted equational logic allows us to replace the semantic
entailment with its proof-theoretic counterpart: H ⊢ φ(f) for all f ∈ F . This, in
turn, allows us to automate the proof by using the equations in the candidate
theory as rewrite rules.

In our implementation we use fitness convergence rate as a target criterion.
Should the fitness of the best individuals increase by less than 1% over 25 gener-
ations we terminate the evolutionary search since significant fitness improvement
seems highly unlikely.

The last important aspect of the evolutionary computation considered here is
the design of the genetic crossover and mutation operators. The design of these
operators have a large impact on the quality of the solutions found by evolution-
ary computations. Our crossover operator allows for two types of crossovers:

1. Expression-level crossover - allows expression subtrees at the level of the
left and right sides of equations to be exchanged between theories.

2. Equation-level crossover - allows the exchange of whole equations or sets
of equations between theories.

Figure 2 displays an expression-level crossover in many-sorted equational the-
ories. Part (a) shows two parent theories for the crossover operation. In our
system equational theories are constructed using typed abstract syntax trees.
The left and right terms of individual equations are sketched here as triangles.
In part (b), we nondeterministically select a subterm in one of the parents for
crossover. In this case we select t1 of sort a in the left parent as the candidate
for crossover. We say that a term t is of sort α if the codomain of the operation
representing the the root node of the term t is α. We then nondeterministically
select an appropriately typed subterm in the other parent. In this case we select
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ThTh

Eq

=

L R

Eq

=

L R
Eq

=

L R

(a)

Th

Eq

=

L R
Eq

=

L R

Th

Eq

=

L R
t1

type(t1)= a

t2

type(t2) = a

(b)

Th

Eq

=

L R
Eq

=

L R

Th

Eq

=

L R
t1 t2

swap

(c)

Fig. 2. Crossover in many-sorted equational theories. (a) Crossover parent theories
with two and one equations, respectively. (b) Subterm selection with proper typing.
(c) Crossover is performed by swapping subterms.

term t2 of type a in the right parent. Since both terms are typed appropriately
we can now swap the terms producing the offspring. This is shown in part (c).
Equation-level crossover works analogously by selecting appropriate syntactic
structures in the abstract abstract syntax tree for theories.

Th

Eq

=

L R
Eq

=

L R

t1

type(t1)= a

(a)

t2

type(t2) = a

Generate new tree:

Th

Eq

=

L R
Eq

=

L R

t1

replace

(b)

t2

Fig. 3. Mutation in many-sorted equational theories. (a) Selection of a subterm in
parent and generation of a replacement term. (b) Replacing the term in the parent.

Our system implements three different mutation operators:

1. Expression-level mutation - non-deterministally select an expression node
in the abstract syntax of a theory, generate a new expression tree with the
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same sort, replace the original expression with the newly generated expres-
sion tree.

2. Equation addition/deletion - non-deterministically select an equation to
be deleted from some theory, or generate a new equation and add it to some
theory.

3. Literal generalization - non-deterministically choose a terminal expression
node and replace it with a variable of the appropriate sort.

Figure 3 illustrates expression-level mutation. In part (a) we pick a random
subterm of an equational theory. In this case we pick term t1 of sort a. We
compute a new subterm, t2, of the same sort, a. Finally, we replace t1 with t2.
This is shown in part (b).

Our genetic programming engine is implemented as a strongly typed genetic
programming system using Matthew Wall’s GALib C++ library [13] within
Maude. The system uses Maude’s rewrite engine to dispense with the theory
morphism proof obligation during fitness evaluation. Since the equations in the
candidate hyptheses are generated at random, there is no guarantee that the
theories do not contain circularities throwing the rewriting engine into an infi-
nite rewriting loop while computing the fitness of a particular theory. To guard
against this situation we allow the user to set a parameter that limits the number
of rewrites the engine is allowed to perform during the proof of each equation in
the fact theory. This pragmatic approach proved very effective. The alternative
would have been an in-depth analysis of the equations in each candidate theory
adding significant overhead to the execution time of the evolutionary algorithm.1

As a final note on our implementation we need to acknowledge that pre-
mature convergence is a general problem in evolutionary computation. Here,
the population of an evolutionary algorithm converges on a suboptimal solution
early on during the computation. Once this happens, there is little chance for the
algorithm to discover other, more appropriate solutions. In order to prevent an
evolutionary algorithm to converge prematurely the population is divided into
multiple sub-populations (also called demes [14]) with only limited communica-
tion between them. The idea is that even if premature convergence occurs in
some of the demes, diversity is maintained in the overall population due to the
limited communication among the demes. The limited communication among the
demes also serves to reseed diversity should some of the demes have prematurely
converged. In our implementation we divide our population of candidate theories
into ten demes where each deme carries a population of typically between 20 and
30 candidate theories.

4 Experiments

We have already mentioned that our system is able to induce the canonical stack
theory given in the introduction, Figure 1. It is probably worthwhile to list some

1 At this point the authors are not even sure if circularity in a term rewriting system is
a decidable property making an even stronger argument for our pragmatic approach.



10

statistics in association with that experiment: We used an overall population of
200 individuals distributed over 10 demes; it took an average of 30 generations
over 50 trial runs to converge on the canonical solution; every single of the 50
trial runs converged on the canonical solution; each run takes about 100 seconds
on a 1.3GHz G4 Apple iBook.2

The stack induction problem looks straight forward from a conceptual point
of view, however, from a machine learning point of view we are faced with a multi-
concept learning problem in the sense that both the top and pop operations each
represent a different concept to be acquired. That multi-concept learning is not
a guaranteed property of an induction algorithm is witnessed by the fact that
other theory induction algorithms fail to produce a sensible theory in context of
multi-concept learning (e.g. [15]).

fmod SUM-PFACTS is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

eq sum(0,0) = 0 .

eq sum(s(0),s(0)) = s(s(0)) .

eq sum(0,s(0)) = s(0) .

eq sum(s(s(0)),0) = s(s(0)) .

eq sum(s(0),0) = s(0) .

eq sum(s(0),s(s(0))) = s(s(s(0))) .

eq sum(s(s(0)),s(s(0))) = s(s(s(s(0)))) .

eq sum(s(s(s(0))),s(0)) = s(s(s(s(0)))) .

eq sum(s(s(s(0))),s(s(0))) = s(s(s(s(s(0))))) .

endfm

(a)

fmod SUM-NFACTS is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

eq sum(s(0),0) = 0 .

eq sum(0,0) = s(0) .

eq sum(s(0),s(0)) = s(0) .

eq sum(s(0),s(0)) = 0 .

eq sum(s(s(0)),s(s(0))) = s(s(0)) .

endfm

(b)

fmod SUM is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

vars A B C : Nat .

eq sum (A,0) = A .

eq sum (A,s(C)) = sum(s(A),C) .

endfm

(c)

Fig. 4. Positive facts (a) and negative facts (b) for the induction of the sum function.
A hypothesis for the sum function (c).

In our next experiment we illustrate that our system can acquire recursive
specifications. In this experiment we induce the specification of the function
sum that adds two natural numbers. The natural numbers are given in Peano
notation, where the numbers are represented as 0 7→ 0, s(0) 7→ 1, s(s(0)) 7→ 2,
etc. The positive and negative facts are given by the theories in Figure 4 (a)
and (b), respectively. The positive facts specify examples of applying the sum

function to a number of small natural numbers. Also included are examples that
show that summation is commutative. The negative facts consist of equations
that should not hold in the induced specification for sum. Each equation in this
theory is a counter example to the definition of the function sum. The background
theory for this experiment is empty. Given the above theories our system will
induce a hypothesis (or a variant that is isomorphic to this theory) as given
in Figure 4(c). Some quick statistics: it took an average of 40 generations to
produce a solution; we produced a minimal, recursive solution 32 times over 50
runs (for the other solutions the system noticed that it only had to produce a

2 This experimental setup applies to all following experiments: a population of 200
individuals spread over 10 demes and 50 trial runs performed on a 1.3GHz G4 Apple
iBook.
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solution that specified the functionality of sum over the given small integers and
it devised a non-recursive hypothesis); each run took about 120 seconds.

fmod SUM-LIST-PFACTS is

sorts Nat NatList .

op 0 : -> Nat .

op s : Nat -> Nat .

op nl : -> NatList .

op c : NatList Nat -> NatList .

op suml : NatList -> Nat .

eq suml(c(nl,0)) = 0 .

eq suml(c(nl,s(0))) = s(0) .

eq suml(c(nl,s(s(0)))) = s(s(0)) .

eq suml(c(c(nl,0),s(0))) = s(0) .

eq suml(c(c(nl,s(0)),s(0))) = s(s(0)) .

eq suml(c(c(nl,s(s(0))),s(0))) = s(s(s(0))) .

eq suml(c(c(nl,s(s(0))),s(s(0)))) = s(s(s(s(0)))) .

eq suml(c(c(nl,0),s(s(0)))) = s(s(0)) .

eq suml(c(c(nl,0),s(s(s(0))))) = s(s(s(0))) .

eq suml(c(c(nl,s(s(0))),0)) = s(s(0)) .

endfm

(a)

fmod SUM-LIST-NFACTS is

sorts Nat NatList .

op 0 : -> Nat .

op s : Nat -> Nat .

op nl : -> NatList .

op c : NatList Nat -> NatList .

op suml : NatList -> Nat .

eq suml(c(nl,0)) = s(0) .

eq suml(c(nl,s(0))) = 0 .

eq suml(c(nl,s(s(0)))) = s(0) .

eq suml(c(c(nl,0),s(0))) = s(s(0)) .

eq suml(c(c(nl,s(0)),s(0))) = s(s(s(0))) .

eq suml(c(c(nl,s(0)),s(0))) = s(0) .

eq suml(c(c(nl,s(0)),s(s(0)))) = s(s(0)) .

eq suml(c(c(nl,0),s(s(0)))) = s(s(s(0))) .

eq suml(c(c(c(nl,s(0)),s(0)),s(0))) = s(s(0)) .

eq suml(c(c(c(nl,s(0)),0),s(0))) = s(0) .

endfm

(b)

fmod SUM-LIST-BACKGROUND is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

vars A B : Nat .

eq sum(0,A) = A .

eq sum(s(A),B) = s(sum(A,B)) .

endfm

(c)

fmod SUM-LIST is

sorts Nat NatList .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

op nl : -> NatList .

op c : NatList Nat -> NatList .

op suml : NatList -> Nat .

vars NatA NatB NatC : Nat .

vars NatListA NatListB NatListC : Nat .

eq sum(0,NatA) = NatA .

eq sum(s(NatA),NatB) = s(sum(NatA,NatB)) .

eq suml(nl) = 0 .

eq suml(c(NatListA,NatB)) = sum(suml(NatListA),NatB) .

endfm

(d)

Fig. 5. Induction with background information: (a) positive facts, (b) negative facts,
(c) background theory, and (d) resulting hypothesis.

In our final experiment in this section we demonstrate the usage of back-
ground knowledge during the induction process. The problem is to find a recur-
sive way to sum the numbers in a list, given the knowledge of how to sum two
numbers. Figure 5 displays the relevant theories. It is perhaps noteworthy that
we use the theory induced in the previous experiment as background knowledge
for the current experiment. Note that in Figure 5(d) the first two equations are
due to the background information and the last two equations specify the actual
solution. The fact that our system repeats the background knowledge is not as
elegant as it could be. We are currently investigating the use of Maude’s module
importation statements. Some statistics on this experiment: it took an average
of 35 generations to produce a solution; 38 of our 50 runs produced a solution
similar to the one shown in Figure 5(d) (the other solutions were non-recursive
and did not generalize well beyond the test cases); each run took about 130
seconds.

These experiments highlight both the strength and weakness of the evolution-
ary approach to theory induction. The weakness is that in order to gain some
confidence in an induced theory one needs to rerun the induction experiment
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multiple times. Only if the same or isomorphic theories are being discovered
multiple times does one gain some confidence that the found theory constitutes
a reasonable hypothesis. The strength of the evolutionary approach is that the
likelihood of the search space being traversed in exactly the same way with ev-
ery run is very low. Therefore, running the induction algorithm multiple times
and inducing the same or isomorphic theories in different runs means that the
induced (isomorphic) theories do represent a quasi global optimum. In this, evo-
lutionary approaches differ radically from other machine learning approaches
where the search space is traversed in a heuristically fixed manner. Therefore,
running such machine learning algorithms multiple times will always result in
exactly the same answer but this does not confer any additional confidence on
this answer.

In this section we have briefly discussed some simple examples that highlight
the capability of our system. Space limitation does not allow us to present more
complex examples. For more examples please see Shen’s thesis [4].

5 Robustness

We define robustness of an induction system as the ability to induce hypotheses
in the presence of inconsistencies in the fact theories. Even though robustness
is not well motivated from a logical point of view, we believe that robustness is
essential in a practical system. Mistakes are easily introduced when constructing
facts, especially for large systems, and it is essential that the induction system
is able to extract as much useful information from corrupted facts as possible
and provide the user with appropriate feedback.

Machine learning algorithms, including evolutionary algorithms, are search
heuristics designed to be robust [2, 14]. A direct consequence of our use of an
evolutionary algorithm to search for hypotheses rather than an algorithm based
on logical concepts such as unification [16] or inverse narrowing [15] is that
our induction system is robust. During a search for a hypothesis our genetic
programming algorithm attempts to maximize the fitness function defined in
Equation (3). Facts that seem to contradict otherwise successful hypotheses are
simply ignored by the algorithm and the fitness function is maximized as much
as possible under the constraint of inconsistent facts. The facts that are not
entailed by the induced hypothesis can be reported to the user as feedback on
the induction process. If the “signal to noise ratio”3 is high, it is highly likely
that the facts reported to the user as not satisfiable are indeed the facts that are
inconsistent with the rest of the fact theories.

The experiment illustrated in Figure 6 demonstrates the robustness of our
system; part (a) and part (b) represent the positive and negative facts, respec-
tively. The second equations in part (a) and (b) contradict each other: the natural

3 Noise can be seen as the number of inconsistent facts, therefore, a simple signal to
noise ratio might be computed as the total number of facts divided by the number
of inconsistent facts.
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fmod EVEN-PFACTS is

sorts Int .

op 0 : -> Int .

op s : Int -> Int .

op even : Int -> Bool .

eq even(0) = true .

eq even(s(s(0))) = true .

eq even(s(s(s(s(0))))) = true .

endfm

(a)

fmod EVEN-NFACTS is

sorts Int .

op 0 : -> Int .

op s : Int -> Int .

op even : Int -> Bool .

eq even(s(0)) = true .

eq even(s(s(0))) = true .

eq even(s(s(s(0)))) = true .

eq even(s(s(s(s(s(0)))))) = true .

endfm

(b)

fmod EVEN is

sorts Int .

op 0 : -> Int .

op s : Int -> Int .

op even : Int -> Bool .

var A : Int .

eq even(0) = true .

eq even(s(s(A))) = even(A) .

endfm

(c)

Fig. 6. Positive facts (a) and negative facts (b) for the induction of the even predicate.
The second equations in (a) and (b) constitute an inconsistency, the natural number
s(s(0)) cannot be both even and not even. An induced recursive specification of the
even predicate (c).

number two cannot be both even and not even. Even though the facts are in-
consistent our system still manages to induce the canonical hypothesis for the
definition of the predicate even, Figure 6(c).

As expected, the system reports to the user that the second equation in the
negative fact theory is an offending equation. Some statistics: it took an average
of 27 generations to produce a solution; 50 of our 50 runs produced the canonical
specification of the predicate; each run took about 30 seconds.

The statistics on this experiment seem to indicate that our system is quite
robust in the presence of inconsistencies. However, more research is needed to
characterize this robustness in more detail. For example, what is the minimum
signal to noise ratio the system can tolerate and still produce meaningful theo-
ries? Another question is, what kind of inconsistencies can be tolerated?

Despite the simplicity of the above experiment, robustness is by no means a
guaranteed property of an induction algorithm. The FLIP system based on in-
verse narrowing [15] fails to induce an intelligible theory given the inconsistencies
above.

6 Related Work

The synthesis of equational and functional programs has a long history in com-
puting extending back into the mid 1970’s, e.g. [17–20]. The approaches use de-
ductive as well as inductive techniques for the induction of recursive functional
programs from formal specifications. This is in contrast to our machine learning
setting where we are concerned with learning equational programs from positive
and negative examples in the most general setting that includes multi-concept
learning and robustness. For an insightful overview the synthesis of equational
programs see [21]. A survey that looks at the synthesis of predicate logic pro-
grams is [22]. Three approaches to the synthesis of logic programs are discussed:
constructive, deductive, and inductive synthesis. The paper that influenced our
own algebraic semantics is [3]. This paper presents the “normal” semantic frame-
work for inductive logic programming from a first order logic point of view.
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The two approaches most related to ours are [15] and [23]. Both approaches
use inductive learning with positive and negative examples of the functions to
be induced. The former approach considers unsorted equational logic as the rep-
resentation language using inverse narrowing as the search heuristic for program
synthesis. Although this approach is very fast in inducing programs it is not
robust and cannot be used in multi-concept settings. The latter approach uses
a many-sorted, higher-order functional language as its representation language.
What is particular interesting about the latter approach is that it also uses an
evolutionary algorithm as its induction heuristic. We were not able to test this
system, but we suspect that it shares the robustness of our system. We are not
sure about the multi-concept learning aspect.

7 Conclusions and Further Work

We presented a system that given a set of positive and negative examples and
relevant background knowledge will induce an algebraic specification. In this
setting the examples are ground equations that can be considered test cases: the
positive examples are test cases that need to hold in the induced specification
and the negative examples are test cases that should not hold in the induced
specification. We have implemented this system in the functional part of the
Maude specification language.

What sets our approach apart from previous approaches is that we consider it
essential that the system is robust. We also consider it convenient for the system
to induce the specification of multiple operator symbols simultaneously. We feel
that this multi-concept learning approach leads to a much more intuitive system
than a system that forces the user to partition the test cases in such a way that
the system induces a specification one operator symbol at a time. Our choice of
an evolutionary algorithm as our induction heuristic naturally supports both of
these system aspects.

Future work will extend our approach to include full order-sorted, conditional
equational logic. We will also be investigating whether our approach can be
extended to hidden-sorted equational logic. In this context it will be interesting
to see how our evolutionary induction system can deal with function symbol
invention which will most likely be necessary in order to evolve objects with
hidden state and visible behavior. Here we treat function symbol invention as
an analogous construction to predicate invention in inductive first order logic
programming [24]. We would like to investigate a more natural integration of
our induction engine in Maude using its metalanguage facilities [25] rather than
the brute force C++ integration we have considered so far. Finally, we would
like to explore whether induction extends to the rewriting logic part of Maude.
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