
APPLICATIONS OF CENTERED KERNEL TARGET ALIGNMENT IN

INDUCTIVE LOGIC PROGRAMMING

BY

BENJAMIN H OTT

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE AND STATISTICS

UNIVERSITY OF RHODE ISLAND

2019

DOCTOR OF PHILOSOPHY DISSERTATION

OF

BENJAMIN H OTT

APPROVED:

Dissertation Committee:

Major Professor Lutz Hamel

Natallia Katenka

Marco Alvarez

Nancy Eaton

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2019

ABSTRACT

This study aimed both to apply centered kernel target alignment (CKTA)

to inductive logic programming (ILP) in several different ways and to apply a

complete refinement operator in a practical setting. A new genetic algorithm (GA)

results from the research, utilizing a complete, locally finite refinement operator

and also incorporating CKTA both as a fitness score and as a means for the

promotion of diversity. As a fitness score, CKTA can either be used standalone or

as a contributor to a hybrid score which utilizes the accuracy (weighted or normal)

of the learned logic hypothesis as well. In terms of diversity promotion, CKTA

is used for incest avoidance and as a means for creating diverse ensembles. This

is the first study to employ CKTA for diversity promotion of any kind. It is also

the first to apply CKTA to ILP. The kernels in this study are created via dynamic

propositionalization, where the features are learned jointly with the kernel to be

used for classification via a genetic algorithm. In this sense, genetic kernels for ILP

are created. The results show that the methods proposed herein are promising,

encouraging future work. It is worth noting that the applications of CKTA in this

study are not specific to ILP. They can also be used more generally in any other

domain using kernels.

ACKNOWLEDGMENTS

As it turns out, the doctoral journey requires a bit of support, and different

kinds of support at that. There were some individuals whose support and encour-

agement made the work within the pages that follow possible. To these people, I

am eternally grateful and I consider myself fortunate to know them and to have

earned their support.

First and foremost, I would like to thank my loving wife, Rebecca, for her

support of my research and for the saint like patience she exhibited those days and

nights that I spent researching and writing the contents of this thesis. I would

also like to thank my children for understanding that their father was unable to

play with them some nights. Secondly, I would like to thank my advisor, Dr.

Hamel, for challenging me, and for offering sage advice and insightful guidance

to me throughout the course of my research. Third, I would like to thank Igor

Maznista for making his prolog parser available. It was written and tested well

and served as a great starting point in these studies. I would also like to thank the

members of my research committee, Dr. Katenka, Dr. Eaton, and Dr. Alvarez,

as well as my defense chair, Dr. Dash, for reading and commenting on my thesis

and for being a part of my educational journey. Lastly, I would like to thank

my family and friends for their encouragement and for providing such a stalwart

support network. I would like to distinctly thank my parents for their words of

encouragement and for the wonderful example of perseverance that they set for

me. I would also like to thank my father-in-law and my mother-in-law for setting

great examples and encouraging me throughout my studies.

iii

DEDICATION

I dedicate this thesis to my parents, Rose and Terry, my wife Rebecca, her

parents, Bruce and Jean, and my children. They have all made tremendous sacri-

fices to allow me to complete these studies. No words can adequately express my

gratitude.

iv

Contents

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

DEDICATION . iv

Contents . v

List of Figures . viii

List of Tables . x

Chapter

1 Introduction . 1

2 Background . 5

2.1 Concepts of Logic Programming 5

2.1.1 Refinement Operators . 5

2.1.2 Basic Concepts of Inductive Logic Programming 8

2.1.3 Subsumption Order . 11

2.1.4 Refinement Operators Revisited 11

2.2 Genetic Logic Programming System (GLPS) 13

2.3 Kernel Methods . 16

3 Approach . 25

3.1 Modified GLPS . 26

3.1.1 Initial Population . 26

3.1.2 Scoring . 27

v

Page

vi

3.1.3 Crossover . 29

3.1.4 Mutation . 32

3.1.5 Terminal Conditions for the Search 35

3.1.6 Dynamic Propositionalization 35

3.2 Ensemble Creation . 36

3.2.1 Diversity Adjusted Scoring for Ensemble Member Selection 37

3.3 Language Bias . 38

4 Experiments . 40

4.1 Results Nomenclature . 41

4.2 Additional Results Information 43

4.3 Mutagenesis . 44

4.3.1 Mutagenesis Friendly . 45

4.3.2 Mutagenesis Unfriendly 51

4.4 Alzheimer’s . 57

4.4.1 Inhibit Amine Reuptake 59

4.4.2 Toxicity . 64

4.5 Experiment Summary . 69

4.5.1 Mutagenesis Friendly . 70

4.5.2 Mutagenesis Unfriendly 71

4.5.3 Alzheimer’s Inhibit Amine Reuptake 71

4.5.4 Alzheimer’s Toxicity . 72

4.6 Discussion . 73

5 Conclusions and Future Work . 74

Page

vii

5.1 Genetic Algorithm Improvements 75

5.2 Computational Speed Improvement 77

5.3 Ensembles and Kernel Combinations 78

5.4 Closing . 79

LIST OF REFERENCES . 81

APPENDIX

A Complete Experiment Results 86

A.1 Complete Results . 86

A.1.1 Mutagenesis Friendly . 86

A.1.2 Mutagenesis Unfriendly 89

A.1.3 Alzheimer’s - Inhibit Amine Reuptake 92

A.1.4 Alzheimer’s - Toxicity . 94

B Resources Used for Experimentation 96

B.1 Code . 96

B.2 Hardware . 96

B.3 Data . 96

B.4 Third Party Software and Tools 97

BIBLIOGRAPHY . 98

List of Figures

Figure Page

1 Refinement Example . 6

2 Deduction of Father(Bob, Sheryl) 9

3 Example refinement graph. Note that some of the refinements in
the above graph apply more than one of the rules for a complete,
locally finite, downward operator in a single refinement step. . . 13

4 AND-OR tree representing the clauses above. 15

5 Centered KTA, ρ̂, and KTA, Â, vs model accuracy 20

6 Symmetric difference between sets m1 and m2 highlighted in aqua 23

7 Basic GA Approach Utilized in this Research 26

8 Ensemble Member Selection Using Top m Classifiers 37

9 Ensemble Member Selection Based on Diversity 37

10 Box Plot for 10-fold CV Results. Stars represent the mean. The
gold numbers at the top represent median. From left to right,
the configurations are plotted based on descending mean and
ascending standard deviation. 47

11 Train and Test Data vs CKTA; Linear fits for each are also shown 47

12 Kernel PCA Using the Gaussian Kernel for the Friendly Muta-
genesis Data . 48

13 Box Plot for 10-fold CV Results. Stars represent the mean. The
gold numbers at the top represent median. From left to right,
the configurations are plotted based on descending mean and
ascending standard deviation. 50

14 Box Plot for leave-one-out CV Results. Stars represent the
mean. The gold numbers at the top represent median. From
left to right, the configurations are plotted based on descending
mean and ascending standard deviation. 51

viii

Figure Page

ix

15 Train and Test Data vs AccCKTA; Linear fits for each are also
shown . 54

16 Kernel PCA Using the Gaussian Kernel for the Unfriendly Mu-
tagenesis Data . 54

17 Closeup of Kernel PCA for the Unfriendly Mutagenesis Data
Showing Confusion . 55

18 Box Plot for 10-fold CV Results. Stars represent the mean. The
gold numbers at the top represent median. From left to right,
the configurations are plotted based on descending mean and
ascending standard deviation. 57

19 Box Plot for 10-fold CV Results. Stars represent the mean. The
gold numbers at the top represent median. From left to right,
the configurations are plotted based on descending mean and
ascending standard deviation. 59

20 Train and Test Data vs CKTA; Linear fits for each are also shown 61

21 Kernel PCA Using the Gaussian Kernel for the Alzheimer’s In-
hibit Amine Reuptake Data . 62

22 Box Plot for 10-fold CV Results. Stars represent the mean. The
gold numbers at the top represent median. From left to right,
the configurations are plotted based on descending mean and
ascending standard deviation. 64

23 Box Plot for 10-fold CV Results. Stars represent the mean. The
gold numbers at the top represent median. From left to right,
the configurations are plotted based on descending mean and
ascending standard deviation. 66

24 Train and Test Data vs AccCKTA; Linear fits for each are also
shown . 66

25 Kernel PCA Using the Gaussian Kernel for the Alzheimer’s Tox-
icity Data . 67

26 Box Plot for 10-fold CV Results. Stars represent the mean. The
gold numbers at the top represent median. From left to right,
the configurations are plotted based on descending mean and
ascending standard deviation. 69

List of Tables

Table Page

1 Overview of all data sets used in experiments, including number
of classes, number of available examples, accuracy of majority
class predictor, number of relations that are used in rules, and
the number of facts in the background knowledge 40

2 Mutagenesis Data Summary . 45

3 Top Results for Mutagenesis Friendly 46

4 Experiment Results Using kFOIL and kFOIL Variants 49

5 Mutagenesis Friendly Ensemble Results Using Gauss 1 Kernel . 50

6 Top Results for Mutagenesis Unfriendly Data 52

7 Experiment Results Using kFOIL and kFOIL Variants 56

8 Mutagenesis 42 Ensemble Results Using Gauss 1 Kernel 57

9 Top Results for the Inhibit Amine Reuptake Data 60

10 Inhibit Amine Reuptake Ensemble Results Using Gauss 1 Kernel 63

11 Top Results for Alzheimer’s Toxicity Data 65

12 Toxicity Ensemble Results Using Gauss 1 Kernel 69

13 Mutagenesis Friendly Summary 71

14 Mutagenesis Unfriendly Summary 71

15 Alzheimer’s Inhibit Amine Reuptake Summary 72

16 Alzheimer’s Toxicity Summary 73

A.1 Mutagenesis Friendly Complete Results 89

A.2 Mutagenesis Unfriendly Complete Results 92

A.3 Alzheimer’s - Inhibit Amine Reuptake Complete Results 94

x

Table Page

xi

A.4 Alzheimer’s - Toxicity Complete Results 95

CHAPTER 1

Introduction

Inductive logic programming (ILP) is a subfield of machine learning which

utilizes logic programming in order to describe background knowledge, facts, hy-

potheses, etc. ILP utilizes background knowledge (theory), positive examples, and

negative examples in order to learn new hypotheses. The goal is then to generate a

hypothesis, which, when combined with the background knowledge, implies all of

the positive examples and none of the negative ones. This contrasts with deductive

logic where given background theory, we find out what can be inferred from it. In

this sense, inductive logic can be used to create new hypotheses whereas deduc-

tive logic is used to determine what is true given your background theory. The

ability to generate new hypotheses in this fashion is what makes inductive logic

programming appealing. As we collect more data points in the form of observed

examples, we would like to know how this information can be used to generate new

knowledge.

Using logic programming allows theories to be human readable as logic pro-

gramming employs a high-level symbolic representation. For instance, with logic

programming, a clause may be as follows:

Promotion(person) ← WorksHard(person), ValuedContributor(person),

MeetsRequirementsOfAdvancedPosition(person)

This clause indicates that if a person works hard, is a valued contributor, and

meets the requirements of an advanced position, they will be promoted. This is

clear based on the knowledge representation used. This clause is for example only,

clearly in the real world this can be more complicated. The clarity of this clause

contrasts with other subfields of AI in which data is encoded numerically. For

1

instance, the above clause may look as follows when described via weights in a

neural network setting:

wWorkHard = 0.2

wValuedContributor = 0.3

wMeetsRequirementsOfAdvancedPosition = 0.4

With the neural network, weights for each input are assigned to neurons.

Activation functions then determine the output of a neuron. The weights are harder

to interpret with the neural network, especially when there are multiple layers to

the network. However, “numeric neural networks perform inductive learning in

such a way that the statistical characteristics of the data are encoded in their sets

of weights” [1] which can be appealing in a variety of application spaces. While

each approach has its place, logic programming is particularly useful when a human

readable description of the data is desired or where a symbolic representation of

the data is a natural choice. For these reasons, inductive logic programming has

been and continues to be quite popular in bioinformatics [2, 3]. It is also used in

network analysis, web mining, and natural language processing [4].

One focus of this study is to explore the application of centered kernel target

alignment to inductive logic programming. Competitive, new approaches to induc-

tive logic programming are created as a result of this exploration, combining several

areas of study, including genetic algorithms (GA), inductive logic programming,

and statistical learning (kernel methods). The following applications of CKTA are

proposed in this study:

1. as a fitness score for genetic algorithms (GA)

2. as a means for promoting diversity

(a) as a mechanism for incest avoidance in GA

2

(b) for member selection in ensembles

Note that while this study is focused on the application to ILP, these appli-

cations of CKTA are not limited to ILP. They could easily be applied to other

problems where kernel learning is utilized. In addition, this study also proposes an

ILP learning algorithm which employs a complete, locally finite refinement opera-

tor in a practical manner. To the author’s knowledge, all ILP algorithms to date

use non-complete refinement operators guided by heuristic searches.

This study will improve on the genetic logic programming system (GLPS)

introduced by Wong and Leung[5, 6]. The GA resulting from this study differ-

entiates itself from other recent kernel based logic programming approaches (and

all other ILP approaches known to the author) in that it affords the possibility of

searching the complete refinement graph (refinement graphs will be detailed later).

However, it should be noted that while this is possible with the given approach,

the search space could be infinite and hence limited by computational resources

and time. Other methods, such as kFOIL, kernelized f irst order inductive logic

[7, 8] utilize a non-complete refinement operator. This means that the refinement

operator is not able to search the entire refinement graph. Hence, the algorithms

employing them are not guaranteed to find an optimal hypothesis. kFOIL further

employs a beam search on top of the refinement operator, only keeping the top n

performing refinements of a given clause. This restriction is somewhat natural as

compromises are generally necessary in order to have reasonable execution times

with real world data. However, in doing so, completeness of the search is compro-

mised (i.e. not every hypothesis is available in the search and hence the optimal

hypothesis could be overlooked).

This study is also the first to apply centered kernel target alignment (CKTA)

to inductive logic programming. While Landwehr et al [7, 8] utilized KTA (i.e.

3

non-centered), the usage of centering is a key distinction as CKTA has been shown

to be correlated to model accuracy while KTA has not [9]. Additionally, the first

attempt by any community to utilize CKTA for the promotion of diversity in

ensemble methods and for incest avoidance in GA is proposed.

In this thesis, we first discuss some background material which is fundamental

to the ideas proposed herein. This background material includes an overview of

refinement operators, logic programming, GLPS, kernels and kernel methods. Af-

ter this scaffolding has been provided, the new ideas from this work are proposed.

Finally, experimental results are provided, along with conclusions and recommen-

dations for future work.

4

CHAPTER 2

Background

The background knowledge required in order to understand the methods pre-

sented herein are provided in this chapter. We first discuss logic programming.

Next, we explain GLPS as defined by Wong and Leung [5]. Finally, we discuss

kernel methods, and centered kernel target alignment.

2.1 Concepts of Logic Programming

In this section we discuss various aspects of logic programming. We first

present refinement operators as a mathematical construct. Next, we introduce the

basic concepts of logic programming. Then we define the subsumption order for

clausal logic. Finally, we revisit refinement operators applied to logic programming

which are defined using the subsumption order on clauses.

2.1.1 Refinement Operators

Before diving into the mathematical details of refinement operators, a brief

intuition about what they are and how they are used is worthwhile. Refinements

provide a means by which hypotheses can be generalized or specialized. Refinement

operators are definitions of how these generalizations and specializations occur. We

can use refinement operators to induce graphs of hypotheses. In the context of in-

ductive logic programming, the nodes represent clauses and the edges represent

refinements (i.e. an edge exists from clause A to clause B if there is a refinement

from clause A to clause B). Generalization occurs by moving upwards in the re-

finement graph and specialization occurs by moving downwards in the refinement

graph. See, for example, Figure 1.

With little additional background in inductive logic programming, a discussion

5

Figure 1: Refinement Example

of refinement operators as a formal mathematical construct can take place. After

presenting refinement operators in the strict mathematical sense, the basic concepts

of logic programming will be necessary in order to thoroughly understand the

applications of the construct in the field of inductive logic programming.

Refinement operators provide a means of specializing or generalizing a hy-

pothesis and are referred to as either downward or upward refinement operators

accordingly. This can be thought of as walking up or down the refinement graph.

In order to provide a means of comparison between clauses, and thereby a means

to assign meaning to “up and down the refinement graph”, quasi-orders are used.

A quasi-order is a relation R, on a set S, which is reflexive and transitive. Then

< S,R > is said to be a quasi-ordered set. Some of the basis characteristics of a

relation R on a set S are as follows [10]:

1. R is reflexive if for all x ∈ S, xRx holds

2. R is symmetric if for all x, y ∈ S, xRy implies that also yRx

3. R is transitive if for all x, y, z ∈ S, xRy and yRz implies xRz

4. R is antisymmetric if for all x, y ∈ S, xRy and yRx implies that x = y

6

Note that quasi-orders on sets require characteristics (1) and (3) only. Quasi-

orders differ from partial orders (their more popular relative) in that they leave

out (4). So, while a partial order is a quasi-order, the converse is not true. Quasi-

orders are often denoted by the symbol �. It is worth noting that quasi-orders can

be turned into partial orders by defining an equivalence relation, ≈, on the set of

interest, where x ≈ y if and only if x � y and y � x.

Given that we have a quasi-order, we can define a refinement operator. If

< S,�> is a quasi-ordered set, then a function ρ such that ρ(D) ⊆ {E | D � E} for

every D ∈ S is referred to as a downward refinement operator. Upward refinement

operators are defined similarly where E and D trade places in the set ordering (i.e.

ρ(D) ⊆ {E | E � D}). An ideal downward refinement operator is one which is

locally finite, complete, and proper [10]. These concepts are defined as follows:

1. ρ is locally finite if for every D ∈ S, ρ(D) is finite and computable

2. ρ is complete if for every D,E ∈ S such that D � E, there is an F ∈ ρ ∗ (D)

such that E ≈ F (i.e. E and F are equivalent under �) where ρ∗ is the set of

all refinements (this effectively means that every specialization is reachable)

3. ρ is proper if for every D ∈ S, ρ(D) ⊆ {E | D � E} (avoid the case where

repeated application of the operator generates equivalent clauses - i.e. gets

stuck)

In the context of this research, the quasi-orders and refinement operators

of interest will be defined on clauses. The two most popular orderings defined

on clauses are the subsumption order and the implication order. We will focus

solely on the subsumption order, as subsumption between clauses is decidable

[10]. Furthermore, it is possible to create a complete and locally finite refinement

operator for languages which have a finite number of constants, function symbols,

7

and predicate symbols via the subsumption order (which will be explained shortly).

The refinement operator is used to induce a refinement graph on the set of clauses

where an edge would exist between clauses D and E if E ∈ ρ(D).

2.1.2 Basic Concepts of Inductive Logic Programming

In order to explain refinements in this context more fully, subsumption should

first be defined. In order to understand subsumption, a discussion regarding some

basics of first order logic are necessary. Consider the following simple example:

Example 1 - Father Program

Program

Father(X,Y) ← Parent(X,Y), Male(X)

Facts

Parent(Bob, Sheryl)

Male(Bob)

With the above information, we may want to know if Bob is Sheryl’s father

[i.e. Father(Bob, Sheryl)?]. A definite clause is one which only contains negative

clauses and can be thought of as a clause which does not have a head. Definite

goals are also referred to as queries as they can be used to query the knowledge base

(i.e. background knowledge, hypothesis, etc.) in order to see if a given statement,

or a given conjunction of statements, is true. The query about whether or not Bob

is Sheryl’s father could be resolved as follows:

1. start with the clause (the only one in this program): Father(X, Y) ← Par-

ent(X,Y), Male(X)

2. notice that Male(Bob) can be resolved with Male(X) in the father clause

leading to the substitution of X with Bob: Father(Bob, Y)← Parent(Bob,Y)

(using Male(Bob), X/Bob)

8

3. resolve Parent(Bob, Sheryl) with the clause from (2), leading to the sub-

stitution of Sheryl for Y: Father(Bob, Sheryl) (using Parent(Bob, Sheryl),

Y/Sheryl)

4. the proof is complete!

So, Bob is Sheryl’s father after all. This deduction can also be visualized as

shown in Figure 2:

Figure 2: Deduction of Father(Bob, Sheryl)

With logic programming, we basically search the program rules and facts to

see whether or not our questions are true. This is a very simple example for the

sake of demonstration. Using this example, we can define some basic terms of

logic programming. Father, Parent, and Male are predicates. Bob and Sheryl are

constants. X and Y are variables. Terms are constants, variables, or n-ary functions

(also known as functors) with n-terms specified as input. Atoms are predicates

with their places filled in by terms [i.e. Parent(Bob, Sheryl), Parent(X,Y) , etc.].

Literals are positive or negative atoms. Father(Bob, Sheryl) is ground (since there

are no variables). A clause is a finite disjunction of zero or more literals. Hence,

9

an example clause might take the form ¬φ ∨ ¬γ ∨ σ, where ¬ φ, ¬ γ, and σ

are literals with ¬ being the negation operator. If we note that the truth tables

for (¬ φ ∨ γ) and for (φ → γ) are the same, we can rewrite the example clause

as follows: φ ∧ γ → σ. This flip in interpretation is common in ILP literature

(i.e. the flip from disjunctions to implications - note that the disjunctions are also

sometimes viewed as sets of literals). The equivalence of these interpretations is

worth a strong mental note for anyone who is interested in logic programming.

In logic programming, it is common to (1) replace the conjunction symbol with

a comma and (2) place the positive literals on the left, which in the example

here would result in: σ ← φ, γ. Here the conjunction of negative literals on the

right is referred to as the body of the clause and the positive literal on the left is

referred to as the head of the clause. The definition of Father is a definite clause

(one positive literal in the head of the clause and zero or more negative literals

in the body). A Horn clause is either a definite clause or a definite goal, where

a definite goal is a clause with only negative literals (this can be thought of as a

clause which does not have a head). Definite goals are also referred to as queries

(as previously mentioned). We will also formally define a substitution θ as a set

{x1/t1, x2/t2, . . . , xn/tn} where term ti is substituted for distinct variable xi. The

pairing xi/ti is a binding for xi.

Inductive logic programming (ILP) utilizes a set of positive and negative exam-

ples, along with background information in order to produce a hypothesis, typically

a set of human readable clauses, which implies all positive examples (completeness)

and no negative ones (consistency). A hypothesis which is complete and consistent

is said to be correct [10]. Note that the examples and the background information

are typically provided as human readable clauses as well. While the definition of

ILP is not strictly required for the definition of subsumption, it is very important

10

to this study, as this study aims to provide a new approach to ILP.

2.1.3 Subsumption Order

With these definitions in place, we can describe the subsumption order. For

clauses C1 and C2, we say that C1 subsumes C2, denoted by C1 � C2, if there

exists a substitution θ such that C1 θ ⊆ C2 (meaning that all literals in C1 θ also

appear in C2). C1 properly subsumes C2, denoted by C1 � C2, if C1 � C2 and

C2 � C1. The clauses are subsume equivalent, denoted by C1 ∼ C2, if C1 � C2

and C2 � C1. Note that this definition was taken from [10]. The definition is

clearly reflexive (using the identity substitution) and transitive (since if C1 � C2

and C2 � C3 by substitutions θ1 and θ2 respectively, then applying θ1 to C1 and

applying θ2 to the result would yield C1 � C3 - note that the same result would

occur by simply applying the composition of the substitutions, e.g. θ1 θ2, directly

to C1). Hence, we have a quasi-order defined on clauses. As an example, Father(x,

y) � Father(Bob, Sheryl) since with the substitution { x/Bob, y/Sheryl }, the

first clause actually becomes the second one (i.e. clearly all literals of the first

clause, Father(x,y) , are represented in the second clause, Father(Bob, Sheryl),

after performing the substitution). As another example, P1(x) � P1(a) ∨ P2(x),

using the substitution { x/a } as the substitution yields P1(a) which is a subset

of the right-hand side. As a final example, the empty clause subsumes all other

clauses.

2.1.4 Refinement Operators Revisited

Using the quasi-order defined by the subsumption order, we can define a com-

plete and locally finite refinement operator for languages which have a finite num-

ber of constants, function symbols, and predicate symbols. We will only define the

downward operator, ρ, as the upward operator is similar. The following four rules

11

for a clausal language C follow from [10], although it was first defined in [11]. Note

that the rules are for some clause C in C.

1. For each variable x in C and each n-ary function symbol f in C, ρ(C) con-

tains C{x/f(z1, z2, . . . , zn)} where z1, z2, . . . , zn do not appear in C. In other

words, you can replace variables with the most general functions (since func-

tions are more specific than variables).

2. For each variable x in C and each constant a in C, ρ(C) contains C{x/a}.

In other words, you can replace variables with constants (since constants are

more specific than variables).

3. For distinct variables x and y in C, ρ(C) contains C{x/y}. In other words,

you can change some variable in a clause to match some other variable already

appearing in the clause (since this is a valid substitution and subsumption is

defined in terms of substitutions).

4. For each n-ary predicate P in C, ρ(C) contains C ∪ {P (z1, z2, . . . , zn)} and

C ∪{¬P (z1, z2, . . . , zn)} where z1, z2, . . . , zn do not appear in C and where ¬

indicates negation. In other words, you can add most general literals (since

these will lend to more specific clauses).

The proof that this downward refinement operator is both complete and locally

finite for languages which have a finite number of constants, function symbols, and

predicate symbols is outside the scope of this work. However, [10] can be consulted

for the proof. For this study we will simply utilize these results. An example

refinement graph from [12] is provided in Figure 3.

Most ILP algorithms compromise in the search for an ideal hypothesis by

using non-complete refinement operators (i.e. operators which cannot search the

whole space) since the hypothesis space is potentially so large (potentially infinite).

12

Figure 3: Example refinement graph. Note that some of the refinements in the
above graph apply more than one of the rules for a complete, locally finite, down-
ward operator in a single refinement step.

FOIL [13, 14, 15] is one such algorithm [16]. Even modern kernel methods such

as kFOIL use refinement operators such as those proposed by Quinlan many years

prior [7]. In these systems, non-complete refinements are performed on clauses in

order to improve a theory.

These refinements, while possibly performing locally optimally, sometimes re-

sult in a less effective theory as the interaction between clauses as a whole (i.e.

the global theory) is not considered [17]. Sometimes, combinations of locally non-

optimal clauses may be more effective globally. This limitation may be overcome,

or the effects of it mitigated to some extent, by the crossover component of the

genetic algorithm proposed in this study.

2.2 Genetic Logic Programming System (GLPS)

GLPS [5] is the genetic logic programming system. Genetic algorithms follow

an evolutionary scheme and typically start with a seed population of solutions

which are refined through successive generations. Each successive generation is

produced by breeding the more promising solutions of the previous generation

and mutating them slightly. The breeding is typically referred to as crossover

13

and allows for good solutions to be combined into potentially better solutions.

Mutations allow pieces of the solutions to be changed, essentially adding new

genetic material into the search space of the evolutionary scheme. Following the

nomenclature of biological evolution, the promising solutions are identified by a

fitness function (enforcing the idea of survival of the fittest). The process (i.e.

reproduce and mutate current population to create the next generation, calculate

the fitness of the members of the new generation, use the fitness to select hypotheses

for reproduction in next generation) continues from generation to generation until

some stopping criterion is reached, typically either some maximum number of

generations or achieving a target fitness score. Genetic algorithms are typically

used to find approximate solutions to optimization problems.

The genetic algorithm proposed in GLPS only utilizes crossover (i.e. no mu-

tation). In GLPS, a hypothesis is treated as a forest of AND-OR trees. The AND

trees represent individual clauses in the hypothesis. The OR trees represent a tar-

get concept. In other words, the AND trees represent one way some concept can

be true (i.e. one clause with the target concept as its head) while the OR trees

indicate all the ways that the same concept can be true. A group of OR trees (i.e.

for all target concepts) represents the entire hypothesis. Note that the AND trees

are typically sub-trees of the OR trees. For example, a clause (AND tree) might

be: R(x,y) ← P(x,y), S(y). This will create an AND tree with R(x,y) as the root

and P(x,y) and S(y) as the leaves. A target concept, along with its associated

AND-OR tree, might be as follows:

Example 2 - AND-OR Tree

R(x,y) ← P(x,y), S(y)

R(x,y) ← T(x,y), U(x)

R(x,y) ← V(x,y), U(x), Q(y)

14

Figure 4: AND-OR tree representing the clauses above.

A hypothesis would consist of a forest of these AND-OR trees, one for each

target concept. In GLPS, the initial population for the genetic algorithm would

consist of a number of such hypotheses and was created either randomly using the

symbols from the problem at hand or by running some variant of FOIL [13]. The

fitness function in GLPS was simply the weighted accuracy on the training set

(i.e. if there were 100 examples, 10 positive and 90 negative, the positive examples

would get a weight of 9 and the negative examples a weight of 1). This would be

applied to each member of the population and then crossover would be performed

using the fitness score to select hypotheses for breeding (as described earlier). Note

that each member of the population in this context represents a candidate solution

(hypothesis) for the ILP problem under consideration.

In order to understand the crossover approach of GLPS, let us define a rule as

an AND-OR tree for a target concept [such as the one for R(x,y) depicted in Figure

4]. Then, crossover is defined in terms of lists of numbers, from the empty list to

lists with three numbers. The empty list {} refers to the whole logic program. The

list {m} refers to the mth rule of the program. The list {m,n} refers to the clause

or set of clauses specified by the nth node of the mth rule. The list {m,n, l} refers

15

to the literal or set of literals specified by the lth node of the nth clause of the mth

rule. These lists represent the four different types of crossover in GLPS. Lists of

each length are given different probabilities of occurrence. Note that the empty list

{} would mean identical reproduction (i.e. if two hypotheses performed a crossover

based on the list {}, this would indicate that both hypotheses survived fully intact

to the next generation). List such as {m} represent a rule swap. Lists of the

form {m,n} change which clauses go into the rules (and could change the number

of clauses also) and lists of the form {m,n, l} change which literals go into the

clauses (and could change the number of literals in the clause also). Note that two

lists from parent programs are only compatible when they have the same number

of elements, implying that these are the only possible points where crossover can

occur [6].

The shortcomings of GLPS were in that it did not allow for mutation and it

used a simple fitness function, the weighted accuracy of the learned hypothesis.

By not allowing for mutation, the genetic algorithm is “stuck” with the genetic

material that it was given in the first generation and is only allowed to shuffle this

information around into potentially more useful genes (logic clauses in the context

of this study). The simple fitness function also does not provide confidence in the

generalization of the learned hypotheses. This study will address these weaknesses

by adding a refinement operator for mutating theories and by utilizing centered

kernel target alignment as the fitness function for the genetic algorithm. Cortes et

al [9] have shown that high centered kernel target alignment values correlate with

hypotheses which generalize well.

2.3 Kernel Methods

In order to understand centered kernel target alignment, we should first un-

derstand kernels. Kernels are mathematical constructs which appear in both func-

16

tional analysis (theory) and in statistical learning theory (application). At the

highest level, they are functions which calculate the value of an inner product in

a feature space created by a mapping function applied to data. They themselves

operate on the data directly (i.e. in the input space). Because these functions

are performed directly on the data, the data does not actually need to be mapped

into the feature space. However, the kernel is guaranteed to calculate the value of

the inner product in the space defined by the mapping. This is wonderful news,

especially in terms of computation requirements. Stated more formally, a kernel is

a function that takes the following form for all x, y ∈ X:

k(x, y) =< φ(x), φ(y) > (1)

Note that here that φ is a mapping from the input space X to a feature space

(where an inner product can be defined). The most well-known kernels are the

linear kernel, the polynomial kernel, and the radial basis kernel. Clearly, kernels

need not be linear. This affords a chance to solve problems which may not be

solvable in a linear space in some other non-linear space.

Some popular algorithms can be expressed in terms of a dot product. The

dot product is an inner product and actually is the linear kernel. If we express

problems in terms of dot products, we can exchange the dot product with an inner

product, and further replace this inner product with a kernel function. Then, the

resulting algorithm can handle non-linear data! Furthermore, this can be done

without mapping the data explicitly into the feature space, but rather implicitly

through the kernel function (which acts on the input space)! This is known as the

kernel trick [18, 19]. This trick can be used to develop kernel methods for principal

component analysis, canonical correlation analysis, Fischer discriminant analysis,

ridge regression, spectral clustering, and more [20]. One of the most popular kernel

17

methods is the support vector machine which can be used in various capacities,

the most popular being classification and regression.

Kernel methods are very powerful and are popular due to their ability to

handle nonlinear data. In fact, the data input to a kernel function need not be

numeric. Kernels can be defined on structured data such as graphs, trees, etc.

[21]. They have even been defined on words. How is this possible? The kernel

function calculates a number representing the similarity measurement between two

inputs from the space X. If we create a matrix containing the kernel function values

for a sample of N inputs in X, we create an N x N kernel matrix (a specialized

Gram matrix - since the inner product is replaced by the kernel function). Kernel

matrices are positive, semidefinite matrices [20]. To show that a proposed kernel

function is in fact a kernel, essentially amounts to showing that any kernel matrix

constructed from the input space will result in a positive semi-definite matrix.

Hence, so long as kernels defined on graphs, trees, logic clauses, words, etc. satisfy

this criterion, they are, in fact, valid kernels.

The centered kernel target alignment (CKTA or centered KTA) for two kernel

matrices K and K’ is defined as follows:

ρ(K,K ′) =
< Kc, K

′
c >F

||Kc||F ||K ′
c||F

(2)

where Kc is the centered K matrix, < Kc, K
′
c >F is the Frobenius product and

||Kc||F is the Frobenius norm, which is the square root of the Frobenius product

of a matrix with itself [9]. This definition is different from kernel target alignment

(KTA) in that centered kernel matrices are used. ρ(K,K ′) takes on values in the

interval [0, 1]. Note that the Frobenius product is the sum of all entries in the

matrix formed by the Hadamard product [20]. It is also equivalent to tr(KcK
′T
c).

Hence, ||Kc||F , the Frobenius norm, is the square root of tr(KcK
T
c). Noting that

18

K is symmetric, tr(KcK
T
c) is equal to tr(K2

c), which is equal to the sum of the

squared eigenvalues of the matrix Kc. If Kc has eigenvalues λ1, λ2, . . . , λn, then

||Kc||F =
√
λ21 + λ22 + . . .+ λ2n. Hence, ||Kc||F can be interpreted as the diagonal

from the origin to the corner of the box formed along the eigenvectors of the matrix

with lengths given by the associated eigenvalues. In this sense, the denominator

normalizes the Frobenius product of the matrices. This may be familiar if we con-

sider that the Frobenius product is an inner product. If we change the expression

to simple vectors with the dot product (most popular inner product), then the left-

hand side of the equation would be the cosine of the angle between the vectors.

Borrowing this intuition, the kernel target alignment essentially provides a score

for how well the kernel matrices are aligned in n-dimensional space. We can also

note that the Frobenius product is essentially the dot product of the vectorized

versions of the matrices, formed by appending the rows together into one large

row.

The “centered” part of centered KTA comes from subtracting the expected

value (i.e. mean) in the feature space for each input x in the kernel computation.

So, where the kernelK would be computed per input pair as φ(x)·φ(y), the centered

kernel, Kc, is computed as (φ(x)−θ) · (φ(y)−θ), where θ is given as
∑m

1 φ(xi)

m
. This

computation does not need to be performed explicitly (i.e. subtracting out the

mean in feature space). Rather it can be performed using the following expression

[9]:

Kc =

[
I− 11T

N

]
K

[
I− 11T

N

]
(3)

where I is the identity matrix, 1 is a column vector of all ones, N is the size of the

kernel matrix (i.e. the kernel matrix has size N x N), and K is the original kernel

matrix (not centered).

19

A high centered KTA leads to a model which generalizes well [9, 22]. In

fact, Cortes showed that centered KTA generalizes better than KTA. Furthermore,

Cortes showed that kernel target alignment (when not centered) does not correlate

well with performance. The difference in the performance between non-centered

and centered KTA is quite significant in some cases. Consider the following table

from [9]. In the first row, the correlations of model accuracy with centered KTA

are provided and in the second row, the correlations of KTA with model accu-

racy are provided. The results are based on well-known data sets from the UCI

Machine Learning Repository (http://archive.ics.uci.edu/ml/) and the Delve data

sets (http://www.cs.toronto.edu/∼delve/data/datasets.html). The same methods

were used to produce both results, only the alignment score differed between the

two experiments.

Figure 5: Centered KTA, ρ̂, and KTA, Â, vs model accuracy

As can be seen in the chart above, centered KTA consistently outperforms

KTA with respect to correlation with accuracy, sometimes in a dramatic fashion

(see the results on the splice data set).

In this study, centered KTA will be utilized in various capacities. The kernels

used to calculate the KTA will be the same as the ones proposed for usage in kFOIL

[8]. These kernels are fairly similar to those proposed by Muggleton et al in [23].

It is worth noting that kFOIL optionally employed KTA (not centered) in order to

perform their beam search (if KTA was not selected, SVMs were trained instead).

The beam search is performed by taking the top n performers of a refinement, where

n is the beam width, and exploring them. Employing centered KTA in this beam

20

search could also improve kFOIL (although this improvement was not planned for

this study). Before describing the methodology for the experimentation, we will

describe the kernels created in support of kFOIL (which will also be used in this

study).

Landwehr et al formed linear kernels as the number of clauses in the hypoth-

esis which succeed on both examples supplied to the kernel. Polynomial kernels

were formed by adding one to the linear kernel and raising it to a power. This may

be most clearly conveyed via an example borrowed from [8] which in turn borrowed

from [24]. This example is about the structure of molecules. Here bond(compound,

atm1, atm2, bondtype) indicates that the compound has a bond of bondtype be-

tween atoms atm1 and atm2. atm(compound, atom, element, atomtype, charge)

indicates that in compound, atom has element element of atomtype and partial

charge charge. For example, the following encodes the fact that atom d2_1 in

compound d2 is an aromatic carbon atom with partial charge 0.067: atm(d2,

d2_1, c, 22, 0.067) [24]. A subset of background information is given for molecules

m1 and m2 for the sake of the example.

Example background information for examples m1 and m2 . . .

atm(m1, a1_1, c, 22, -0.11). bond(m1, a1_1, a1_2, 7).

atm(m1, a1_3, c, 22, 0.02). bond(m1, a1_3, a1_4, 7).

atm(m1, a1_26, o, 40, -0.38). bond(m1, a1_18, a1_26, 2).

. . .

atm(m2, a2_1, c, 22, -0.11). bond(m2, a2_1, a2_2, 7).

atm(m2, a2_3, c, 27, 0.02). bond(m2, a2_3, a2_4, 2).

atm(m2, a2_26, o, 40, -0.38). bond(m2, a2_18, a2_26, 7).

Assuming that both molecules are mutagenic, a possible hypothesis

H = c1, c2, c3 for the mutagenicity of the molecules for this domain might

21

be:

1. c1 = mutagenic(X) ← atm(X, A, o, 40, C)

2. c2 =mutagenic(X) ← atm(X, A, c, 22, C), atm(X, B, E, 22, 0.02)

3. c3 =mutagenic(X) ← atm(X, A, c, 27, C), bond(X, A, B, 2)

Using the above background information and the hypothesis, example m1 is

covered by the first and second clauses, while example m2 succeeds on the first and

last clauses. For each example, we create a vector in the feature space spanned

by the truth values of the hypothesis by creating an n dimensional vector, where

n is the number of clauses in the hypothesis, and then for the ith clause in the

hypothesis, assign a value of 1 in the ith position in the feature vector if the

background information together with the ith clause imply the example. This

approach yields the following feature vectors for examples m1 and m2:

φH(m1) = (1, 1, 0), φH(m2) = (1, 0, 1)

Note that this approach performs the embedding into the feature space.

Hence, we do not take advantage of the kernel trick (i.e. performing the inner

product in the feature space without mapping to the feature space). If we use

the above results, the simple linear kernel yields the following (with KL being the

linear kernel defined by Landwehr et al [8, 7]):

KL(m1,m2, H) =< φH(m1), φH(m2) >= 1

KL(m1,m1, H) =< φH(m1), φH(m1) >= 2

KL(m2,m2, H) =< φH(m2), φH(m2) >= 2

⇒ KL(m1,m2, H) = #entH(m1∧m2), where#entH(f) = |{c ∈ H|B∧c � f}|

Phrased slightly differently, the last equality indicates that the result of the

kernel is the number of clauses in H (the hypothesis) which, together with B

(the background theory), logically entail f (note that � is the symbol for logical

22

entailment). The polynomial kernel, KP , and the Gaussian kernel [also known as

radial basis function (RBF) kernel], KRBF , are defined similarly as:

KP (m1,m2, H) = (#entH(m1 ∧m2) + 1)p

KRBF (m1,m2, H) = exp(−#entH((m1∨m2)∧¬(m1∧m2))
2σ2)

Figure 6: Symmetric difference between sets m1 and m2 highlighted in aqua

The numerator in the power of the exponential equation in the RBF kernel

is the symmetric difference between the sets of clauses in the hypothesis which

entail the different examples. Since the kernels are defined in terms of sets of

clauses which entail both examples and since the feature mappings are essentially

indicator functions showing whether or not each clause in the hypothesis entails

the example under consideration (i.e. can be viewed as defining the set of clauses

in the hypothesis that entail the given example), this can be seen as the natural

application of the RBF function in this context. Instead of expressing a difference

between real numbers the symmetric difference of the sets is used. The kernels

described above will be utilized in this study; however, they will be centered.

We know from the closure properties of kernels that if k1 is a valid kernel,

φ : X −→ RN , then k(x, z) = k1(φ(x), φ(z)) is also a kernel [20]. With this in

mind, we can define the mapping φH,B(x) for a logical hypothesis H with n clauses

and background knowledge B as follows:

23

φH,B(x)i =


1, if B ∪ ci � p(x)

0, otherwise
(4)

The above mapping will map each example to a vector in {0, 1}n, where a 1

occurs in position i if clause i (i.e. ci) from hypothesis H, along with background

B, implies the target predicate p for example x. A zero will be in position i

otherwise. Note that {0, 1}n ⊂ Rn. Hence, we can now employ any kernel k1 to

this φH,B mapping in order to create another valid kernel. Applying the following

kernels as k1 to the mapping φH,B, lends to the kernels KL, KP , and KRBF defined

above (with γ = 1
2σ2):

1. linear: u′v, no parameters

2. polynomial: (u′v + 1)degree, parameter is degree

3. radial basis function: exp(−γ ∗ |u− v|2), parameter is γ

In the remainder of this work, the mapping φH,B will be assumed, and we will

refer to the kernels as linear, polynomial, and gaussian (RBF).

24

CHAPTER 3

Approach

As was eluded to previously, this study aims to employ CKTA to inductive

logic programming in the following ways:

1. as a fitness score for genetic algorithms (GA)

2. as a means for promoting diversity

(a) as a mechanism for incest avoidance in GA

(b) for ensembles (member selection)

Note that GA could be replaced with any other stochastic search strategy

which could benefit from the usage of a fitness score, or quality metric of sorts (i.e.

Monte Carlo Tree Search, Beam search, etc.). Additionally, the diverse ensemble

strategy discussed herein can be utilized for any kernel-based ensemble, not only

the logic kernels which are the focus of this study.

As GA utilizes a fitness function and employs selection strategies for choosing

parents for crossover, it was a natural fit for experimenting with these applications

of CKTA; hence, this study, with the exception of the ensemble methods proposed,

focuses on applying these strategies in a GA setting. We also aim to practically

employ a complete refinement operator in our stochastic search. This application

of a complete refinement operator is specific to the ILP setting (i.e. unlike the

CKTA work proposed herein, which can be utilized for any kernel-based algorithm

in any problem domain, the complete refinement operator can only be utilized in

the ILP domain).

In this chapter, the key ideas from this research will be presented. First,

we will discuss how the genetic logic programming system (GLPS) was modified.

25

Next, the novel approach to using centered kernel target alignment (CKTA) for

promoting diverse ensembles will be presented. Finally, the language bias employed

in this study will be discussed.

3.1 Modified GLPS

GLPS is utilized in this study as it provides a framework in which all of the

ideas proposed herein can be applied. In this section, the modifications to GLPS,

resulting in the GA utilized in this research, will be presented. At the highest

level, the following figure conveys the search strategy, which is typical for GAs.

Figure 7: Basic GA Approach Utilized in this Research

In the following subsections, the various components of the GA utilized in this

research will be expounded upon.

3.1.1 Initial Population

In this study, the initial population is created utilizing the state of the art ILP

system Aleph (A learner for proposing hypotheses) [25]. The different members of

the population are created by simply shuffling the samples before presenting them

to Aleph. As discussed in [26], shuffling the samples in this manner will cause Aleph

to produce different hypotheses because of Aleph’s greedy search approach. Aleph

will cover the first sample provided to it and then add new rules as new uncovered

26

samples are provided. So, the order of the samples presented to it matters, a fact

that we exploit to create the initial population. This contrasts with the usage of

FOIL, First Order Inductive Learner, utilized by GLPS. Note, however, that any

logic programming system could be used to create an initial population. An initial

population could even randomly be generated, with the only drawback being that

the algorithm will likely take longer to converge on a promising solution in this

case. Aleph was chosen because (1) it is a state of the art inductive learner and

(2) it can put us “in the vicinity” of an optimal solution. Note that Aleph is an

inductive logic programming system which has consistently been utilized for more

than a decade [27, 7, 28] as a benchmark for comparison. A forest of AND-OR

trees is created for this initial population in the same manner as is used in GLPS.

3.1.2 Scoring

After creation of the initial population, each member of the population has

its fitness score calculated. Rather than setting the fitness function equal to the

classification accuracy on the training data as in [5, 29], this study aims to use

centered kernel target alignment (KTA) [9], along with a couple of other novel

choices for scoring. In order to facilitate more diverse experimentation, the code

for this research was set up to allow the choice of five different scoring functions

for this fitness computation:

1. Accuracy

2. Weighted accuracy (this is what was used in GLPS)

3. CKTA

4. accCKTA (Accuracy * CKTA)

5. wAccCKTA (Weighted accuracy * CKTA)

27

Additionally, there were options to compute both accuracy (normal or

weighted) and CKTA and use CKTA as the fitness while logging the accuracy.

The CKTA can further be parameterized to utilize one of the following kernels,

along with their pertinent kernel parameters (note that the sigmoid kernel, while

supported in the code, was not utilized during experimentation):

1. linear: u′v, no parameters

2. polynomial: (γu′v + coef)degree, parameters are γ, coef , and degree

3. radial basis function: exp(−γ ∗ |u− v|2), parameter is γ

4. sigmoid: tanh(γu′v + coef), parameters are γ and coef

These kernels were applied to the output of the φH,B defined in Section 2.3.

For “labels” in the ILP setting, we will assign positive examples a label of “+1”

and negative examples a label of “-1”. Hence, the target matrix (for the KTA) will

consist of “+1” and “-1” values as the target matrix is the outer product of the

label vector for the sample.

It is worth noting that accCKTA and wAccCKTA defined above are also

perfectly valid scoring functions, with the nice property of being in the interval

[0, 1]. If there are several scores, or fitness functions, s1, s2, ..., sn, which all produce

values lying in the interval [0, 1], then the product of those scores also lies in the

interval [0, 1] as is shown in Equation 5. This is true because (1) both 0n and

1n are equal to 0 and 1 respectively when n ∈ N and (2) 0 and 1 represent the

minimum and maximum values of the score function respectively.

n∏
i=1

si ∈ [0, 1],when si ∈ [0, 1]∀i (5)

Note that if all si were in [a, b], rather than [0, 1], then the product above

would lie in the interval [an, bn], as shown in Equation 6.

28

n∏
i=1

si ∈ [an, bn],when si ∈ [a, b]∀i (6)

Using centered KTA to guide the search for an optimal hypothesis is explored

in this study with the hope that it will aid in the discovery of a hypothesis which

generalizes well. Scores such as accCKTA are also very interesting, being the

product of the accuracy of the hypothesis (i.e. standalone as a logic program) and

the CKTA (which should lend to an accurate kernel-based classifier). accCKTA

is particularly interesting in that it strikes a balance between finding a good logic

hypothesis which is sufficient in its own right and finding a feature space induced

by the configured kernel which has the capability to generalize well.

After this initial population has been created and scored utilizing the above

parameters, the GA can attempt to find increasingly optimal theories, hopefully

pulling us out of any local maxima in which the initial hypotheses may be trapped.

3.1.3 Crossover

In this study, we will utilize the same crossover approach as described for

GLPS with two differences. First, the AND-OR trees will be shuffled prior to

crossover so that all reasonable combinations of clauses/literals will be available for

crossover. This is different from GLPS as no shuffling was included in GLPS, which

limits the possible combinations of clauses/literals to be used for crossover between

two hypotheses. For this reason, in the results section, the GLPS results are flagged

with a star (i.e. GLPS*), indicating that the algorithm has been enhanced with

shuffling for crossover. The second difference is that parent hypotheses (programs)

will be chosen differently based on configuration, as indicated in Algorithm 1.

Note that approach appearing in the else statement of Algorithm 1 is typical

for GA and is the mechanism utilized by GLPS. The approach in the if statement

(i.e. when incestAvoidanceEnabled is true) is novel to this research and will be

29

Algorithm 1: Crossover Approaches
Data:
fi, 0 ≤ i < m, the fitness scores for each of the m hypotheses
hi, 0 ≤ i < m, the m hypotheses
Result: Parent hypotheses for crossover
Select parent hypothesis one, P1, randomly, but proportional to fitness
(i.e. choose hypothesis hi with probability fi∑m−1

j=0 fj
)

Suppose that ha was chosen as P1 (i.e. index a was selected).
if incestAvoidanceEnabled then

Adjust scores for each other hypothesis (i.e. those which are not P1)
by dividing its original score by the CKTA between it and parent P1

as follows: adjusted_score(hi) = score(hi)
ρ(hi,P1)

, i 6= a
Choose parent hypothesis P2 randomly, but proportional to the
adjusted_score defined above (i.e. choose hypothesis hi with
probability adjusted_score(hi)∑m−1

j=0,j 6=a adjusted_score(hj)
, i 6= a)

else
Choose parent hypothesis two, P2 randomly from the remaining
hypotheses in the generation, but proportional (i.e. choose hypothesis
hi with probability fi∑m−1

j=0,j 6=a fj
, i 6= a) to fitness

end
return (P1, P2)

described further in the following subsection.

Using CKTA for Incest Avoidance

The approach in the if statement (i.e. when incestAvoidanceEnabled is true)

of Algorithm 1 is a way to select the parent hypotheses for crossover using a novel

twist proposed in this research. This twist assists in incest avoidance [i.e. breeding

between two very similar (i.e. sibling) hypotheses]. We would like to maintain a

more diverse population of hypotheses in order to encourage a more optimal result,

noting that this could lead to a useful ensemble of hypotheses when the algorithm

terminates [30]. Intuitively, if each population contains nothing but very similar

hypotheses, then the search likely will not “explore new territory” as the genetic

algorithm is provided very similar genetic material from each of the hypotheses

30

in this case. An approach using all similar hypotheses will also be more likely

to get stuck in a non-optimal solution, hence why we would like to encourage

diversity in our populations. Centered KTA can be used in this capacity as well.

The hypotheses chosen for crossover during creation of the next generation can be

chosen such that they are diverse (i.e. have varying centered KTAs, which can be

enforced by choosing hypothesis which do not align well with each other) but are in

alignment with the target concept [i.e. the kernels for both hypotheses align with

the target kernel matrix (produced via an outer product of the labels), meaning

that their centered KTA with respect to the target kernel matrix is high but their

centered KTA with respect to each other is low].

To accomplish this, when selecting parent hypotheses for crossover, we first

select one hypothesis randomly, proportional to the fitness. Call this selected

parent P1. Then, we adjust the score of the other hypotheses, essentially adding

a reward for being different from the already selected parent, P1. The score for

hypothesis Hi would be updated as follows:

adjusted_score(Hi) =
score(Hi)

ρ(Hi, P1)
(7)

Note that ρ(Hi, P1) is the centered KTA between hypothesis Hi and the al-

ready selected parent P1. Recall that centered kernel target alignment is a simi-

larity measure which takes on values between zero and one. When closer to one,

it indicates that the two kernels are very similar and when closer to zero, it indi-

cates that the two kernels are very different. Hence, the adjusted score essentially

boosts the score of the other hypotheses based on being different from the already

selected parent. Once this adjustment occurs, the second parent, P2 is selected

from the remaining hypotheses in proportion to their adjusted score. Once the

two parents have been selected, crossover is performed as described in GLPS. In

31

this study, the adjusted scores are then discarded for selection of the next set of

parents (i.e. we go back to the original fitness scores from before any parents were

selected). Continuously adjusting the scores during crossover (i.e. not resetting

between selection of sets of parents) would make for an interesting future study.

It is worth noting that the adjusted_score above can be considered a special,

degenerate case of the diversity adjusted score γ, as described in Equation 8 (de-

fined in section 3.2.1 where we are only selecting two members, α is set to 0, and

ν is set to 1). As was eluded to, experimenting with other forms of γ for incest

avoidance could provide for an interesting future study.

Elitism

Elitism was utilized in the GA created for this research. Elitism consists of

ensuring that the top performing hypotheses in a generation is given a spot in the

next generation of hypotheses (i.e. the top performing hypotheses will simply be

cloned into the next generation). By even just allowing the top performer to be

carried to the next generation, the maximum fitness score is guaranteed to increase

monotonically from generation to generation. In the code base, a configuration

parameter specifying the proportion of members to be considered elite is included.

Typically, a small number of hypotheses are considered elite so that the majority

of the next generation is created via crossover.

3.1.4 Mutation

Recall that the two shortcomings of GLPS were in its fitness score and its lack

of mutation. Improvements to the fitness score have already been described (i.e.

CKTA, accCKTA, wAccCKTA, etc.). To address the lack of mutation, we will also

allow for mutation via a randomly applied complete and locally finite refinement

operator, allowing new genetic material into the mix and likely allowing for the

32

discovery of better solutions.

Mutation will include randomly applied complete, locally finite, upward and

downward refinements of clauses (by randomly applying one of the rules of the

downward and upward refinement operators to clauses). The refinement operators

used will be based on the subsumption order as described in 2.1.4. Recall that

these operators are both complete and locally finite assuming that we have a finite

number of constants, function symbols, and predicate symbols. The mutation

approach employed in the GA in this study is described Algorithm 2.

Algorithm 2: Randomly applied complete refinement operators
Data: hi, a child hypothesis resulting from crossover, 0 ≤ i < m
Result: Mutated Hypothesis
/* Mutation is done by randomly applying a complete, locally

finite, refinement operator (either upward or downward).
Note that all probabilities are configurable. */

Suppose there are n clauses in hypothesis hi
for j in 0 . . . (n-1) do

doMutation←− randomly set to true with probability Pm
if doMutation then

isUpward←− randomly assigned with probability Pu
if isUpward then

select refinement type from constant, variable, or literal removal
using configured probabilities (approximately equal in this
study)

given the refinement type, choose the parameters for the
upward refinement and perform the upward refinement on
clause cj of hypothesis hi

else
select refinement type randomly from constant, variable, or
literal addition using configured probabilities (approximately
equal in this study)

given the refinement type, choose the parameters for the
downward refinement and perform the downward refinement
on clause cj of hypothesis hi

end
end

end

The GA approach in this study should provide an improvement over GLPS

33

because it includes complete upward/downward refinements (i.e. allows the search

space the possibility of completeness) and because it uses centered KTA as a fitness

function. The completeness of the search space should also make the approach

competitive with other algorithms, such as [29], proposed by Muggleton et al,

where a stochastic search is used to explore the hypothesis space on the fringe of

the refinement graph under the subsumption order and GA is used to evolve and

re-combine the clauses generated via this stochastic search; however, a comparison

to Muggleton’s stochastic search is not planned in this work. Comparisons of

the approach proposed herein with [29], while not planned for this study, may be

interesting future work.

To the author’s knowledge, this work is the first employing a complete refine-

ment operator in a practical manner. It is worth mentioning that the completeness

of the refinement operators is subjected to some size restriction (i.e. we are only

going to produce so many generations in the GA so we will not be able to search

the entire search space). Furthermore, as the rules of the refinement operators will

be randomly applied, not all refinements will be explored during each generation.

Additionally, unlimited computing resources are not available, so in the case where

the search space is infinite, one would be unable to search the entirety of the refine-

ment graph in any practical setting. While these notes are not meant to indicate

any expectation of impaired performance relative to other current methods, it is

worth mentioning in order to level set expectations (i.e. despite the complete re-

finement operator, we could still arrive at a non-optimal solution). Regardless, it

is believed that this approach will at least be competitive with the current state

of the art, if not improving it.

34

3.1.5 Terminal Conditions for the Search

Once the last generation of the GA has been reached, the hypothesis with the

highest centered KTA will be selected as the final hypothesis. Currently, reach-

ing the last configured generation is the only stopping criterion of the algorithm.

Whether or not adding a sufficient score criterion would be beneficial is debatable;

however, this will likely be included in the future to allow the opportunity to stop

early, should the sufficient score be reached. Once the final hypothesis is selected,

it will be evaluated on the test data in order to assess its quality. Depending on

the scoring type selected, appropriate measures can be taken. If CKTA was used,

an SVM can be created to classify the samples used for training. If accuracy or

weighted accuracy was chosen, the hypothesis accuracy can simply be computed

from the resulting logic program in prolog, utilizing Aleph (note that Aleph “sits”

on top of Yap prolog).

3.1.6 Dynamic Propositionalization

This study employs dynamic propositionalization. This is similar to Landwehr

et al’s nFOIL [31] and kFOIL [8, 7] algorithms. It contrasts with Muggleton et

al’s support vector inductive logic programming (i.e. SVILP) [23], which utilizes

static propositionalization. Static propositionalization occurs when a set of fea-

tures is learned for the data and then a classifier (or another statistical model) is

built using this feature set (after the feature set has been created). In dynamic

propositionalization, the set of features for classification are jointly optimized with

the classifier [7].

When utilizing a score including CKTA, the GA proposed herein learns a

feature set which results in a high CKTA. In other words, features are learned

which maximize CKTA. Per Section 3.1.2, we can also jointly optimize CKTA with

the hypothesis’ standalone accuracy as a logic program by using a hybrid scoring

35

functions, a nice benefit to the GA proposed herein. kFOIL is also able to perform

dynamic propositionalization. However, it utilizes either KTA (less accurate) or

support vector machines (SVMs) which are much more computationally expensive.

kFOIL also utilizes a beam search and heuristic driven refinement operator. These

limitations should give the GA proposed herein an edge over kFOIL in terms of

performance. Dynamic propositionalizations are interesting in both this study and

in kFOIL as they essentially entail learning a kernel for the data. In this study,

the kernel is learned via a genetic algorithm (GA).

3.2 Ensemble Creation

For ensemble creation, two strategies are explored in this research. One is

typical and one is novel to this research. We will assume that the ensemble consists

of m classifiers. The ensembles are created using the final population from a given

GA run. The first strategy simply selects the top m performing classifiers of the

final population of the GA for usage in the ensemble. The second strategy selects

the best remaining hypothesis not already included in the ensemble based on a

compromise between the hypothesis’ accuracy and the hypothesis’ diversity with

respect to the previously selected members of the ensemble until m members have

been selected for the ensemble. Both strategies employ a max voting scheme once

the members of the ensemble are selected. Simple graphics are provided in Figure

8 and Figure 9 to illustrate the difference between the two strategies (note the

labeling of the arrows).

The top m classifier approach is straightforward and hence will not be dis-

cussed further. However, the diversity approach merits further discussion.

36

Figure 8: Ensemble Member Selection Using Top m Classifiers

Figure 9: Ensemble Member Selection Based on Diversity

3.2.1 Diversity Adjusted Scoring for Ensemble Member Selection

Given that the ensemble already includes k members of the population, the

diversity adjusted score for hypothesis Hi, where Hi is not already included in the

ensemble is computed as follows:

γ(Hi) = score(Hi) ∗
k∏

j=1,aj∈A,A∩i=∅

score(Hi)
α

ρ(Hi, Haj)
ν

(8)

where A is the set of indices of hypotheses already included in the ensemble,

aj ∈ A is an index for a hypothesis already included in the ensemble, α ∈ {0, 1},

ν ∈ R, and ν ≥ 0. ν is referred to as the diversity factor in this research. score(Hi)

is defined in Section 3.1.2 (i.e. accuracy, weighted accuracy, CKTA, accCKTA,

wAccCKTA). Note that if α = ν = 0, we have the degenerate case where the

adjusted score is simply the initial score. When α = 1, we essentially add an addi-

37

tional penalty based on the initial score of the hypothesis. This should only be set

to 1 in the case where ν 6= 0 because otherwise, the initial score will unnecessarily

end up being raised to a power. When ν is large, diversity is strongly encouraged

as hypothesis Hi is rewarded for being different from each of the hypotheses al-

ready included in the ensemble. Hence, α serves as a repeated penalty for having

an initially bad score while ν rewards for being different from the hypotheses al-

ready included in the ensemble. In this manner, we can balance the performance

of a hypothesis with its diversity with respect to other hypotheses during member

selection. Setting α to one will help us to avoid the case where a hypothesis is

very different but performs extremely poorly (since the diversity rewards will be

offset by the performance penalty). It is worth noting that α need not be limited

to {0, 1}. However, because it was limited in this fashion during this study, it was

described in this fashion above.

3.3 Language Bias

In this study, we will bias our language to:

1. use horn clauses (see section 2.1.2)

2. be function-free

3. have a finite number of constants and predicate symbols

Understanding what function symbols are helps to understand what function-

free means. Function symbols are mappings from terms to terms. This is a neces-

sary distinction because functions map only to terms. They do not produce a valid

formula in predicate logic, even when their terms are filled in (i.e. no true/false

value). This contrasts with predicate symbols which do produce valid formulas.

An example in the domain of natural numbers, in a setting where all natural num-

bers were constants in the language, could be x getting mapped to x2. It is worth

38

noting that an n-ary function can be mapped to a (n+1)-ary predicate symbol

which takes the input and output arguments of the function and evaluates to true

when the output argument is correct per the input arguments. This is the basis

of Rouveirol’s work [32], which showed that limiting languages to be function-free

does not reduce the expressiveness of the language.

Restricting the study to languages of this nature is common in ILP research.

It should be noted that the refinement operator used in this study (defined in

Section 2.1.4) maintains its completeness in this setting, as these operators are both

complete and locally finite assuming that we have a finite number of constants,

function symbols, and predicate symbols. Making the language function-free also

has the following benefits:

1. it makes the theories produced by the research decidable [10]

2. it does not reduce expressiveness of the language much as flattening can be

used to transform functions into new predicate symbols [10, 32, 33, 34]

3. it removes the need for substitutions of the type C{x/f(z1, z2, . . . , zn)}, as

was described in Section 2.1.4, in the refinement operator

39

CHAPTER 4

Experiments

Four data sets were used in the experimentation performed in support of this

study, two mutagenesis data sets (retrieved from [35]) and two Alzheimer’s data

sets (retrieved from [36]). An overview of these data sets is provided in Table 1

below, following the overview style of [7]. These data sets were chosen as they are

quite popular benchmark data sets for ILP studies. All of these data sets involve

predicting properties of some set of compounds.

Table 1: Overview of all data sets used in experiments, including number of classes,
number of available examples, accuracy of majority class predictor, number of rela-
tions that are used in rules, and the number of facts in the background knowledge

Data Set #Cls #Ex Maj. Class #Rel #Fact

Mutagenesis friendly 2 188 66.50% 4 10324

Mutagenesis unfriendly 2 42 69.10% 4 2109

Alzheimer amine 2 686 50.00% 20 3754

Alzheimer toxic 2 886 50.00% 20 3754

During experimentation, 10-fold cross validation (CV) was used unless other-

wise specified. The 10 folds for each data set used in these experiments are available

at [37]. For the 10-fold cross validation, random assignment of compounds into

approximately equally sized sets was performed. An elitism ratio of 0.1 (i.e. 10%)

was used during experimentation. As the experiments utilized population sizes of

20 or 30, this elitism setting lead to 2 or 3 hypotheses respectively being considered

elite during each experiment (i.e. the top 2 or 3 hypotheses in a generation were

cloned into the subsequent generation by the GA). The goal of this study is to show

that the new approach proposed herein is, at a minimum, competitive with the

baseline modified GLPS, Aleph, and, when possible, kFOIL. Recall that Aleph is a

40

state of the art ILP learner frequently used in benchmark studies. An improvement

over kFOIL’s performance is expected since the new approach (1) uses a complete

refinement operator and (2) utilizes centered KTA (versus either a trained SVM,

which is more computationally expensive or simple KTA, which is less accurate,

as is used by kFOIL). Recall that high centered KTA values imply models which

generalize more effectively than those with a high KTA (non-centered). The subtle

difference of centering makes a substantial difference with respect to performance

[9].

4.1 Results Nomenclature

In the tables of results that follow, the following conventions are used for the

names appearing in the ‘Config’ column:

1. if CKTA appears in the name, then centered kernel target alignment was

used for the fitness, as described in Section 2.3

2. if Poly<k> appears in the name, then a polynomial kernel KP of degree <k>

was used, as described in Section 2.3

3. if Gauss<k> appears in the name, then a gaussian kernel KRBF with a γ

value of <k> was used, as described in Section 2.3

4. if Linear appears in the name, then a linear kernel KL was used, as described

in Section 2.3

5. if withIncestAvoidance appears in the name, then incest avoidance, as de-

scribed in 3.1.3 was used

6. if AccCKTA appears, then the accuracy of logic hypothesis was multiplied

by the CKTA in order to create a hybrid fitness as described in Equation 5

41

7. if wAccCKTA appears, then the weighted accuracy of logic hypothesis was

multiplied by the CKTA in order to create a hybrid fitness, again as described

in Equation 5

8. if WMutation appears, then in the case where the baseline algorithm did not

include a complete and locally complete refinement operator, it was enhanced

to use one

9. if GLPS and a * appears in the name, then GLPS [5] with the AND-OR tree

shuffling enhancement was used

10. if Aleph appears in the name, then one generation with no mutation was

used and the scoring function was simply the accuracy of the logic program

(i.e. hypothesis); note that having the different members of the population

created by shuffling the samples will produce different results as described

in [26] because Aleph will cover the first sample provided to it and then add

new rules as new uncovered samples are provided

The ‘C-val’ column specifies the C value used for C-SVM (support vector

machine) classification. The constant C in this case is a regularization parameter,

allowing one to compromise between (a) data points being on the correct side of the

hyperplane created by the SVM and (b) allowing ‘slack’ which permits samples to

appear on the wrong side of the hyperplane created by the SVM [20, 19]. Allowing

this slack can lead to SVMs which generalize much better. Smaller C values allow

more points to appear on the wrong side, while larger C values strongly discourage

points from appearing on the wrong side. If a “Logic-NA” appears in the ‘C-val’

column, then the logic hypothesis was evaluated in Aleph as a logic program and no

SVM was created. This is true even when CKTA was used as the fitness function

(i.e. score function) because the quality of the logic program coming out of the

42

CKTA algorithm was also of interest in this research (not just the quality of the

feature space induced by the kernel).

For the ensemble results, the ‘Ensemble Type’ column is encoded as follows:

<strategy>_C<numCandidates>_E<numEnsMems>_D<diversityFactor>.

<numCandidates> indicates that the top <numCandidates> in terms of score

will be the candidates for the ensemble. <numEnsMems> indicates the number

of hypotheses to be included in the ensemble. <diversityFactor> is the same as

the diversity factor detailed in Section 3.2.1. The <strategy> can be any of the

following:

1. NAIVE means that the top <numEnsMems> based on score were used in a

max voting scheme

2. NO_PEN indicates that diversity adjusted ensemble member selection was

performed as described in Equation 8 using an α value of 0 and a ν value of

<diversityFactor> (i.e. no penalty for the hypothesis’ initial score)

3. PEN indicates that diversity adjusted ensemble member selection was per-

formed using an α value of 1 and a ν value of <diversityFactor> (i.e. there

is a penalty for the hypothesis’ initial score)

Note that in all cases, the <numEnsMems> of the created ensemble are uti-

lized in a max voting scheme. 10-fold cross validation is also performed for these

ensembles unless otherwise specified.

4.2 Additional Results Information

In order to validate the theory presented by Cortes et al [9], we plot CKTA

(or a CKTA hybrid score) vs classifier accuracy for all members of the final gen-

eration of the first fold of the best CKTA-based GA run. Additionally, we show

43

a kernel PCA using the kernel from the best CKTA-based GA run. The kernel

PCA is performed in order to show how the kernel based approaches, such as those

presented herein and in Landwehr et al [7, 8], can be used in order to provide in-

teresting visualizations of the logic data embedded in the feature space induced

by the kernel. These visualizations can often prompt further investigation. These

visualizations are provided solely for the sake of demonstration, as they are not

the focus of this study, but rather a useful byproduct of it.

4.3 Mutagenesis

The mutagenesis data describes relationships from QUANTA (a molecular

modeling package) for 230 compounds of interest [24], and four variables from a

former study of these compounds [38]. The data is meant to predict the muta-

genicity of nitroaromatic compounds, which can occur in both exhaust fumes from

automobiles and “during the synthesis of industrial compounds”. Nitroaromatic

compounds having a high mutagenicity have been identified as being carcinogenic.

The former study divided the compounds into two groups, a group of 188 com-

pounds (the friendly group) which could have mutagenicity accurately predicted

from four regression variables of interest and a group of 42 compounds (the un-

friendly group) which were not amenable to regression with these variables. The

friendly data set has 10324 facts while the unfriendly data set has 2109 [7]. The

four regression variables of interest from the previous study were as follows per

[24]:

1. logP : log of compound’s octanol/water partition coefficient (hydrophobicity)

2. eLUMO : energy of the compounds lowest unoccupied molecular orbital,

obtained from a quantum mechanical molecular model

3. I1 : an ‘indicator variable’ that is set to 1 for all compounds containing 3 or

44

more fused rings

4. Ia : an ‘indicator variable’ that takes the value 1 for “...five examples of

acenthrylenes and shows that these are much less active than expected for

some unknown reason” [38]

Compounds with log mutagenicity greater than zero are considered active

(positive examples) while compounders with negative or zero log mutagenicity

are considered inactive (negative examples). The 188 (i.e. friendly) and 42 (i.e.

unfriendly) groups have the following samples:

Table 2: Mutagenesis Data Summary

Active Inactive Total

Friendly 125 63 188

Unfriendly 13 29 42

All 138 92 230

During experimentation, 10-fold cross validation (CV) was used for the 188

(friendly) group while leave-one-out (a.k.a. jack-knife or 42-fold) sampling was used

for the 42 (unfriendly) group. For 10-fold CV, random assignment of compounds

into approximately equally sized sets was performed.

4.3.1 Mutagenesis Friendly

For the friendly mutagenesis data, a population size of 40 was used and 30

generations were created by the GA in all runs (apart from ‘Aleph’ which only

utilized one generation). A box plot of all configurations, sorted from left to right

by descending mean accuracy and ascending standard deviation, is provided in

Figure 10. A table of the top performing models is provided in Table 3. The full

table of results can be found in A.1.1.

45

Config C-Val mean stddev

CKTA_Gauss1 1 0.866959 0.07243

GLPS* logic-NA 0.861988 0.086627

Aleph logic-NA 0.861696 0.061859

CKTA_Gauss1 10 0.861696 0.076249

CKTA_withIncestAvoidance_Gauss1 10 0.861111 0.063782

CKTA_withIncestAvoidance_Gauss1 0.1 0.860819 0.08545

wAccCKTA_Linear 1 0.85614 0.083352

CKTA_withIncestAvoidance_Gauss1 1 0.855848 0.071994

wAccCKTA_withIncestAvoidance_Linear logic-NA 0.855848 0.071994

wAccCKTA_Linear 10 0.855848 0.087438

wAccCKTA_withIncestAvoidance_Linear 10 0.850877 0.089467

CKTA_withIncestAvoidance_Poly2 0.1 0.850585 0.106309

wAccCKTA_withIncestAvoidance_Linear 1 0.845029 0.097476

wAccCKTA_Gauss1 0.1 0.840351 0.078992

wAccCKTA_Gauss1 logic-NA 0.840351 0.078992

CKTA_Gauss1 0.1 0.840058 0.062043

CKTA_withIncestAvoidance_Poly2 1 0.840058 0.08407

Table 3: Top Results for Mutagenesis Friendly

Above we see that the GA guided by centered kernel target alignment using

a Gaussian kernel with a γ value of 1 performed the best. A C-value of 1.0 was

used for the C-SVM classifier created at the end of the GA along with this kernel.

In this case, the approach presented herein is competitive with GLPS* and Aleph

and, for the identified parameters, outperforms them.

Using the CKTA_Gauss1 GA run (the best CKTA-based run from above),

centered kernel target alignment and accuracy of the C-SVM classifier were com-

puted for all members of the final generation on the first fold (i.e. FOLD0 in [37])

on both the training data and the test data. While this is a small sample, we

46

Figure 10: Box Plot for 10-fold CV Results. Stars represent the mean. The gold
numbers at the top represent median. From left to right, the configurations are
plotted based on descending mean and ascending standard deviation.

would expect a positive correlation between the CKTA and the classifier accuracy

for the training and test data. The results are shown in Figure 11 with linear line

fits overlaid for both the training and test data results. The positive correlation

between CKTA and classifier accuracy, albeit slight, boosts our confidence in the

theory proposed by Cortes et al [9].

Figure 11: Train and Test Data vs CKTA; Linear fits for each are also shown

47

An example visualization using Kernel PCA is shown in Figure 12. In this

visualization, the markers are sized based on the number of points of the given

marker type at the location. Interestingly, 51 points are at the large red circle

and 5 are at the next largest red circle. This means that 88.9% (56 of 63) of the

Inactive friendly mutagenesis data points are mapped to these points. This kind

of visualization can be interesting in order to find areas of confusion in the feature

space (i.e. points where both Active and Inactive points occur) and to see how

the data is distributed in the feature space. This can provide some intuition about

potential clusters in the feature space. If clusters are apparent, kernel K means

could be performed in order to discover the centroids of these clusters.

Figure 12: Kernel PCA Using the Gaussian Kernel for the Friendly Mutagenesis
Data

Table 4 shows the results using kFOIL and a couple of variants of kFOIL. The

‘kFOIL’ column provides the results of the unaltered kFOIL algorithm as defined

in [7] using KTA. The ‘CKTA FOIL’ column provides the results of the kFOIL

algorithm altered to use CKTA. The ‘Centered Data’ column provides results for

kFOIL using KTA, but with the data centered in feature space (note that this

differs from strict CKTA in that the target matrix is not centered). For each

48

variant, three kernels were used:

1. Gaussian with γ equal to 1

2. polynomial with degree 2

3. linear

For each of these kernels, the mean and standard deviation are reported, with

the mean appearing above the standard deviation. Note that for this data set and

these parameters, the best performer was the original kFOIL algorithm with KTA.

However, it should also be noted that none of these results are competitive with

the GA results. They are also not competitive with Aleph, a discouraging result

for kFOIL.

CKTA Foil Center Data kFOIL

Linear 0.759942 0.759942 0.776901
0.109518 0.109518 0.076584

Poly 2 0.760526 0.760526 0.728655
0.095775 0.095775 0.114273

Gauss 1.0 0.722807 0.722807 0.760234
0.145571 0.145571 0.077007

Table 4: Experiment Results Using kFOIL and kFOIL Variants

Using the CKTA_Gauss1 score function (since it was the best performing),

ensembles were created for each of the folds. The results are sorted by descending

mean accuracy and ascending standard deviation and shown in Table 5. A box

plot for the same results is shown in Figure 13. While the top result does not out-

perform the non-ensemble results above, it is worth noting that the top performing

ensemble type is one which encourages diversity and does not follow the naive top

m classifiers approach.

49

Ensemble Type mean (10-fold CV) stddev (10-fold CV)

PEN_C25_E7_D2 0.866959 0.072430

NO_PEN_C15_E5_D1 0.861696 0.076249

NO_PEN_C15_E5_D2 0.861696 0.076249

PEN_C15_E5_D1 0.861696 0.076249

PEN_C15_E5_D2 0.861696 0.076249

PEN_C25_E7_D1 0.861696 0.076249

NAIVE_C15_E5_D1 0.861696 0.076249

NAIVE_C15_E5_D2 0.861696 0.076249

NAIVE_C25_E7_D1 0.861696 0.076249

NAIVE_C25_E7_D2 0.861696 0.076249

NAIVE_C25_E7_D3 0.861696 0.076249

PEN_C25_E7_D3 0.861404 0.067810

NO_PEN_C25_E7_D1 0.856140 0.071421

NO_PEN_C25_E7_D2 0.856140 0.071421

NO_PEN_C25_E7_D3 0.856140 0.071421

Table 5: Mutagenesis Friendly Ensemble Results Using Gauss 1 Kernel

Figure 13: Box Plot for 10-fold CV Results. Stars represent the mean. The gold
numbers at the top represent median. From left to right, the configurations are
plotted based on descending mean and ascending standard deviation.

50

4.3.2 Mutagenesis Unfriendly

For the friendly mutagenesis data, a population size of 20 was used and 20

generations were created by the GA in all runs. A box plot of all configurations,

sorted from left to right by descending mean accuracy and ascending standard de-

viation, is provided in Figure 14. Note that because leave-one-out cross validation

was used, the resulting accuracy for each fold is either 0 or 1 (i.e. 0% or 100%).

Hence, the most interesting data points in the box plot are the mean values, which

are represented by stars. The large blue bars for the configurations to the right

simply indicate that the CV results for these configurations had more 0 values. A

table of the top performing models is provided in Table 6. The full table of results

can be found in A.1.2.

Figure 14: Box Plot for leave-one-out CV Results. Stars represent the mean. The
gold numbers at the top represent median. From left to right, the configurations
are plotted based on descending mean and ascending standard deviation.

Config C-Val mean stddev

AccCKTA_withIncestAvoidance_Gauss1 1 0.904762 0.297102

AccCKTA_withIncestAvoidance_Gauss1 10 0.904762 0.297102

AccCKTA_withIncestAvoidance_Gauss1 logic-NA 0.904762 0.297102

wAccCKTA_withIncestAvoidance_Poly2 logic-NA 0.904762 0.297102

51

wAccCKTA_withIncestAvoidance_Gauss1 1 0.904762 0.297102

wAccCKTA_withIncestAvoidance_Gauss1 10 0.904762 0.297102

wAccCKTA_withIncestAvoidance_Gauss1 logic-NA 0.904762 0.297102

wAccCKTA_Linear 10 0.904762 0.297102

wAccCKTA_Linear logic-NA 0.904762 0.297102

CKTA_withIncestAvoidance_Gauss1 1 0.880952 0.32777

CKTA_withIncestAvoidance_Gauss1 10 0.880952 0.32777

CKTA_Gauss1 1 0.880952 0.32777

CKTA_Gauss1 10 0.880952 0.32777

AccCKTA_withIncestAvoidance_Linear 10 0.880952 0.32777

AccCKTA_withIncestAvoidance_Linear logic-NA 0.880952 0.32777

AccCKTA_withIncestAvoidance_Poly2 1 0.880952 0.32777

AccCKTA_withIncestAvoidance_Poly2 10 0.880952 0.32777

AccCKTA_withIncestAvoidance_Poly2 logic-NA 0.880952 0.32777

AccCKTA_Gauss1 1 0.880952 0.32777

AccCKTA_Gauss1 10 0.880952 0.32777

AccCKTA_Gauss1 logic-NA 0.880952 0.32777

Aleph logic-NA 0.880952 0.32777

wAccCKTA_withIncestAvoidance_Linear logic-NA 0.880952 0.32777

wAccCKTA_withIncestAvoidance_Poly2 1 0.880952 0.32777

wAccCKTA_withIncestAvoidance_Poly2 10 0.880952 0.32777

wAccCKTA_Poly2 1 0.880952 0.32777

wAccCKTA_Poly2 10 0.880952 0.32777

Table 6: Top Results for Mutagenesis Unfriendly Data

Nine of the configurations shared the best mean accuracy. Out of these nine,

seven of them utilized incest avoidance during crossover. This implies that the

incest avoidance measure is a useful hyperparameter for the GA. For the remainder

of this section, we will focus on the first entry in the table. This entry utilized GA

with the fitness score being the centered kernel target alignment (using a Gaussian

52

kernel with a γ value of 1) times the accuracy of the logic program. The run

also utilized incest avoidance during crossover. A C-value of 1.0 was used for the

C-SVM classifier created at the end of the GA along with this kernel. In this case,

the approach presented herein outperformed both GLPS* and Aleph.

Using the AccCKTA_withIncestAvoidance_Gauss1 GA run (the best CKTA-

based run from above), the score (AccCKTA - centered kernel target alignment

times the accuracy of the logic program) and accuracy of the C-SVM classifier cre-

ated using the learned kernel were computed for all members of the final generation

on the first fold (i.e. FOLD0 in [37]) on both the training data and the test data.

The results are shown in Figure 15 with linear line fits overlaid for the training

data results. No linear fit was added for the test data since it quickly converged to

one. The positive correlation between CKTA and classifier accuracy again boosts

our confidence in the theory proposed by Cortes et al [9]. It also justifies the usage

of hybrid scores as described in Equation 5. These hybrid scores utilize both the

accuracy of learned logic program (i.e. hypothesis) and the centered kernel target

alignment of the kernel induced by this hypothesis, thereby balancing between ac-

curacy as a standalone logic program and alignment with the target in the feature

space.

The first 3 principal components of a Kernel PCA are shown in Figure 16

using the Gaussian kernel with a γ value of 1, as this kernel produced the best

results in the experimentation detailed above. In this visualization, the markers

are sized based on the number of points of the given marker type at the location.

28 Inactive points appear at the large red circle, out of 29 total Inactive points (i.e.

96.6% of the Inactive points are mapped to this location). 7 Active points appear

at the large blue x, out of 13 total Active points (i.e. 53.8% of the Active points).

32 out of 42 total points, or 83.3% of all points are mapped to one of these two

53

Figure 15: Train and Test Data vs AccCKTA; Linear fits for each are also shown

Figure 16: Kernel PCA Using the Gaussian Kernel for the Unfriendly Mutagenesis
Data

locations.

In Figure 16, we can see one area where there appears to confusion in the

feature space (i.e. points where both Active and Inactive points occur). One

Inactive point and three Active points were mapped to this location. This area

54

is zoomed in on in Figure 17. It is likely that the samples mapped to this area,

and likely the other small blue x’s, caused confusion to the models as the top

performing models had a mean accuracy of 90.4762%, meaning that on average, 4

of the 42 points were misclassified by these top performers across the K folds (note

that 38/42 = 0.904762). We could easily add the labels of the samples to the points

in order to identify these trouble points so that they could be further investigated.

This will not be performed in this study, but is noted here to show how kernel

PCA, using the kernels learned by the GA, can be utilized as an analysis tool for

ILP. Note that the kernels are learned as the hypothesis H, required for the φH,B

mapping (see 4), is learned by the GA in such a way that it maximizes the scoring

function.

Figure 17: Closeup of Kernel PCA for the Unfriendly Mutagenesis Data Showing
Confusion

The following table show the results using kFOIL, along with the ‘CKTA

FOIL’ and ‘Centered Data’ kFOIL variants of kFOIL previously defined. For each

variant, three kernels were used:

1. Gaussian with γ equal to 1

2. polynomial with degree 2

55

3. linear

For each of these kernels, the mean and standard deviation are reported, with

the mean appearing above the standard deviation. Note that for this data set and

these parameters, the best performers all included centering the data (i.e. were

either using ‘CKTA Foil’ or ‘Centered Data’ kFOIL). However, it should also be

noted that these results do not match the top GA results. However, they are

competitive with Aleph in this case and outperform GLPS*.

CKTA Foil Center Data kFOIL

Linear 0.857143 0.880952 0.833333
0.354169 0.327770 0.3771955

Poly 2 0.880952 0.880952 0.833333
0.327770 0.327770 0.3771955

Gauss 1.0 0.880952 0.880952 0.833333
0.327770 0.327770 0.3771955

Table 7: Experiment Results Using kFOIL and kFOIL Variants

Using the AccCKTA_Gauss1 score function (since it was the best performing),

ensembles were created for each of the folds. The results are sorted by descending

mean accuracy and ascending standard deviation and shown in Table 8. A box

plot for the same results is shown in Figure 18. While the top result does not

outperform the non-ensemble results above, it is worth noting that ensembles using

diversity are again among the top performing ensemble types, again implying that

the diverse ensembles show promise.

Ensemble Type mean (10-fold CV) stddev (10-fold CV)

NO_PEN_C15_E5_D1 0.904762 0.297102

PEN_C15_E5_D1 0.904762 0.297102

PEN_C15_E5_D2 0.904762 0.297102

PEN_C25_E7_D1 0.904762 0.297102

56

NAIVE_C15_E5_D1 0.904762 0.297102

NAIVE_C15_E5_D2 0.904762 0.297102

NAIVE_C25_E7_D1 0.904762 0.297102

NAIVE_C25_E7_D2 0.904762 0.297102

NAIVE_C25_E7_D3 0.904762 0.297102

NO_PEN_C15_E5_D2 0.880952 0.327770

NO_PEN_C25_E7_D1 0.857143 0.354169

NO_PEN_C25_E7_D2 0.857143 0.354169

NO_PEN_C25_E7_D3 0.857143 0.354169

PEN_C25_E7_D2 0.857143 0.354169

PEN_C25_E7_D3 0.857143 0.354169

Table 8: Mutagenesis 42 Ensemble Results Using Gauss 1 Kernel

Figure 18: Box Plot for 10-fold CV Results. Stars represent the mean. The gold
numbers at the top represent median. From left to right, the configurations are
plotted based on descending mean and ascending standard deviation.

4.4 Alzheimer’s

The Alzheimer’s data consists of logical comparisons (relations) between pairs

(c1, c2) of analogues of Tacrine, an Alzheimer’s drug, in order to determine if

compound c1 has more of a particular property than compound c2 (the predicate

57

returns true if c1 > c2 and false otherwise). Two of the properties were observed

as part of this study, namely low toxicity and inhibit amine reuptake [39, 40]. The

logical comparisons are transitive and anti-symmetric (i.e. if c1 > c2, then c2 ≯ c1

- or more formally, if R(c1, c2) holds, with c1 6= c2, then R(c2, c1) does not hold).

For some pairs of compounds, the result of the comparison could not be determined

and hence the relation is not complete [7].

The low toxicity data contains 886 examples and the amine reuptake data

contains 686 examples. Both contain 3,754 facts [7].

Note that I was unable to get kFOIL to run on the Alzheimer’s data set.

Furthermore, the results reported in the kFOIL paper for Aleph seem suspect

(accuracy is too high for all methods compared to the experiments that I have run).

This could be caused by the usage of different background information between the

studies or by the data being treated differently between the studies. In this study

each sample was treated independently, and the folds drawn as such. Perhaps in

the kFOIL study, the samples were considered in pairs (i.e. R(c1, c2) and R(c2,

c1) were forced to be in the same training set). The difference is unclear. Hence,

no comparison to kFOIL or its variants were performed for the Alzheimer’s data.

Also note that, in the interest of time, incest avoidance was not attempted for

the Alzheimer’s data sets since they are larger and computing the CKTA for large

data sets can be time consuming. For incest avoidance, the computation needs

to be performed between the first selected parent and all other members of the

population during crossover, which occurs during the creation of each successive

generation. This computational burden can, to some extent, be reduced by caching

(i.e. if the CKTA between a pair of hypotheses has already been computed, reuse

it in the future); however, it is still a bit slow. Future work could include speeding

up these computations in other fashions (i.e. utilizing more sophisticated caching

58

schemes, etc.).

4.4.1 Inhibit Amine Reuptake

For the Alzheimer’s inhibit amine reuptake data, a population size of 30 was

used and 30 generations were created by the GA in all runs. A box plot of all con-

figurations, sorted from left to right by descending mean accuracy and ascending

standard deviation, is provided in Figure 19. A table of the top performing models

is provided in Table 9. The full table of results can be found in A.1.3.

Figure 19: Box Plot for 10-fold CV Results. Stars represent the mean. The gold
numbers at the top represent median. From left to right, the configurations are
plotted based on descending mean and ascending standard deviation.

Config C-Val mean stddev

CKTA_Gauss1 10 0.778389 0.047727

CKTA_Gauss1 1 0.776939 0.049248

CKTA_Gauss1 0.1 0.765217 0.055672

GLPS* logic-NA 0.763853 0.056995

AccCKTA_Gauss1 1 0.762340 0.051351

AccCKTA_Gauss1 10 0.762340 0.051351

AccCKTA_Gauss1 0.1 0.762340 0.062660

wAccCKTA_Gauss1 1 0.760806 0.073323

59

wAccCKTA_Gauss1 10 0.760806 0.073323

Aleph logic-NA 0.758035 0.049117

GLPSWMutation* logic-NA 0.755136 0.048355

wAccCKTA_Gauss1 0.01 0.751982 0.063437

wAccCKTA_Gauss1 0.1 0.746228 0.057962

wAccCKTA_Gauss1 logic-NA 0.746228 0.057962

CKTA_Gauss1 0.01 0.744629 0.089664

AccCKTA_Gauss1 logic-NA 0.741880 0.076501

Table 9: Top Results for the Inhibit Amine Reuptake Data

Above we see that the GA guided by centered kernel target alignment using

a Gaussian kernel with a γ value of 1 performed the best. A C-value of 10.0

was used for the C-SVM classifier created at the end of the GA along with this

kernel. In this case, the approach presented herein is competitive with GLPS* and

Aleph and, for the identified parameters, outperforms them. It also outperformed

GLPSWMutation*.

Using the CKTA_Gauss1 GA run (the best CKTA-based run from above),

centered kernel target alignment and accuracy of the C-SVM classifier were com-

puted for all members of the final generation of the first fold (i.e. FOLD0 in [37])

on both the training data and the test data. While this is a small sample, we

would expect a positive correlation between the CKTA and the classifier accuracy

for the training and test data. The results are shown in Figure 20 with linear

line fits overlaid for both the training and the test data results. While there is

strange behavior towards the left of the plot, where high accuracies are associated

with smaller CKTA values, there is still a positive correlation between CKTA and

classifier accuracy overall, albeit slight, again validating the theory proposed by

Cortes et al [9]. It should also be noted that the highest CKTA value achieved

was around 0.28, which is quite low. A larger spread of CKTA values vs accuracies

60

may show a more interesting correlation. However, different hyperparameters may

be necessary to achieve such a spread, as the CKTA seemed to converge around

0.28 with these hyperparameters for this data set.

Figure 20: Train and Test Data vs CKTA; Linear fits for each are also shown

The first 3 principal components of a Kernel PCA are shown in Figure 21

using the Gaussian kernel with a γ value of 1, as this kernel produced the best

results in the experimentation detailed above. In this visualization, the markers

are again sized based on the number of points of the given marker type at the

location. Note that because the relation is anti-symmetric, of the 686 samples, 343

are positive while 343 are negative.

209 of the “< Inhibit Amine Reuptake” points appear at the largest red circle,

out of 343 total (i.e. 60.9%). There is also quite a bit of overlap between the “<

Inhibit Amine Reuptake” points and the “>= Inhibit Amine Reuptake” points in

feature space. This is not surprising as half of these points are logical inversions of

the other half. There also appears to be a few clusters in the data (between 4 and

6). It would be interesting to perform a kernel k-means clustering on this data and

61

to analyze the resulting clusters to see what makes the compounds within each

cluster similar to one another. This will not be performed in this study, but is

noted here to show how kernel PCA, using the kernels learned by the GA, can be

utilized as an analysis tool for ILP, as a means to visualize the predicate data is

provided.

Figure 21: Kernel PCA Using the Gaussian Kernel for the Alzheimer’s Inhibit
Amine Reuptake Data

Using the CKTA_Gauss1 score function (since it was the best performing),

ensembles were created for each of the folds. The results are sorted by descending

mean accuracy and ascending standard deviation and shown in Table 10. A box

plot for the same results is shown in Figure 22. The top result outperforms the non-

ensemble results above. Additionally, it is worth noting that the top performing

ensemble type is one which encourages diversity and does not follow the naive top

m classifiers approach, implying that the diverse ensembles again show promise.

That the top ensemble result outperforms the best non-ensemble result is also

encouraging since, because the ensembles were created from the last generation

of the CKTA_Gauss1 run, the members of the ensemble were, at best equal to

the non-ensemble member. This is a demonstration of the efficacy of ensembles

62

in general, and, as a diverse ensemble has the best results, of the potential of the

diverse ensemble creation methodology proposed in this work.

Ensemble Type mean (10-fold CV) stddev (10-fold CV)

PEN_C15_E5_D1 0.782736573 0.05367584

PEN_C25_E7_D1 0.782736573 0.05367584

PEN_C15_E5_D2 0.781287298 0.055159209

NAIVE_C15_E5_D1 0.779838022 0.049991801

NAIVE_C15_E5_D2 0.779838022 0.049991801

PEN_C25_E7_D2 0.779816709 0.062469986

NO_PEN_C15_E5_D1 0.778388747 0.051490654

NO_PEN_C15_E5_D2 0.778367434 0.051169486

NAIVE_C25_E7_D1 0.776896846 0.04591173

NAIVE_C25_E7_D2 0.776896846 0.04591173

NAIVE_C25_E7_D3 0.776896846 0.04591173

PEN_C25_E7_D3 0.771099744 0.061464559

NO_PEN_C25_E7_D3 0.765196078 0.063814177

NO_PEN_C25_E7_D2 0.76372549 0.064370302

NO_PEN_C25_E7_D1 0.76372549 0.069052846

Table 10: Inhibit Amine Reuptake Ensemble Results Using Gauss 1 Kernel

These results would likely be improved if ensembles were created based on

the final populations from multiple GA runs (so that different kernel types, etc.

are used in the creation of the ensemble). Furthermore, alternative approaches to

max voting could be explored (i.e. using weighting based on something similar to

γ as defined in Equation 8). Both of these topics would make for very interesting

future work.

63

Figure 22: Box Plot for 10-fold CV Results. Stars represent the mean. The gold
numbers at the top represent median. From left to right, the configurations are
plotted based on descending mean and ascending standard deviation.

4.4.2 Toxicity

For the Alzheimer’s toxicity data, a population size of 30 was used and 30

generations were created by the GA in all runs. A box plot of all configurations,

sorted from left to right by descending mean accuracy and ascending standard

deviation, is provided in Figure 23. A table of the top performing models is

provided in Table 11. The full table of results can be found in A.1.4.

Config C-Val mean stddev

Aleph logic-NA 0.795748 0.040715

AccCKTA_Gauss1 1 0.795748 0.041059

AccCKTA_Gauss1 10 0.795748 0.041059

AccCKTA_Gauss1 0.1 0.794625 0.040464

GLPS* logic-NA 0.794625 0.040464

CKTA_Gauss1 1 0.793488 0.040613

CKTA_Gauss1 10 0.793488 0.040613

CKTA_Gauss1 0.1 0.793488 0.044565

GLPSWMutation* logic-NA 0.792377 0.040892

AccCKTA_Gauss1 0.01 0.792377 0.04666

64

AccCKTA_Gauss1 logic-NA 0.792377 0.04666

wAccCKTA_Gauss1 1 0.785636 0.047058

wAccCKTA_Gauss1 10 0.785636 0.047058

wAccCKTA_Gauss1 0.1 0.783376 0.047913

wAccCKTA_Gauss1 0.01 0.780005 0.045267

wAccCKTA_Gauss1 logic-NA 0.780005 0.045267

Table 11: Top Results for Alzheimer’s Toxicity Data

Above we see that the best among the CKTA guided GA runs entry utilized

a fitness score of the centered kernel target alignment (using a Gaussian kernel

with a γ value of 1) times the accuracy of the logic program. A C-value of 1.0 was

used for the C-SVM classifier created at the end of the GA along with this kernel

(although the C-value of 10.0 performed equally as well). In this case, the approach

presented herein was competitive with GLPS* and Aleph. However, Aleph was the

best performing as it’s standard deviation for the 10-fold CV was lower.

Using the AccCKTA_Gauss1 GA run (the best CKTA-based run from above),

the score (AccCKTA - centered kernel target alignment times the accuracy of the

logic program) and accuracy of the C-SVM classifier created using the learned

kernel were computed for all members of the final generation on the first fold (i.e.

FOLD0 in [37]) on both the training data and the test data. We again expect

a positive correlation between the AccCKTA and the classifier accuracy for the

training and the test data. The results are shown in Figure 24 with linear line fits

overlaid for both the training and the test data results. The positive correlation

between CKTA and classifier accuracy boosts our confidence in the theory proposed

by Cortes et al [9]. It also justifies the usage of hybrid scores as defined in Equation

5, utilizing both the accuracy of the learned logic program (i.e. hypothesis) and the

centered kernel target alignment of the kernel induced by this hypothesis. These

65

Figure 23: Box Plot for 10-fold CV Results. Stars represent the mean. The gold
numbers at the top represent median. From left to right, the configurations are
plotted based on descending mean and ascending standard deviation.

Figure 24: Train and Test Data vs AccCKTA; Linear fits for each are also shown

scores balance between accuracy as a standalone logic program and alignment with

the target in the feature space induced by the kernel.

The first 3 principal components of a Kernel PCA are shown in Figure 25 using

the Gaussian kernel with a γ value of 1, as this kernel produced the best results

66

Figure 25: Kernel PCA Using the Gaussian Kernel for the Alzheimer’s Toxicity
Data

in the experimentation detailed above (among the CKTA-based GA runs). In this

visualization, the markers are sized based on the number of points of the given

marker type at the location. Note that because the relation is anti-symmetric, of

the 886 samples, 443 are positive while 443 are negative.

347 of the “Less Toxic” points appear at the largest red circle, out of 443 total

(i.e. 78.3%). There is also quite a bit of overlap between the “Less Toxic” points

and the “More Toxic” points in feature space. Again, this is not surprising as half of

these points are logical inversions of the other half. There also appears to be a few

clusters in the data. A kernel k-means clustering could be performed on this data

and the resulting clusters analyzed see what makes the compounds within each

cluster similar to one another. Again, this will not be performed as part of this

study, but is noted here to show how kernel PCA, using the kernels learned by the

GA, can be utilized as an analysis tool for ILP, motivating further investigation.

Using the AccCKTA_Gauss1 score function (since it was the best performing),

ensembles were created for each of the folds. The results are sorted by descend-

ing mean accuracy and ascending standard deviation and shown in Table 12. A

67

box plot for the same results is shown in Figure 22. The top result marginally

outperforms the non-ensemble results above, including the results for Aleph. Ad-

ditionally, it is worth noting that the top performing ensemble type is one which

encourages diversity and does not follow the naive top m classifiers approach, im-

plying that the diverse ensembles again show promise. That the top ensemble

result outperforms the best non-ensemble result is also encouraging since, because

the ensembles were created from the last generation of the AccCKTA_Gauss1

run, the members of the ensemble were at best equal to the non-ensemble mem-

ber. This, again, is a demonstration of the efficacy of ensembles in general, and,

as a diverse ensemble has the best results, of the potential of the diverse ensemble

creation methodology proposed in this work.

As with the inhibit amine reuptake data, these results would likely be im-

proved if ensembles were created based on the final populations from multiple GA

runs (so that different kernel types, etc. are used in the creation of the ensemble).

Furthermore, alternative approaches to max voting could be explored (i.e. using

weighting based on something similar to γ as defined in Equation 8).

Ensemble Type mean (10-fold CV) stddev (10-fold CV)

NO_PEN_C15_E5_D1 0.796871808 0.040931389

NO_PEN_C15_E5_D2 0.796871808 0.040931389

PEN_C15_E5_D2 0.796871808 0.040931389

PEN_C15_E5_D1 0.795748212 0.041058538

PEN_C25_E7_D1 0.795748212 0.041058538

PEN_C25_E7_D2 0.795748212 0.041058538

NAIVE_C15_E5_D1 0.795748212 0.041058538

NAIVE_C15_E5_D2 0.795748212 0.041058538

NAIVE_C25_E7_D1 0.795748212 0.041058538

NAIVE_C25_E7_D2 0.795748212 0.041058538

NAIVE_C25_E7_D3 0.795748212 0.041058538

68

NO_PEN_C25_E7_D1 0.790130235 0.045393375

NO_PEN_C25_E7_D2 0.790130235 0.045393375

NO_PEN_C25_E7_D3 0.790130235 0.045393375

PEN_C25_E7_D3 0.789006639 0.046544278

Table 12: Toxicity Ensemble Results Using Gauss 1 Kernel

Figure 26: Box Plot for 10-fold CV Results. Stars represent the mean. The gold
numbers at the top represent median. From left to right, the configurations are
plotted based on descending mean and ascending standard deviation.

4.5 Experiment Summary

In order to assist in the distillation of the more comprehensive results above,

a summary table for each of the data sets is provided in this section, along with

some observations. These tables imply that the proposed applications of CKTA in

the ILP domain, both to GA and to ensemble methods, have promise. The tables

include the following information:

1. The best CKTA GA result (i.e. best result from the algorithm proposed in

this study), ensemble or otherwise, is shown. If an ensemble was the best

performing result, an additional ‘Ensemble Type’ column is included. Recall

that the ensembles are created from the last generation of the respective GA

69

run. If there was a tie in the results from different configurations, the first

one appearing in the comprehensive results above was included.

2. The best performing, unaltered kFOIL algorithm is included, if applicable

(note that I was unable to get kFOIL to run on the Alzheimer’s data sets).

Additionally, note that the ‘Centered Data’ and ‘CKTA Foil’ variants were

improvements investigated during this study and were not part of the origi-

nal, unaltered kFOIL. However, it is worth noting that even the best of these

altered kFOIL algorithms did not outperform the best CKTA GA results.

If there was a tie in the results from different configurations, the first one

appearing in the comprehensive results above was included.

3. The Aleph result.

4. The GLPS* result.

For each algorithm appearing in the tables, the mean and standard deviation

of the 10-fold cross validation is also provided.

4.5.1 Mutagenesis Friendly

In Table 13 we see that the CKTA_Gauss1 GA performed the best for the

Mutagenesis friendly data. Using 10-fold cross validation, it performed on aver-

age ∼0.5% better than GLPS* and Aleph, the next best performing algorithms.

CKTA_Gauss1 GA also performed ∼9% better than the best unaltered kFOIL

algorithm. That the CKTA GA proposed herein was able to outperform these

algorithms is a promising result. Recall that Aleph is a state of the art ILP system

while kFOIL is a state of the art kernel-based approach to ILP proposed in 2010.

As such, these algorithms can be difficult to outperform.

70

Config mean stddev

CKTA_Gauss1 0.866959 0.07243

GLPS* 0.861988 0.086627

Aleph 0.861696 0.061859

kFOIL_Linear 0.776901 0.076584

Table 13: Mutagenesis Friendly Summary

4.5.2 Mutagenesis Unfriendly

In Table 14 we see that the AccCKTA_withIncestAvoidance_Gauss1 GA per-

formed the best for the Mutagenesis unfriendly data. Using 10-fold cross validation,

it performed on average ∼2.4% better than Aleph, the next best performing al-

gorithm on this data set. AccCKTA_withIncestAvoidance_Gauss1 GA also per-

formed ∼7.1% better than the best unaltered kFOIL algorithm. This seems to

imply that both the hybrid scoring (CKTA times accuracy in this case) and the

incest avoidance mechanism (based on diversity) have merit. These can be viewed

as additional hyperparameters to tune during a search for optimal hypotheses.

Config mean stddev

AccCKTA_withIncestAvoidance_Gauss1 0.904762 0.297101

Aleph 0.880952 0.327770

GLPS* 0.857143 0.354169

kFOIL_Linear 0.833333 0.377196

Table 14: Mutagenesis Unfriendly Summary

4.5.3 Alzheimer’s Inhibit Amine Reuptake

In Table 15 we see that an ensemble based on CKTA_Gauss1 GA performed

the best for the Alzheimer’s inhibit amine reuptake data. Furthermore, this ensem-

ble utilized the diversity mechanism proposed in this study (i.e. diverse member

71

selection for ensembles). The ensemble was created from the last generation of

a GA run using CKTA_Gauss1 GA. An interesting observation is that while no

member of the ensemble individually outperformed the best member of the final

population of the CKTA_Gauss1 GA (for the obvious reasons), the ensemble,

which only contained 5 members, was able to exceed the performance of the best

member by just over 0.4%. Using 10-fold cross validation, the ensemble performed

on average ∼1.9% better than GLPS*, the next best performing algorithm on this

data set. These results imply that ensembles created using the diverse member

selection scheme proposed in this study can help to boost performance. They also

show the promise of the CKTA GA proposed herein.

Config Ensemble Type mean stddev

CKTA_Gauss1 PEN_C15_E5_D1 0.782737 0.053676

GLPS* NA 0.763853 0.056995

Aleph NA 0.758035 0.049117

kFOIL1 NA NA NA

Table 15: Alzheimer’s Inhibit Amine Reuptake Summary

4.5.4 Alzheimer’s Toxicity

In Table 16 we see that an ensemble based on AccCKTA_Gauss1 GA per-

formed the best for the Alzheimer’s toxicity data. Furthermore, this ensemble

utilized the diversity mechanism proposed in this study (i.e. diverse member se-

lection for ensembles). Using 10-fold cross validation, the ensemble performed on

average ∼0.1% better than Aleph, the next best performing algorithm on this

data set. While this result isn’t quite as strong as the others, the algorithms pro-

posed herein were still competitive and were able to narrowly edge out the other

algorithms to which they were compared during a 10-fold cross validation.
1Unable to run the kFOIL algorithm on this data set

72

Config Ensemble Type mean stddev

AccCKTA_Gauss1 NO_PEN_C15_E5_D1 0.796872 0.040931

Aleph NA 0.795748 0.040715

GLPS* NA 0.794625 0.040464

kFOIL2 NA NA NA

Table 16: Alzheimer’s Toxicity Summary

4.6 Discussion

In this chapter, we experimented with employing CKTA to ILP in a few

different ways, including as a fitness score for GA and as a means for promoting

diversity, both for diverse member selection for ensembles and for incest avoidance

in crossover. We also examined the application of a complete refinement operator

in a practical setting, where we randomly selected a refinement type for a randomly

selected clause, effectively serving the role of mutation in the GA. These approaches

lead to promising results when applied in the ILP domain and were competitive

with other current state of the art ILP algorithms. We also showed that the kernels

learned via the GA can be used to visualize the data via kernel PCA. Visualizing

the data in the feature space induced by the learned kernel (via kernel PCA) can

guide a researcher in different directions such as investigating points of confusion

in the feature space or using a clustering algorithm in the feature space and further

analyzing these clusters to see what makes the data mapped to them similar.

2Unable to run the kFOIL algorithm on this data set

73

CHAPTER 5

Conclusions and Future Work

This study aimed to employ CKTA to inductive logic programming in the

following ways:

1. as a fitness score for genetic algorithms (GA)

2. as a means for promoting diversity

(a) as a mechanism for incest avoidance in GA

(b) for ensembles (member selection)

In addition, it applied a complete refinement operator in a practical setting.

As was shown in the previous chapter, all of these contributions lead to promising

results when applied in the ILP domain and were competitive with other current

state of the art ILP algorithms. We also showed that the kernels learned via

the GA can be used to visualize the data via kernel PCA. Visualizing the data

in the feature space induced by the learned kernel (via kernel PCA) can guide a

researcher in different directions such as investigating points of confusion in the

feature space or applying a clustering algorithm in the feature space and further

analyzing clusters to see what makes the data mapped to them similar.

This research provides many opportunities for future research, especially since

this research presented a first of kind application for centered kernel target align-

ment (i.e. diversity encouragement). Before closing, we will discuss a few areas

for future research organized into three sections, genetic algorithm improvements,

computational speed improvements, and finally, ensembles and kernel combina-

tions.

74

5.1 Genetic Algorithm Improvements

The genetic algorithm proposed within this paper could be improved in several

different ways. The selection of parent clauses for crossover is one area which could

stand improvement. As implemented in this study, the scores are only temporar-

ily adjusted for the selection of a second parent for crossover, given that the first

parent has already been selected. This could be enhanced such that scores of all

hypotheses are continuously adjusted during crossover (i.e. keep on adjusting the

scores and maintain them - do not reset them between selection of parents). The

parents could also have their scores adjusted in a different manner. For instance,

they could continuously adjust their scores, but base the adjustments on relation-

ships to existing offspring [i.e. adjust scores of candidate parents for crossover for

generation i based on the already existing members of the next generation, i + 1,

(which have already been created via crossover of parents from generation i)]. Both

of these strategies could lead to a “next” generation which is more diverse. Note

that this would also impact the incest avoidance approach discussed herein. Each

of these different approaches could utilize different options put forth by the diver-

sity formulation of Equation 8 (again recalling that the incest avoidance approach

presented herein was a simple, degenerate case of Equation 8). Furthermore, the

diversity formulation of Equation 8 could be updated so that α can take on values

which are not in the set {0, 1}.

The GA could also be updated to include a sufficient score termination cri-

terion. However, in practice, this could be difficult to set as it is not clear prior

to experimentation where the fitness scores will converge (other than that they

will be in the interval [0, 1] - recall for example the inhibit amine reuptake results

where the CKTA converged to 0.28); hence, it would be difficult to set the “suffi-

cient” score. Regardless, it could be set to value closer to one (0.9 for instance),

75

which could result in reduced run times for simpler data sets. Alternatively, or in

addition, the GA could measure how much fitness improvement occurred within

the last k generations, and, if the total improvement was less than some threshold,

terminate the search. This would still be useful even when one does not have a

priori knowledge about where the fitness score will converge.

The mutation approach could also be improved. In this study a single

mutation was applied randomly to a hypothesis. The mutation was from a

complete, locally finite, refinement operator, either upward or downward, again

based on a random selection given that a mutation was to be performed. Some

mutations are not very practical. For instance, adding a most general lit-

eral to a clause effectively does not change it. For instance, C = P (x) ←

R(x, y), Q(x) is not significantly impacted by the refinement which adds the lit-

eral T (u, v) that is most general with respect to clause C, (i.e. C = P (x) ←

R(x, y), Q(x), T (u, v)). In fact, these refinements were ignored during evalua-

tion of the hypotheses in this study. Effectively, this will only change the be-

havior to add in the condition that something (which could be anything com-

pletely unrelated to x and y) satisfies T (u, v). For instance, suppose C =

URIStudent(x) ← isHuman(x), isEnrolledAtURI(x). Then C could be refined

to C = URIStudent(x)← isHuman(x), isEnrolledAtURI(x), hasKeys(z). This

clearly does not make much practical sense. Also, this is only saying that whoever

or whatever has the keys does not even need to be associated with the person (the

x variable in the clause above). With this in mind, we could add some changes

to mutations so that they could randomly decide between adding a literal which

is most general (to maintain completeness) and adding a literal which is not most

general (i.e. which has a variable matching some other variable already appearing

in the clause). This could lead to each of the following with the hasKeys addition

76

from the example.

1. C = URIStudent(x)← isHuman(x), isEnrolledAtURI(x), hasKeys(z)

2. C = URIStudent(x)← isHuman(x), isEnrolledAtURI(x), hasKeys(x)

Clearly, doing something like this could lead to more prac-

tical refinements more quickly as C = URIStudent(x) ←

isHuman(x), isEnrolledAtURI(x), hasKeys(x) is actually a reasonable clause

(although students probably are not required to have keys, it is at least reasonable

that a human enrolled at a university would have keys). The mutations could also

be improved in the GA by allowing multiple mutations at once (i.e. randomly

select whether or not to perform any mutation, and then, if mutations are to be

applied, randomly select the number of mutations to apply). This could make the

mutations more impactful. Only applying one rule from a complete refinement

operator here and there does not seem to significantly impact results, especially

when there are only a few members in the population or only a few generations

being created in the GA. Performing multiple mutations could alleviate this issue.

Finally, the algorithm proposed herein could be compared to other algorithms,

such as those proposed by [29, 41, 23]. Comparing to additional algorithms would

enhance the strength of the results proposed within this work.

5.2 Computational Speed Improvement

As was noted in the Alzheimer’s experimentation in Section 4.4, incest avoid-

ance is computationally expensive for larger data sets as computing the CKTA

repeatedly, with different kernel matrices, is expensive. This is because the kernel

matrices have the size of the data set squared (i.e. n2) and the kernel computations

themselves are not “free”. Furthermore, two different kernels need to be computed.

Then the results are multiplied together and added in a Frobenius product (n2

77

more multiplications and additions). For CKTA, when the second kernel is ac-

tually the target kernel formed by the outer product of the sample labels, this is

less expensive since the target matrix can be computed once when the program

starts and re-used throughout execution. For this reason, utilizing CKTA as a

fitness function is significantly less expensive than using it for incest avoidance.

The expense is also less important during diverse ensemble member selection since

this is something that only happens once (versus incest avoidance, which is used

during crossover on every generation).

It would be interesting to look into ways to improve the speed of computation.

This could entail sophisticated caching, parallelization, etc. Maintaining a cache

between generations would likely be of great service to the logical kernels proposed

herein. If all of the hypotheses in a generation are viewed as a large collection of

clauses (i.e. the unique clauses from all hypotheses), then it is likely clear that this

set does not change much from one generation to the next. With this in mind, the

φ values (i.e. the {0, 1} values described in Equation 4) for unique clauses could

be computed and maintained in a cache, with new φ values only being computed

if they are not in this cache. A similar concept could be applied to hypotheses as

a whole (i.e. to kernel values). Of course, both of these strategies would come at

the cost of using additional memory.

Speeding up the kernel computations would provide benefits to CKTA based

incest avoidance, fitness scores using CKTA, and to diverse ensemble member

selection techniques utilizing CKTA.

5.3 Ensembles and Kernel Combinations

The ensembles within this study could improve their diversity by utilizing the

final generations from multiple GA runs, rather than a single one (so that different

kernel types, etc. are used in the creation of the ensemble). If memory is not

78

an issue, members from generations other than the last generation could also be

utilized. Additionally, alternative approaches to max voting could be explored (i.e.

using weighting based on something similar to γ as defined in Equation 8, etc.).

While the term “generation” and “final generation” in particular is utilized here,

as this study has focused on GA, this diverse ensemble strategy could be applied

to any set of hypotheses using kernels which are to be considered for ensemble

creation.

Several promising kernels from final generations (or from any generation if

compute resources are not an issue) could also be used as base kernels and combined

into a new kernel using methods such as those described in [9]. The new kernel

would form a convex combination of the base kernels with the goal of maximizing

the new kernel’s alignment with the target. Note that kernels can be combined

together via multiplication, addition, multiplying by scalars, etc. to create other

kernels due to the closure properties of kernels [20]. Again, this could be applied

to the kernels from any set of hypotheses to be considered for ensemble creation,

not just the final generation. The new kernel created in this manner could then

be used to create a kernel-based classifier (i.e. SVM, etc.).

5.4 Closing

In closing, this study aimed both to apply centered kernel target alignment

(CKTA) to inductive logic programming (ILP) in several different ways and to ap-

ply a complete refinement operator in a practical setting. A new genetic algorithm

(GA) resulted from the research, utilizing a complete, locally finite refinement op-

erator and also incorporating CKTA both as a fitness score and as a means for the

promotion of diversity. As a fitness score, CKTA was used as both a standalone

fitness score or as a contributor to a hybrid score utilizing accuracy (weighted or

normal) of the learned logic hypothesis as well. In terms of diversity promotion,

79

CKTA was used for incest avoidance and as a means for creating diverse ensembles.

This is the first study to employ CKTA for diversity promotion of any kind and the

first to apply CKTA to ILP. The kernels in this study were created via dynamic

propositionalization, where the features were learned jointly with the kernel to be

used for classification via a genetic algorithm. In this sense, genetic kernels for

ILP were created. The results have shown that the methods proposed herein are

promising, encouraging future work. It is worth noting that the applications of

CKTA in this study are not specific to ILP. They can also be used more generally

in any other domain using kernels.

80

LIST OF REFERENCES

[1] A. S. d. Garcez, L. C. Lamb, and D. M. Gabbay, Neural-Symbolic Cognitive
Reasoning, 1st ed. Springer Publishing Company, Incorporated, 2008.

[2] I. Bratko and R. D. King, “Applications of inductive logic programming,”
SIGART Bulletin, vol. 5, pp. 43–49, 01 1994.

[3] L. Kelley, P. J Shrimpton, S. Muggleton, and M. J E Sternberg, “Discov-
ering rules for protein-ligand specificity using support vector inductive logic
programming,” Protein engineering, design & selection : PEDS, vol. 22, pp.
561–7, 08 2009.

[4] L. De Raedt and K. Kersting, “Probabilistic inductive logic programming,”
in Probabilistic Inductive Logic Programming, L. De Raedt, P. Frasconi,
K. Kersting, and S. Muggleton, Eds. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 1–27. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1793956.1793958

[5] Man Leung Wong and Kwong Sak Leung, “Inducing logic programs
with genetic algorithms: the Genetic Logic Programming System,” IEEE
Expert, vol. 10, no. 5, pp. 68–76, Oct. 1995. [Online]. Available:
http://ieeexplore.ieee.org/document/464935/

[6] Man Leung Wong and Kwong Sak Leung, “Combining genetic programming
and inductive logic programming using logic grammars,” in Proceedings of
1995 IEEE International Conference on Evolutionary Computation, vol. 2.
Perth, WA, Australia: IEEE, 1995, pp. 733–736. [Online]. Available:
http://ieeexplore.ieee.org/document/487476/

[7] N. Landwehr, A. Passerini, L. De Raedt, and P. Frasconi, “Fast learning of
relational kernels,” Machine Learning, vol. 78, no. 3, pp. 305–342, Mar. 2010.
[Online]. Available: http://link.springer.com/10.1007/s10994-009-5163-1

[8] N. Landwehr, A. Passerini, L. De Raedt, and P. Frasconi, “kfoil: Learning
simple relational kernels,” in Proceedings of the 21st National Conference on
Artificial Intelligence - Volume 1, ser. AAAI’06. AAAI Press, 2006, pp. 389–
394. [Online]. Available: http://dl.acm.org/citation.cfm?id=1597538.1597601

[9] C. Cortes, M. Mohri, and A. Rostamizadeh, “Algorithms for learning kernels
based on centered alignment,” Journal of Machine Learning Research, vol. 13,
pp. 795–828, 2012.

81

http://dl.acm.org/citation.cfm?id=1793956.1793958
http://dl.acm.org/citation.cfm?id=1793956.1793958
http://ieeexplore.ieee.org/document/464935/
http://ieeexplore.ieee.org/document/487476/
http://link.springer.com/10.1007/s10994-009-5163-1
http://dl.acm.org/citation.cfm?id=1597538.1597601

[10] S.-H. Nienhuys-Cheng and R. d. Wolf, Foundations of Inductive Logic Pro-
gramming, J. Siekmann and J. G. Carbonell, Eds. Berlin, Heidelberg:
Springer-Verlag, 1997.

[11] P. D. Laird, Learning from Good and Bad Data. Boston, MA: Kluwer Aca-
demic Publishers, 1988.

[12] A. Tamaddoni Nezhad, “Logic-based machine learning using a bounded hy-
pothesis space: the lattice structure, refinement operators and a genetic algo-
rithm approach,” Ph.D. dissertation, Imperial College London, 2013.

[13] J. R. Quinlan, “Learning logical definitions from relations,” Mach.
Learn., vol. 5, no. 3, pp. 239–266, Sept. 1990. [Online]. Available:
https://doi.org/10.1023/A:1022699322624

[14] J. R. Quinlan and R. M. Cameron-Jones, “FOIL: A midterm report,” in
Machine Learning: ECML-93, J. Siekmann, G. Goos, J. Hartmanis, and
P. B. Brazdil, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993,
vol. 667, pp. 1–20. [Online]. Available: http://link.springer.com/10.1007/
3-540-56602-3_124

[15] J. R. Quinlan and R. M. Cameron-Jones, “Induction of logic programs:
FOIL and related systems,” New Generation Computing, vol. 13, no. 3-4, pp.
287–312, Dec. 1995. [Online]. Available: http://link.springer.com/10.1007/
BF03037228

[16] L. Badea, “Perfect refinement operators can be flexible,” in Proceedings of the
14th European Conference on Artificial Intelligence, IOS Press, Amsterdama,
2000, pp. 266–270.

[17] N. Fanizzi, S. Ferilli, N. Di Mauro, and T. M. A. Basile, “Spaces of theories
with ideal refinement operators,” in Proceedings of the 18th International
Joint Conference on Artificial Intelligence, ser. IJCAI’03. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2003, pp. 527–532. [Online].
Available: http://dl.acm.org/citation.cfm?id=1630659.1630737

[18] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. Cambridge, MA, USA:
MIT Press, 2001.

[19] L. H. Hamel, Knowledge Discovery with Support Vector Machines. New York,
NY, USA: Wiley-Interscience, 2009.

[20] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
New York, NY, USA: Cambridge University Press, 2004.

82

https://doi.org/10.1023/A:1022699322624
http://link.springer.com/10.1007/3-540-56602-3_124
http://link.springer.com/10.1007/3-540-56602-3_124
http://link.springer.com/10.1007/BF03037228
http://link.springer.com/10.1007/BF03037228
http://dl.acm.org/citation.cfm?id=1630659.1630737

[21] T. Gärtner, “A survey of kernels for structured data,” SIGKDD Explor.
Newsl., vol. 5, no. 1, pp. 49–58, July 2003. [Online]. Available:
http://doi.acm.org/10.1145/959242.959248

[22] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. S. Kandola, “On
kernel-target alignment,” in Advances in Neural Information Processing
Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. MIT
Press, 2002, pp. 367–373. [Online]. Available: http://papers.nips.cc/paper/
1946-on-kernel-target-alignment.pdf

[23] S. Muggleton, H. Lodhi, A. Amini, and M. J. E. Sternberg, “Support
vector inductive logic programming,” in Proceedings of the 8th International
Conference on Discovery Science, ser. DS’05. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 163–175. [Online]. Available: http://dx.doi.org/10.1007/
11563983_15

[24] A. Srinivasan, S. H. Muggleton, M. J. E. Sternberg, and R. D. King,
“Theories for mutagenicity: A study in first-order and feature-based
induction,” Artif. Intell., vol. 85, no. 1-2, pp. 277–299, Aug. 1996. [Online].
Available: http://dx.doi.org/10.1016/0004-3702(95)00122-0

[25] A. Srinivasan, Aug 2019, online manual. [Online]. Available: http:
//www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html

[26] I. de Castro Dutra, D. Page, V. Santos Costa, and J. Shavlik, “An
Empirical Evaluation of Bagging in Inductive Logic Programming,” in
Inductive Logic Programming, G. Goos, J. Hartmanis, J. van Leeuwen,
S. Matwin, and C. Sammut, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, vol. 2583, pp. 48–65. [Online]. Available:
http://link.springer.com/10.1007/3-540-36468-4_4

[27] N. Qomariyah and D. Kazakov, “Learning from ordinal data with inductive
logic programming in description logic,” in Late Breaking Papers of the 27th
International Conference on Inductive Logic Programming, N. Lachiche and
C. Vrain, Eds., vol. 2085. CEUR Workshop Proceedings, 3 2018, pp. 38–
50, an earlier version of this paper was accepted for publication in 2017 and
entered into PURE. This extended version of the paper was subject to another
round of reviews, and was published as an open access paper in these online
proceedings on 29 March 2018 (see link above in this record).

[28] U. Ruckert and S. Kramer, “Margin-based first-order rule learning,” Machine
Learning, vol. 70, no. 2-3, pp. 189–206, Mar. 2008. [Online]. Available:
http://link.springer.com/10.1007/s10994-007-5034-6

[29] S. Muggleton and A. Tamaddoni-Nezhad, “QG/GA: a stochastic search for
Progol,” Machine Learning, vol. 70, no. 2-3, pp. 121–133, Mar. 2008. [Online].
Available: http://link.springer.com/10.1007/s10994-007-5029-3

83

http://doi.acm.org/10.1145/959242.959248
http://papers.nips.cc/paper/1946-on-kernel-target-alignment.pdf
http://papers.nips.cc/paper/1946-on-kernel-target-alignment.pdf
http://dx.doi.org/10.1007/11563983_15
http://dx.doi.org/10.1007/11563983_15
http://dx.doi.org/10.1016/0004-3702(95)00122-0
http://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
http://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
http://link.springer.com/10.1007/3-540-36468-4_4
http://link.springer.com/10.1007/s10994-007-5034-6
http://link.springer.com/10.1007/s10994-007-5029-3

[30] U. Bhowan, M. Johnston, M. Zhang, and X. Yao, “Evolving diverse ensembles
using genetic programming for classification with unbalanced data,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 3, pp. 368–386, June
2013.

[31] N. Landwehr, K. Kersting, and L. D. Raedt, “Integrating naïve bayes and
foil,” J. Mach. Learn. Res., vol. 8, pp. 481–507, Dec. 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1314498.1314516

[32] C. Rouveirol and J. F. Puget, Proceedings of the fourth European Working
Session on Learning. Pitman, 1989, pp. 201–211.

[33] S. Muggleton, “Inductive logic programming: Derivations, successes and
shortcomings,” SIGART Bull., vol. 5, no. 1, pp. 5–11, Jan 1994. [Online].
Available: http://doi.acm.org/10.1145/181668.181671

[34] C. Rouveirol, “Flattening and saturation: Two representation changes for
generalization,” Machine Learning, vol. 14, pp. 219–232, Feb 1994. [Online].
Available: https://doi.org/10.1023/A:1022678217288

[35] S. Muggleton, mutagenesis data. [Online]. Available: https://www.doc.ic.ac.
uk/~shm/mutagenesis.html#progol

[36] S. Muggleton, alzheimer’s data. [Online]. Available: https://www.doc.ic.ac.
uk/~shm/alzheimers.html#kingetal

[37] B. Ott, Aug 2019, k folds data. [Online]. Available: https://github.com/
benott-cs/ILPData

[38] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman,
and C. Hansch, “Structure-activity relationship of mutagenic aromatic and
heteroaromatic nitro compounds. correlation with molecular orbital energies
and hydrophobicity,” Journal of Medicinal Chemistry, vol. 34, no. 2, pp. 786–
797, 1991.

[39] G. M. Shutske, F. A. Pierrat, K. J. Kapples, M. L. Cornfeldt, M. R. Szewczak,
F. P. Huger, G. M. Bores, V. Haroutunian, and K. L. Davis, “9-amino-1,2,3,4-
tetrahydroacridin-1-ols. synthesis and evaluation as potential alzheimer’s dis-
ease therapeutics,” Journal of Medicinal Chemistry, vol. 32, no. 8, pp. 1805–
1813, 1989.

[40] R. D. King, A. Srinivasan, and M. J. E. Sternberg, “Relating chemical
activity to structure: An examination of ilp successes,” New Generation
Computing, vol. 14, no. 1, pp. 109–109, Mar 1996. [Online]. Available:
https://doi.org/10.1007/BF03037220

84

http://dl.acm.org/citation.cfm?id=1314498.1314516
http://doi.acm.org/10.1145/181668.181671
https://doi.org/10.1023/A:1022678217288
https://www.doc.ic.ac.uk/~shm/mutagenesis.html#progol
https://www.doc.ic.ac.uk/~shm/mutagenesis.html#progol
https://www.doc.ic.ac.uk/~shm/alzheimers.html#king et al
https://www.doc.ic.ac.uk/~shm/alzheimers.html#king et al
https://github.com/benott-cs/ILPData
https://github.com/benott-cs/ILPData
https://doi.org/10.1007/BF03037220

[41] A. Tamaddoni-Nezhad and S. Muggleton, “The lattice structure and
refinement operators for the hypothesis space bounded by a bottom clause,”
Machine Learning, vol. 76, no. 1, pp. 37–72, July 2009. [Online]. Available:
http://link.springer.com/10.1007/s10994-009-5117-7

[42] B. Ott, Aug 2019, cKTAGA Code. [Online]. Available: https://github.com/
benott-cs/CKTAGA

[43] I. Maznitsa, Aug 2019, java based Edinburgh Prolog parser. [Online].
Available: https://github.com/raydac/java-prolog-parser

85

http://link.springer.com/10.1007/s10994-009-5117-7
https://github.com/benott-cs/CKTAGA
https://github.com/benott-cs/CKTAGA
https://github.com/raydac/java-prolog-parser

APPENDIX A

Complete Experiment Results

A.1 Complete Results

The complete results for all hyperparameters used for each data set are pre-

sented in tabular form below.

A.1.1 Mutagenesis Friendly

Config C-Val mean stddev

CKTA_Gauss1 1 0.866959 0.07243

GLPS* logic-NA 0.861988 0.086627

Aleph logic-NA 0.861696 0.061859

CKTA_Gauss1 10 0.861696 0.076249

CKTA_withIncestAvoidance_Gauss1 10 0.861111 0.063782

CKTA_withIncestAvoidance_Gauss1 0.1 0.860819 0.08545

wAccCKTA_Linear 1 0.85614 0.083352

CKTA_withIncestAvoidance_Gauss1 1 0.855848 0.071994

wAccCKTA_withIncestAvoidance_Linear logic-NA 0.855848 0.071994

wAccCKTA_Linear 10 0.855848 0.087438

wAccCKTA_withIncestAvoidance_Linear 10 0.850877 0.089467

CKTA_withIncestAvoidance_Poly2 0.1 0.850585 0.106309

wAccCKTA_withIncestAvoidance_Linear 1 0.845029 0.097476

wAccCKTA_Gauss1 0.1 0.840351 0.078992

wAccCKTA_Gauss1 logic-NA 0.840351 0.078992

CKTA_Gauss1 0.1 0.840058 0.062043

CKTA_withIncestAvoidance_Poly2 1 0.840058 0.08407

wAccCKTA_Gauss1 1 0.835088 0.084331

CKTA_Linear 1 0.830409 0.080561

CKTA_Linear 10 0.830409 0.080561

wAccCKTA_Gauss1 10 0.829825 0.092401

86

CKTA_Poly2 0.1 0.829825 0.113344

AccCKTA_withIncestAvoidance_Gauss1 1 0.829532 0.082196

AccCKTA_withIncestAvoidance_Gauss1 10 0.829532 0.082196

AccCKTA_withIncestAvoidance_Linear logic-NA 0.829532 0.086674

AccCKTA_Gauss1 10 0.825146 0.088665

CKTA_withIncestAvoidance_Linear 0.1 0.825146 0.124618

CKTA_withIncestAvoidance_Poly2 0.01 0.824854 0.089014

AccCKTA_Linear 1 0.824561 0.074789

AccCKTA_Linear 10 0.824561 0.074789

wAccCKTA_withIncestAvoidance_Gauss1 10 0.824561 0.082611

AccCKTA_withIncestAvoidance_Poly2 0.1 0.824561 0.122629

AccCKTA_withIncestAvoidance_Gauss1 0.1 0.824269 0.090096

AccCKTA_withIncestAvoidance_Gauss1 logic-NA 0.824269 0.090096

wAccCKTA_withIncestAvoidance_Poly2 10 0.824269 0.101911

CKTA_withIncestAvoidance_Poly2 10 0.823392 0.119205

AccCKTA_Gauss1 0.1 0.819591 0.078435

AccCKTA_Gauss1 logic-NA 0.819591 0.078435

wAccCKTA_withIncestAvoidance_Gauss1 1 0.819298 0.066589

GLPS*1 logic-NA 0.819298 0.108479

CKTA_Linear 0.1 0.819298 0.111519

wAccCKTA_Linear logic-NA 0.819006 0.093815

wAccCKTA_withIncestAvoidance_Gauss1 0.1 0.818713 0.063838

wAccCKTA_withIncestAvoidance_Gauss1 logic-NA 0.818713 0.063838

wAccCKTA_withIncestAvoidance_Poly2 0.1 0.818713 0.115134

AccCKTA_withIncestAvoidance_Poly2 logic-NA 0.81462 0.135728

AccCKTA_Gauss1 1 0.814327 0.089512

wAccCKTA_withIncestAvoidance_Poly2 logic-NA 0.813743 0.089436

wAccCKTA_withIncestAvoidance_Poly2 1 0.813743 0.092813

CKTA_withIncestAvoidance_Linear 1 0.813158 0.096274

CKTA_withIncestAvoidance_Linear 10 0.813158 0.096274

AccCKTA_withIncestAvoidance_Linear 10 0.809064 0.092629

87

AccCKTA_withIncestAvoidance_Poly2 1 0.808772 0.122754

AccCKTA_withIncestAvoidance_Poly2 10 0.808772 0.122754

CKTA_Poly2 1 0.80848 0.102957

CKTA_Poly2 10 0.80848 0.102957

AccCKTA_Poly2 logic-NA 0.80848 0.103637

AccCKTA_withIncestAvoidance_Linear 1 0.803509 0.092678

CKTA_Poly2 0.01 0.803509 0.108014

Aleph1 logic-NA 0.803216 0.099339

wAccCKTA_Poly2 0.1 0.803216 0.108883

wAccCKTA_withIncestAvoidance_Linear 0.1 0.802924 0.073096

AccCKTA_withIncestAvoidance_Linear 0.1 0.798538 0.104415

wAccCKTA_Poly2 1 0.79269 0.104033

wAccCKTA_Poly2 10 0.79269 0.104033

wAccCKTA_Poly2 logic-NA 0.79269 0.104033

wAccCKTA_Linear 0.1 0.79269 0.109148

AccCKTA_Linear logic-NA 0.787427 0.113329

AccCKTA_Poly2 0.1 0.776316 0.10733

AccCKTA_Poly2 1 0.77076 0.102169

AccCKTA_Linear 0.1 0.766667 0.113344

AccCKTA_Poly2 10 0.765497 0.105415

CKTA_Gauss1 logic-NA 0.739474 0.130243

CKTA_withIncestAvoidance_Gauss1 logic-NA 0.739181 0.150267

AccCKTA_Poly2 0.01 0.72924 0.12679

AccCKTA_withIncestAvoidance_Poly2 0.01 0.712573 0.111094

CKTA_Linear logic-NA 0.702632 0.130648

CKTA_withIncestAvoidance_Linear logic-NA 0.674854 0.141193

wAccCKTA_withIncestAvoidance_Poly2 0.01 0.674854 0.141193

CKTA_withIncestAvoidance_Linear 0.01 0.669591 0.123201

CKTA_Poly2 logic-NA 0.669591 0.130481

CKTA_withIncestAvoidance_Poly2 logic-NA 0.664327 0.126095

CKTA_withIncestAvoidance_Gauss1 0.01 0.664327 0.126095

88

CKTA_Linear 0.01 0.664327 0.126095

CKTA_Gauss1 0.01 0.664327 0.126095

AccCKTA_withIncestAvoidance_Linear 0.01 0.664327 0.126095

AccCKTA_withIncestAvoidance_Gauss1 0.01 0.664327 0.126095

AccCKTA_Linear 0.01 0.664327 0.126095

AccCKTA_Gauss1 0.01 0.664327 0.126095

wAccCKTA_withIncestAvoidance_Gauss1 0.01 0.664327 0.126095

wAccCKTA_Linear 0.01 0.664327 0.126095

wAccCKTA_Gauss1 0.01 0.664327 0.126095

wAccCKTA_withIncestAvoidance_Linear 0.01 0.664327 0.126095

wAccCKTA_Poly2 0.01 0.659064 0.12381

Table A.1: Mutagenesis Friendly Complete Results

A.1.2 Mutagenesis Unfriendly

Config C-Val mean stddev

AccCKTA_withIncestAvoidance_Gauss1 1 0.904762 0.297102

AccCKTA_withIncestAvoidance_Gauss1 10 0.904762 0.297102

AccCKTA_withIncestAvoidance_Gauss1 logic-NA 0.904762 0.297102

wAccCKTA_withIncestAvoidance_Poly2 logic-NA 0.904762 0.297102

wAccCKTA_withIncestAvoidance_Gauss1 1 0.904762 0.297102

wAccCKTA_withIncestAvoidance_Gauss1 10 0.904762 0.297102

wAccCKTA_withIncestAvoidance_Gauss1 logic-NA 0.904762 0.297102

wAccCKTA_Linear 10 0.904762 0.297102

wAccCKTA_Linear logic-NA 0.904762 0.297102

CKTA_withIncestAvoidance_Gauss1 1 0.880952 0.32777

CKTA_withIncestAvoidance_Gauss1 10 0.880952 0.32777

CKTA_Gauss1 1 0.880952 0.32777

CKTA_Gauss1 10 0.880952 0.32777

AccCKTA_withIncestAvoidance_Linear 10 0.880952 0.32777

AccCKTA_withIncestAvoidance_Linear logic-NA 0.880952 0.32777

AccCKTA_withIncestAvoidance_Poly2 1 0.880952 0.32777

89

AccCKTA_withIncestAvoidance_Poly2 10 0.880952 0.32777

AccCKTA_withIncestAvoidance_Poly2 logic-NA 0.880952 0.32777

AccCKTA_Gauss1 1 0.880952 0.32777

AccCKTA_Gauss1 10 0.880952 0.32777

AccCKTA_Gauss1 logic-NA 0.880952 0.32777

Aleph logic-NA 0.880952 0.32777

wAccCKTA_withIncestAvoidance_Linear logic-NA 0.880952 0.32777

wAccCKTA_withIncestAvoidance_Poly2 1 0.880952 0.32777

wAccCKTA_withIncestAvoidance_Poly2 10 0.880952 0.32777

wAccCKTA_Poly2 1 0.880952 0.32777

wAccCKTA_Poly2 10 0.880952 0.32777

CKTA_withIncestAvoidance_Linear 10 0.857143 0.354169

CKTA_withIncestAvoidance_Poly2 1 0.857143 0.354169

CKTA_withIncestAvoidance_Poly2 10 0.857143 0.354169

CKTA_withIncestAvoidance_Poly2 0.1 0.857143 0.354169

AccCKTA_withIncestAvoidance_Poly2 0.1 0.857143 0.354169

AccCKTA_Linear 0.1 0.857143 0.354169

AccCKTA_Poly2 1 0.857143 0.354169

AccCKTA_Poly2 10 0.857143 0.354169

AccCKTA_Poly2 0.1 0.857143 0.354169

AccCKTA_Poly2 logic-NA 0.857143 0.354169

GLPS* logic-NA 0.857143 0.354169

wAccCKTA_withIncestAvoidance_Linear 10 0.857143 0.354169

wAccCKTA_withIncestAvoidance_Poly2 0.1 0.857143 0.354169

wAccCKTA_withIncestAvoidance_Gauss1 0.1 0.857143 0.354169

wAccCKTA_Linear 1 0.857143 0.354169

wAccCKTA_Linear 0.1 0.857143 0.354169

wAccCKTA_Poly2 logic-NA 0.857143 0.354169

CKTA_withIncestAvoidance_Linear 1 0.833333 0.377195

CKTA_withIncestAvoidance_Linear 0.1 0.833333 0.377195

CKTA_Linear 1 0.833333 0.377195

90

CKTA_Linear 0.1 0.833333 0.377195

CKTA_Poly2 1 0.833333 0.377195

CKTA_Poly2 10 0.833333 0.377195

CKTA_Poly2 0.1 0.833333 0.377195

CKTA_Gauss1 0.1 0.833333 0.377195

AccCKTA_withIncestAvoidance_Linear 1 0.833333 0.377195

AccCKTA_withIncestAvoidance_Gauss1 0.1 0.833333 0.377195

AccCKTA_Linear 1 0.833333 0.377195

AccCKTA_Linear 10 0.833333 0.377195

wAccCKTA_withIncestAvoidance_Linear 1 0.833333 0.377195

wAccCKTA_Poly2 0.1 0.833333 0.377195

CKTA_withIncestAvoidance_Gauss1 0.1 0.809524 0.397437

AccCKTA_Linear logic-NA 0.809524 0.397437

AccCKTA_Gauss1 0.1 0.809524 0.397437

wAccCKTA_Gauss1 1 0.809524 0.397437

wAccCKTA_Gauss1 10 0.809524 0.397437

wAccCKTA_Gauss1 0.1 0.809524 0.397437

wAccCKTA_Gauss1 logic-NA 0.809524 0.397437

CKTA_Linear 10 0.785714 0.4153

CKTA_Gauss1 logic-NA 0.785714 0.4153

AccCKTA_withIncestAvoidance_Linear 0.1 0.785714 0.4153

wAccCKTA_withIncestAvoidance_Linear 0.1 0.785714 0.4153

CKTA_withIncestAvoidance_Poly2 0.01 0.761905 0.431081

CKTA_withIncestAvoidance_Gauss1 logic-NA 0.761905 0.431081

CKTA_Poly2 0.01 0.738095 0.445001

AccCKTA_Poly2 0.01 0.714286 0.45723

CKTA_withIncestAvoidance_Linear 0.01 0.690476 0.467901

CKTA_withIncestAvoidance_Gauss1 0.01 0.690476 0.467901

CKTA_Linear 0.01 0.690476 0.467901

CKTA_Gauss1 0.01 0.690476 0.467901

AccCKTA_withIncestAvoidance_Linear 0.01 0.690476 0.467901

91

AccCKTA_withIncestAvoidance_Poly2 0.01 0.690476 0.467901

AccCKTA_withIncestAvoidance_Gauss1 0.01 0.690476 0.467901

AccCKTA_Linear 0.01 0.690476 0.467901

AccCKTA_Gauss1 0.01 0.690476 0.467901

wAccCKTA_withIncestAvoidance_Linear 0.01 0.690476 0.467901

wAccCKTA_withIncestAvoidance_Poly2 0.01 0.690476 0.467901

wAccCKTA_withIncestAvoidance_Gauss1 0.01 0.690476 0.467901

wAccCKTA_Linear 0.01 0.690476 0.467901

wAccCKTA_Poly2 0.01 0.690476 0.467901

wAccCKTA_Gauss1 0.01 0.690476 0.467901

CKTA_Linear logic-NA 0.666667 0.477119

CKTA_withIncestAvoidance_Linear logic-NA 0.571429 0.50087

CKTA_withIncestAvoidance_Poly2 logic-NA 0.52381 0.505487

CKTA_Poly2 logic-NA 0.47619 0.505487

Table A.2: Mutagenesis Unfriendly Complete Results

A.1.3 Alzheimer’s - Inhibit Amine Reuptake

Config C-Val mean stddev

CKTA_Gauss1 10 0.778389 0.047727

CKTA_Gauss1 1 0.776939 0.049248

CKTA_Gauss1 0.1 0.765217 0.055672

GLPS* logic-NA 0.763853 0.056995

AccCKTA_Gauss1 1 0.762340 0.051351

AccCKTA_Gauss1 10 0.762340 0.051351

AccCKTA_Gauss1 0.1 0.762340 0.062660

wAccCKTA_Gauss1 1 0.760806 0.073323

wAccCKTA_Gauss1 10 0.760806 0.073323

Aleph logic-NA 0.758035 0.049117

GLPSWMutation* logic-NA 0.755136 0.048355

wAccCKTA_Gauss1 0.01 0.751982 0.063437

wAccCKTA_Gauss1 0.1 0.746228 0.057962

92

wAccCKTA_Gauss1 logic-NA 0.746228 0.057962

CKTA_Gauss1 0.01 0.744629 0.089664

AccCKTA_Gauss1 logic-NA 0.741880 0.076501

AccCKTA_Gauss1 0.01 0.737553 0.069953

CKTA_Linear 10 0.736125 0.062369

CKTA_Linear 1 0.733227 0.060617

CKTA_Linear 0.1 0.730413 0.069353

AccCKTA_Poly2 1 0.705541 0.072494

AccCKTA_Poly2 10 0.705541 0.072494

AccCKTA_Poly2 0.1 0.705541 0.072494

AccCKTA_Poly2 0.01 0.705541 0.072494

wAccCKTA_Linear 0.1 0.702643 0.077222

wAccCKTA_Linear 0.01 0.702643 0.077222

wAccCKTA_Poly2 0.01 0.701194 0.079289

wAccCKTA_Poly2 1 0.699829 0.078533

wAccCKTA_Poly2 10 0.699829 0.078533

wAccCKTA_Poly2 0.1 0.699829 0.078533

AccCKTA_Linear 1 0.698210 0.069203

AccCKTA_Linear 10 0.698210 0.069203

CKTA_Poly2 1 0.695460 0.089384

CKTA_Poly2 10 0.695460 0.089384

CKTA_Linear 0.01 0.695354 0.085698

CKTA_Poly2 0.1 0.694011 0.092826

wAccCKTA_Linear 1 0.693947 0.091877

wAccCKTA_Linear 10 0.693947 0.091877

AccCKTA_Linear 0.1 0.692327 0.063824

wAccCKTA_Linear logic-NA 0.690963 0.070768

AccCKTA_Poly2 logic-NA 0.688086 0.082911

AccCKTA_Linear 0.01 0.685017 0.076567

AccCKTA_Linear logic-NA 0.684974 0.085534

wAccCKTA_Poly2 logic-NA 0.683610 0.084299

93

CKTA_Poly2 0.01 0.680733 0.100672

CKTA_Poly2 logic-NA 0.601790 0.139118

CKTA_Linear logic-NA 0.555243 0.130625

CKTA_Gauss1 logic-NA 0.539812 0.107743

Table A.3: Alzheimer’s - Inhibit Amine Reuptake Complete Results

A.1.4 Alzheimer’s - Toxicity

Config C-Val mean stddev

Aleph logic-NA 0.795748 0.040715

AccCKTA_Gauss1 1 0.795748 0.041059

AccCKTA_Gauss1 10 0.795748 0.041059

AccCKTA_Gauss1 0.1 0.794625 0.040464

GLPS* logic-NA 0.794625 0.040464

CKTA_Gauss1 1 0.793488 0.040613

CKTA_Gauss1 10 0.793488 0.040613

CKTA_Gauss1 0.1 0.793488 0.044565

GLPSWMutation* logic-NA 0.792377 0.040892

AccCKTA_Gauss1 0.01 0.792377 0.04666

AccCKTA_Gauss1 logic-NA 0.792377 0.04666

wAccCKTA_Gauss1 1 0.785636 0.047058

wAccCKTA_Gauss1 10 0.785636 0.047058

wAccCKTA_Gauss1 0.1 0.783376 0.047913

wAccCKTA_Gauss1 0.01 0.780005 0.045267

wAccCKTA_Gauss1 logic-NA 0.780005 0.045267

CKTA_Gauss1 0.01 0.77311 0.037073

wAccCKTA_Linear 1 0.750549 0.045186

wAccCKTA_Linear 10 0.750549 0.045186

AccCKTA_Linear 1 0.7494 0.053041

AccCKTA_Linear 10 0.7494 0.053041

wAccCKTA_Linear 0.1 0.746029 0.043905

CKTA_Poly2 0.1 0.744969 0.055819

94

AccCKTA_Linear 0.1 0.738113 0.055089

CKTA_Poly2 1 0.737079 0.061255

CKTA_Poly2 10 0.737079 0.061255

CKTA_Linear 1 0.737015 0.033765

CKTA_Linear 10 0.737015 0.033765

wAccCKTA_Poly2 0.1 0.735981 0.037681

wAccCKTA_Poly2 1 0.734844 0.036211

wAccCKTA_Poly2 10 0.734844 0.036211

AccCKTA_Poly2 0.1 0.730235 0.04926

AccCKTA_Poly2 1 0.729099 0.047995

AccCKTA_Poly2 10 0.729099 0.047995

CKTA_Linear 0.1 0.728013 0.044142

CKTA_Poly2 0.01 0.72689 0.05698

wAccCKTA_Linear 0.01 0.717748 0.053195

AccCKTA_Linear 0.01 0.715475 0.057385

wAccCKTA_Poly2 0.01 0.711172 0.041389

CKTA_Linear 0.01 0.709895 0.047779

CKTA_Gauss1 logic-NA 0.707572 0.142736

AccCKTA_Linear logic-NA 0.704265 0.050619

AccCKTA_Poly2 0.01 0.702056 0.047148

AccCKTA_Poly2 logic-NA 0.688407 0.040816

wAccCKTA_Poly2 logic-NA 0.687308 0.027289

wAccCKTA_Linear logic-NA 0.67823 0.049884

CKTA_Linear logic-NA 0.562283 0.082722

CKTA_Poly2 logic-NA 0.532699 0.076225

Table A.4: Alzheimer’s - Toxicity Complete Results

95

APPENDIX B

Resources Used for Experimentation

The following code, hardware, data, and third party software/tools were uti-

lized for this research.

B.1 Code

The code used for this dissertation is available at [42]. Igor Maznitsa wrote a

wonderful prolog parser [43] which was used as a springboard for the code base of

this study. The prolog parser was modified to support Aleph constructs, as this

was necessary for the experimentation performed in support of this study. After

the parser was written, the GA code was written to adapt the prolog constructs

into the appropriate data structures for the GA (i.e. AND-OR trees, etc.).

B.2 Hardware

All experiments were performed on a Lenovo ThinkPad with the following

specifications:

1. 64 GB RAM

2. Intel Core i7-6820HQ CPU operating at 2.70GHz

3. 1 TB SSD drive

Additionally, when space became an issue, two 2TB external SSDs using USB-

C were also used.

B.3 Data

The data sets used for this study are available at [37]. Results are typically

difficult to reproduce in the machine learning community because authors either do

96

not make their code available or do not make their data sets available. Within the

past few years, researchers have begun to recognize this issue and to take measures

to correct it (see for example, OpenAI gym for reinforcement learning). Hopefully,

making the code and data used for this study publicly available will be of use to

other researchers who may be interested in advancing this research.

B.4 Third Party Software and Tools

As was mentioned, Maznitsa’s prolog parser [43] was used as a springboard

for this research. Other third party tools used in this research include:

1. Yap prolog version 6.2.3

2. Aleph version 5

3. java openjdk version 1.8.0_131

4. Intellij Community 2017.1.4

5. perl 5 version 16

97

BIBLIOGRAPHY

Badea, L., “Perfect refinement operators can be flexible,” in Proceedings of the
14th European Conference on Artificial Intelligence, IOS Press, Amsterdama,
2000, pp. 266–270.

Bhowan, U., Johnston, M., Zhang, M., and Yao, X., “Evolving diverse ensembles
using genetic programming for classification with unbalanced data,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 3, pp. 368–386, June
2013.

Bicer, V., Tran, T., and Gossen, A., “Relational Kernel Machines for Learning
from Graph-Structured RDF Data,” in The Semantic Web: Research
and Applications, Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B.,
Plexousakis, D., De Leenheer, P., and Pan, J., Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, vol. 6643, pp. 47–62. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-21034-1_4

Bratko, I. and D. King, R., “Applications of inductive logic programming,”
SIGART Bulletin, vol. 5, pp. 43–49, 01 1994.

Cannon, E. O., Amini, A., Bender, A., Sternberg, M. J. E., Muggleton,
S. H., Glen, R. C., and Mitchell, J. B. O., “Support vector inductive
logic programming outperforms the naive Bayes classifier and inductive logic
programming for the classification of bioactive chemical compounds,” Journal
of Computer-Aided Molecular Design, vol. 21, no. 5, pp. 269–280, Apr. 2007.
[Online]. Available: http://link.springer.com/10.1007/s10822-007-9113-3

Conceicao, J. P. D., “The Aleph System Made Easy,” Master’s thesis, Universidade
do Porto, 2008.

Cortes, C., Mohri, M., and Rostamizadeh, A., “Generalization bounds for learning
kernels,” in Proceedings of the 27th International Conference on International
Conference on Machine Learning, ser. ICML’10. USA: Omnipress, 2010,
pp. 247–254. [Online]. Available: http://dl.acm.org/citation.cfm?id=3104322.
3104355

Cortes, C., Mohri, M., and Rostamizadeh, A., “Two-stage learning kernel
algorithms,” in Proceedings of the 27th International Conference on
International Conference on Machine Learning, ser. ICML’10. USA:
Omnipress, 2010, pp. 239–246. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3104322.3104354

98

http://link.springer.com/10.1007/978-3-642-21034-1_4
http://link.springer.com/10.1007/s10822-007-9113-3
http://dl.acm.org/citation.cfm?id=3104322.3104355
http://dl.acm.org/citation.cfm?id=3104322.3104355
http://dl.acm.org/citation.cfm?id=3104322.3104354
http://dl.acm.org/citation.cfm?id=3104322.3104354

Cortes, C., Mohri, M., and Rostamizadeh, A., “Algorithms for learning kernels
based on centered alignment,” Journal of Machine Learning Research, vol. 13,
pp. 795–828, 2012.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., and Kandola, J. S., “On
kernel-target alignment,” in Advances in Neural Information Processing
Systems 14, Dietterich, T. G., Becker, S., and Ghahramani, Z., Eds. MIT
Press, 2002, pp. 367–373. [Online]. Available: http://papers.nips.cc/paper/
1946-on-kernel-target-alignment.pdf

de Castro Dutra, I., Page, D., Santos Costa, V., and Shavlik, J., “An
Empirical Evaluation of Bagging in Inductive Logic Programming,” in
Inductive Logic Programming, Goos, G., Hartmanis, J., van Leeuwen,
J., Matwin, S., and Sammut, C., Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, vol. 2583, pp. 48–65. [Online]. Available:
http://link.springer.com/10.1007/3-540-36468-4_4

De Raedt, L. and Kersting, K., “Probabilistic inductive logic programming,”
in Probabilistic Inductive Logic Programming, De Raedt, L., Frasconi, P.,
Kersting, K., and Muggleton, S., Eds. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 1–27. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1793956.1793958

De Raedt, L. and Ramon, J., “Condensed representations for inductive logic
programming,” in Proceedings of the Ninth International Conference on
Principles of Knowledge Representation and Reasoning, ser. KR’04. AAAI
Press, 2004, pp. 438–446. [Online]. Available: http://dl.acm.org/citation.
cfm?id=3029848.3029905

Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shusterman, A. J.,
and Hansch, C., “Structure-activity relationship of mutagenic aromatic and
heteroaromatic nitro compounds. correlation with molecular orbital energies
and hydrophobicity,” Journal of Medicinal Chemistry, vol. 34, no. 2, pp. 786–
797, 1991.

Diligenti, M., Gori, M., Maggini, M., and Rigutini, L., “Multitask kernel-based
learning with logic constraints,” in Proceedings of the 2010 Conference on
ECAI 2010: 19th European Conference on Artificial Intelligence. Amsterdam,
The Netherlands, The Netherlands: IOS Press, 2010, pp. 433–438. [Online].
Available: http://dl.acm.org/citation.cfm?id=1860967.1861053

Diligenti, M., Gori, M., Maggini, M., and Rigutini, L., “Bridging logic and kernel
machines,” Machine Learning, vol. 86, no. 1, pp. 57–88, Jan. 2012. [Online].
Available: http://link.springer.com/10.1007/s10994-011-5243-x

Eiben, A., Schut, M., and de Wilde, A., “Boosting Genetic Algorithms
with Self-Adaptive Selection,” in 2006 IEEE International Conference on

99

http://papers.nips.cc/paper/1946-on-kernel-target-alignment.pdf
http://papers.nips.cc/paper/1946-on-kernel-target-alignment.pdf
http://link.springer.com/10.1007/3-540-36468-4_4
http://dl.acm.org/citation.cfm?id=1793956.1793958
http://dl.acm.org/citation.cfm?id=1793956.1793958
http://dl.acm.org/citation.cfm?id=3029848.3029905
http://dl.acm.org/citation.cfm?id=3029848.3029905
http://dl.acm.org/citation.cfm?id=1860967.1861053
http://link.springer.com/10.1007/s10994-011-5243-x

Evolutionary Computation. Vancouver, BC, Canada: IEEE, 2006, pp.
477–482. [Online]. Available: http://ieeexplore.ieee.org/document/1688348/

Fanizzi, N., Ferilli, S., Di Mauro, N., and Basile, T. M. A., “Spaces of theories
with ideal refinement operators,” in Proceedings of the 18th International
Joint Conference on Artificial Intelligence, ser. IJCAI’03. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2003, pp. 527–532. [Online].
Available: http://dl.acm.org/citation.cfm?id=1630659.1630737

Frasconi, P. and Passerini, A., “Learning with kernels and logical representations,”
in Probabilistic Inductive Logic Programming, De Raedt, L., Frasconi, P.,
Kersting, K., and Muggleton, S., Eds. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 56–91. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1793956.1793961

Friedman, J. H. and Popescu, B. E., “Predictive learning via rule ensembles,” The
Annals of Applied Statistics, vol. 2, no. 3, pp. 916–954, Sept. 2008. [Online].
Available: http://projecteuclid.org/euclid.aoas/1223908046

Fung, G. M., Mangasarian, O. L., and Shavlik, J. W., “Knowledge-based
support vector machine classifiers,” in Proceedings of the 15th International
Conference on Neural Information Processing Systems, ser. NIPS’02.
Cambridge, MA, USA: MIT Press, 2002, pp. 537–544. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2968618.2968685

Fung, G. M., Mangasarian, O. L., and Shavlik, J. W., “Knowledge-Based Nonlinear
Kernel Classifiers,” in Learning Theory and Kernel Machines, Goos, G.,
Hartmanis, J., van Leeuwen, J., SchÃűlkopf, B., and Warmuth, M. K., Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, vol. 2777, pp. 102–113.
[Online]. Available: http://link.springer.com/10.1007/978-3-540-45167-9_9

Garcez, A. S. d., Lamb, L. C., and Gabbay, D. M., Neural-Symbolic Cognitive
Reasoning, 1st ed. Springer Publishing Company, Incorporated, 2008.

Gärtner, T., “A survey of kernels for structured data,” SIGKDD Explor.
Newsl., vol. 5, no. 1, pp. 49–58, July 2003. [Online]. Available:
http://doi.acm.org/10.1145/959242.959248

Hamel, L. H., Knowledge Discovery with Support Vector Machines. New York,
NY, USA: Wiley-Interscience, 2009.

He, D., Wang, Z., Yang, B., and Zhou, C., “Genetic Algorithm with Ensemble
Learning for Detecting Community Structure in Complex Networks,” in 2009
Fourth International Conference on Computer Sciences and Convergence
Information Technology. Seoul, Korea: IEEE, 2009, pp. 702–707. [Online].
Available: http://ieeexplore.ieee.org/document/5368902/

100

http://ieeexplore.ieee.org/document/1688348/
http://dl.acm.org/citation.cfm?id=1630659.1630737
http://dl.acm.org/citation.cfm?id=1793956.1793961
http://dl.acm.org/citation.cfm?id=1793956.1793961
http://projecteuclid.org/euclid.aoas/1223908046
http://dl.acm.org/citation.cfm?id=2968618.2968685
http://link.springer.com/10.1007/978-3-540-45167-9_9
http://doi.acm.org/10.1145/959242.959248
http://ieeexplore.ieee.org/document/5368902/

Howley, T. and Madden, M. G., “The Genetic Kernel Support Vector
Machine: Description and Evaluation,” Artificial Intelligence Review,
vol. 24, no. 3-4, pp. 379–395, Nov. 2005. [Online]. Available: http:
//link.springer.com/10.1007/s10462-005-9009-3

Kelley, L., J Shrimpton, P., Muggleton, S., and J E Sternberg, M., “Discover-
ing rules for protein-ligand specificity using support vector inductive logic
programming,” Protein engineering, design & selection : PEDS, vol. 22, pp.
561–7, 08 2009.

King, R. D., Srinivasan, A., and Sternberg, M. J. E., “Relating chemical
activity to structure: An examination of ilp successes,” New Generation
Computing, vol. 14, no. 1, pp. 109–109, Mar 1996. [Online]. Available:
https://doi.org/10.1007/BF03037220

Laird, P. D., Learning from Good and Bad Data. Boston, MA: Kluwer Academic
Publishers, 1988.

Landwehr, N., Kersting, K., and Raedt, L. D., “Integrating naïve bayes and foil,”
J. Mach. Learn. Res., vol. 8, pp. 481–507, Dec. 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1314498.1314516

Landwehr, N., Passerini, A., De Raedt, L., and Frasconi, P., “kfoil: Learning simple
relational kernels,” in Proceedings of the 21st National Conference on Artificial
Intelligence - Volume 1, ser. AAAI’06. AAAI Press, 2006, pp. 389–394.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1597538.1597601

Landwehr, N., Passerini, A., De Raedt, L., and Frasconi, P., “Fast learning of
relational kernels,” Machine Learning, vol. 78, no. 3, pp. 305–342, Mar. 2010.
[Online]. Available: http://link.springer.com/10.1007/s10994-009-5163-1

Lodhi, H. and Muggleton, S., “Modelling Metabolic Pathways Using Stochastic
Logic Programs-Based Ensemble Methods,” in Computational Methods in
Systems Biology, Danos, V. and Schachter, V., Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, vol. 3082, pp. 119–133. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-25974-9_10

Man Leung Wong and Kwong Sak Leung, “Combining genetic programming
and inductive logic programming using logic grammars,” in Proceedings of
1995 IEEE International Conference on Evolutionary Computation, vol. 2.
Perth, WA, Australia: IEEE, 1995, pp. 733–736. [Online]. Available:
http://ieeexplore.ieee.org/document/487476/

Man Leung Wong and Kwong Sak Leung, “Inducing logic programs with
genetic algorithms: the Genetic Logic Programming System,” IEEE
Expert, vol. 10, no. 5, pp. 68–76, Oct. 1995. [Online]. Available:
http://ieeexplore.ieee.org/document/464935/

101

http://link.springer.com/10.1007/s10462-005-9009-3
http://link.springer.com/10.1007/s10462-005-9009-3
https://doi.org/10.1007/BF03037220
http://dl.acm.org/citation.cfm?id=1314498.1314516
http://dl.acm.org/citation.cfm?id=1597538.1597601
http://link.springer.com/10.1007/s10994-009-5163-1
http://link.springer.com/10.1007/978-3-540-25974-9_10
http://ieeexplore.ieee.org/document/487476/
http://ieeexplore.ieee.org/document/464935/

Maznitsa, I., Aug 2019, java based Edinburgh Prolog parser. [Online]. Available:
https://github.com/raydac/java-prolog-parser

Muggleton, S., mutagenesis data. [Online]. Available: https://www.doc.ic.ac.uk/
~shm/mutagenesis.html#progol

Muggleton, S., alzheimer’s data. [Online]. Available: https://www.doc.ic.ac.uk/
~shm/alzheimers.html#kingetal

Muggleton, S., “Inductive logic programming,” New Gen. Comput., vol. 8,
no. 4, pp. 295–318, Feb. 1991. [Online]. Available: http://dx.doi.org/10.1007/
BF03037089

Muggleton, S., “Bayesian Inductive Logic Programming,” Oxford University Com-
puting Laboratory, p. 10, 1994.

Muggleton, S., “Inductive logic programming: Derivations, successes and
shortcomings,” SIGART Bull., vol. 5, no. 1, pp. 5–11, Jan 1994. [Online].
Available: http://doi.acm.org/10.1145/181668.181671

Muggleton, S., Lodhi, H., Amini, A., and Sternberg, M. J. E., “Support
vector inductive logic programming,” in Proceedings of the 8th International
Conference on Discovery Science, ser. DS’05. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 163–175. [Online]. Available: http://dx.doi.org/10.1007/
11563983_15

Muggleton, S. and Tamaddoni-Nezhad, A., “QG/GA: a stochastic search for
Progol,” Machine Learning, vol. 70, no. 2-3, pp. 121–133, Mar. 2008. [Online].
Available: http://link.springer.com/10.1007/s10994-007-5029-3

Muggleton, S. H., Lin, D., Chen, J., and Tamaddoni-Nezhad, A., “MetaBayes:
Bayesian Meta-Interpretative Learning Using Higher-Order Stochastic
Refinement,” in Inductive Logic Programming, Zaverucha, G., Santos Costa,
V., and Paes, A., Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
vol. 8812, pp. 1–17. [Online]. Available: http://link.springer.com/10.1007/
978-3-662-44923-3_1

Nienhuys-Cheng, S.-H. and Wolf, R. d., Foundations of Inductive Logic Program-
ming, Siekmann, J. and Carbonell, J. G., Eds. Berlin, Heidelberg: Springer-
Verlag, 1997.

Nohejl, A., “Grammar-based genetic programming,” Master’s thesis, Charles Uni-
versity in Prague, 2011.

Ott, B., Aug 2019, k folds data. [Online]. Available: https://github.com/
benott-cs/ILPData

102

https://github.com/raydac/java-prolog-parser
https://www.doc.ic.ac.uk/~shm/mutagenesis.html#progol
https://www.doc.ic.ac.uk/~shm/mutagenesis.html#progol
https://www.doc.ic.ac.uk/~shm/alzheimers.html#king et al
https://www.doc.ic.ac.uk/~shm/alzheimers.html#king et al
http://dx.doi.org/10.1007/BF03037089
http://dx.doi.org/10.1007/BF03037089
http://doi.acm.org/10.1145/181668.181671
http://dx.doi.org/10.1007/11563983_15
http://dx.doi.org/10.1007/11563983_15
http://link.springer.com/10.1007/s10994-007-5029-3
http://link.springer.com/10.1007/978-3-662-44923-3_1
http://link.springer.com/10.1007/978-3-662-44923-3_1
https://github.com/benott-cs/ILPData
https://github.com/benott-cs/ILPData

Ott, B., Aug 2019, cKTAGA Code. [Online]. Available: https://github.com/
benott-cs/CKTAGA

Passerini, A., Frasconi, P., and Raedt, L. D., “Kernels on prolog
proof trees: Statistical learning in the ilp setting,” J. Mach. Learn.
Res., vol. 7, pp. 307–342, Dec. 2006. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1248547.1248558

Perolini, A., “Genetic algorithms and kernel matrix-based criteria combined ap-
proach to perform feature and model selection for support vector machines,”
World Academy of Science, Engineering and Technology, vol. 64, pp. 85–94,
01 2010.

Qomariyah, N. and Kazakov, D., “Learning from ordinal data with inductive logic
programming in description logic,” in Late Breaking Papers of the 27th Inter-
national Conference on Inductive Logic Programming, Lachiche, N. and Vrain,
C., Eds., vol. 2085. CEUR Workshop Proceedings, 3 2018, pp. 38–50, an ear-
lier version of this paper was accepted for publication in 2017 and entered into
PURE. This extended version of the paper was subject to another round of re-
views, and was published as an open access paper in these online proceedings
on 29 March 2018 (see link above in this record).

Quinlan, J. R., “Learning logical definitions from relations,” Mach. Learn.,
vol. 5, no. 3, pp. 239–266, Sept. 1990. [Online]. Available: https:
//doi.org/10.1023/A:1022699322624

Quinlan, J. R. and Cameron-Jones, R. M., “FOIL: A midterm report,” in
Machine Learning: ECML-93, Siekmann, J., Goos, G., Hartmanis, J., and
Brazdil, P. B., Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993,
vol. 667, pp. 1–20. [Online]. Available: http://link.springer.com/10.1007/
3-540-56602-3_124

Quinlan, J. R. and Cameron-Jones, R. M., “Induction of logic programs: FOIL and
related systems,” New Generation Computing, vol. 13, no. 3-4, pp. 287–312,
Dec. 1995. [Online]. Available: http://link.springer.com/10.1007/BF03037228

Rouveirol, C., “Flattening and saturation: Two representation changes for
generalization,” Machine Learning, vol. 14, pp. 219–232, Feb 1994. [Online].
Available: https://doi.org/10.1023/A:1022678217288

Rouveirol, C. and Puget, J. F., Proceedings of the fourth European Working Session
on Learning. Pitman, 1989, pp. 201–211.

Ruckert, U. and Kramer, S., “Margin-based first-order rule learning,” Machine
Learning, vol. 70, no. 2-3, pp. 189–206, Mar. 2008. [Online]. Available:
http://link.springer.com/10.1007/s10994-007-5034-6

103

https://github.com/benott-cs/CKTAGA
https://github.com/benott-cs/CKTAGA
http://dl.acm.org/citation.cfm?id=1248547.1248558
http://dl.acm.org/citation.cfm?id=1248547.1248558
https://doi.org/10.1023/A:1022699322624
https://doi.org/10.1023/A:1022699322624
http://link.springer.com/10.1007/3-540-56602-3_124
http://link.springer.com/10.1007/3-540-56602-3_124
http://link.springer.com/10.1007/BF03037228
https://doi.org/10.1023/A:1022678217288
http://link.springer.com/10.1007/s10994-007-5034-6

Scholkopf, B. and Smola, A. J., Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT
Press, 2001.

Shawe-Taylor, J. and Cristianini, N., Kernel Methods for Pattern Analysis. New
York, NY, USA: Cambridge University Press, 2004.

Shutske, G. M., Pierrat, F. A., Kapples, K. J., Cornfeldt, M. L., Szewczak,
M. R., Huger, F. P., Bores, G. M., Haroutunian, V., and Davis, K. L., “9-
amino-1,2,3,4-tetrahydroacridin-1-ols. synthesis and evaluation as potential
alzheimer’s disease therapeutics,” Journal of Medicinal Chemistry, vol. 32,
no. 8, pp. 1805–1813, 1989.

Srinivasan, A., Aug 2019, online manual. [Online]. Available: http://www.cs.ox.
ac.uk/activities/programinduction/Aleph/aleph.html

Srinivasan, A., Muggleton, S. H., Sternberg, M. J. E., and King, R. D., “Theories
for mutagenicity: A study in first-order and feature-based induction,”
Artif. Intell., vol. 85, no. 1-2, pp. 277–299, Aug. 1996. [Online]. Available:
http://dx.doi.org/10.1016/0004-3702(95)00122-0

Tamaddoni Nezhad, A., “Logic-based machine learning using a bounded hypothesis
space: the lattice structure, refinement operators and a genetic algorithm
approach,” Ph.D. dissertation, Imperial College London, 2013.

Tamaddoni-Nezhad, A. and Muggleton, S., “The lattice structure and refinement
operators for the hypothesis space bounded by a bottom clause,” Machine
Learning, vol. 76, no. 1, pp. 37–72, July 2009. [Online]. Available:
http://link.springer.com/10.1007/s10994-009-5117-7

Tamaddoni-Nezhad, A. and Muggleton, S. H., “Searching the Subsumption
Lattice by a Genetic Algorithm,” in Inductive Logic Programming, Goos,
G., Hartmanis, J., van Leeuwen, J., Cussens, J., and Frisch, A., Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, vol. 1866, pp. 243–252.
[Online]. Available: http://link.springer.com/10.1007/3-540-44960-4_15

Verbaeten, S. and Van Assche, A., “Ensemble Methods for Noise Elimination in
Classification Problems,” in Multiple Classifier Systems, Goos, G., Hartmanis,
J., van Leeuwen, J., Windeatt, T., and Roli, F., Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, vol. 2709, pp. 317–325. [Online]. Available:
http://link.springer.com/10.1007/3-540-44938-8_32

Yalabik, I., Yarman-Vural, F. T., Ucoluk, G., and Sehitoglu, O. T., “A
pattern classification approach for boosting with genetic algorithms,”
in 2007 22nd international symposium on computer and information
sciences. Ankara, Turkey: IEEE, Nov. 2007, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/document/4456870/

104

http://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
http://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
http://dx.doi.org/10.1016/0004-3702(95)00122-0
http://link.springer.com/10.1007/s10994-009-5117-7
http://link.springer.com/10.1007/3-540-44960-4_15
http://link.springer.com/10.1007/3-540-44938-8_32
http://ieeexplore.ieee.org/document/4456870/

Yang, X., Song, Q., and Wang, Y., “A weighted support vector machine for data
classification,” International Journal of Pattern Recognition and Artificial
Intelligence, vol. 21, no. 05, pp. 961–976, Aug. 2007. [Online]. Available:
http://www.worldscientific.com/doi/abs/10.1142/S0218001407005703

105

http://www.worldscientific.com/doi/abs/10.1142/S0218001407005703

	ABSTRACT
	ACKNOWLEDGMENTS
	DEDICATION
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Concepts of Logic Programming
	Refinement Operators
	Basic Concepts of Inductive Logic Programming
	Subsumption Order
	Refinement Operators Revisited

	Genetic Logic Programming System (GLPS)
	Kernel Methods

	Approach
	Modified GLPS
	Initial Population
	Scoring
	Crossover
	Mutation
	Terminal Conditions for the Search
	Dynamic Propositionalization

	Ensemble Creation
	Diversity Adjusted Scoring for Ensemble Member Selection

	Language Bias

	Experiments
	Results Nomenclature
	Additional Results Information
	Mutagenesis
	Mutagenesis Friendly
	Mutagenesis Unfriendly

	Alzheimer's
	Inhibit Amine Reuptake
	Toxicity

	Experiment Summary
	Mutagenesis Friendly
	Mutagenesis Unfriendly
	Alzheimer's Inhibit Amine Reuptake
	Alzheimer's Toxicity

	Discussion

	Conclusions and Future Work
	Genetic Algorithm Improvements
	Computational Speed Improvement
	Ensembles and Kernel Combinations
	Closing

	LIST OF REFERENCES
	Complete Experiment Results
	Complete Results
	Mutagenesis Friendly
	Mutagenesis Unfriendly
	Alzheimer's - Inhibit Amine Reuptake
	Alzheimer's - Toxicity

	Resources Used for Experimentation
	Code
	Hardware
	Data
	Third Party Software and Tools

	BIBLIOGRAPHY

