
PARALLELIZATION OF VECTORIZED SELF-ORGANIZING MAPS IN

HARDWARE ACCELERATOR ARCHITECTURES

BY

OMAR X. RIVERA MORALES

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE AND STATISTICS

UNIVERSITY OF RHODE ISLAND

2022

DOCTOR OF PHILOSOPHY DISSERTATION

OF

OMAR X. RIVERA MORALES

APPROVED:

Dissertation Committee:

Major Professor Lutz Hamel

Noah M. Daniels

Resit Sendag

Brenton Deboef

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2022

ABSTRACT

This dissertation presents the culmination of research performed over six years

into developing a parallel and stochastic implementation to the University of Rhode

Island’s (URI) Computer Science Department Vectorized Self Organizing Maps

(VSOM) algorithm. The Parallel VSOM (Par-VSOM) and the High-Level Syn-

thesis VSOM (HLS-VSOM) algorithms are inspired by ideas from tensor

algebra and are implemented using parallel kernels and vectorization in modern

hardware accelerators.

The map quality generated by the algorithm is of significant importance since

higher quality maps provide in-depth knowledge that allows the researcher to iden-

tify clusters of information within the datasets. Furthermore, of importance is de-

veloping a more efficient and scalable parallel solution, such that it can be executed

in newer hardware accelerator architectures. The URI Computer Science Depart-

ment addressed part of these challenges, leading to its Vectorized Self-Organizing

Maps Central Processing Unit (CPU) solution. The VSOM CPU solution was the

first v ectorized SOM a lgorithm w ith s ufficient pro cessing thr oughput to execute

the algorithm 60 times faster than Kohone’s iterative algorithm. In addition, the

VSOM produced quality maps that matched the Kohone’s SOM and outperformed

the quality of the maps produced by the BatchSOM.

Due to the significant r esults a chieved w ith t he VSOM a nd t he algorithm’s

vectorization nature, we decided to use the VSOM as the starting point for our

proposed algorithms. Furthermore, the state of the art hardware accelerators offer

hardware vectorization capability and serve as the perfect environment to improve

the previous speed-up gains obtained in CPUs.

The successor to the VSOM CPU-based algorithm has further pushed the limit

of state of the art by providing a Graphical Processor Unit (GPU) parallel solution

that has undergone testing in the Amazon Web Service (AWS) cloud. The GPU

solution has generated the same map quality as the VSOM CPU-based solution and

provides scalable speedup enhancements over the original Kohone’s SOM algorithm

and the VSOM CPU implementations using large maps. The obtained scalable

speedup made the GPU solution URI’s fastest for the most optimal solution for

larger maps. More importantly, the GPU algorithm provides a roadmap for a

higher-performance algorithm hosted in Field Programmable Gate Array (FPGA).

URI’s successor to the GPU Par-VSOM algorithm provides an embedded ac-

celerator architecture solution in an FPGA environment. The FPGA experimen-

tal results demonstrate that we are not sacrificing map accuracy for performance.

The FPGA solution provides a speedup enhancement over the VSOM CPU and

the Kohone’s SOM algorithm implementation with maps and datasets with the

same dimensionality constraints. In addition, compared to GPU implementations,

the HLS-VSOM outperforms the SOM GPU variants by two or more orders of

magnitude.

Two schools of thought clearly stand out as part of our literary search of other

groups performing state-of-the-art parallel SOM solutions: network partitioning

and data partition methodology. The network partitioning strategy separated the

maps in multiple section to obtain some level of parallelism. To accomplish this,

this method employs separated threads to calculate the winning neurons updates

of map partitions. This result in faster execution but the separation of the maps

in subsections adds complexity to the analysis of the data and may result in a

lower quality of the entire merge maps. The data partitioning methodology is a

more common approach, where the data is distributed among the individual

threads for faster parallel execution. A very popular variant of the

methodology is the BatchSOM, which executes the best matching unit (BMU)

part of the algorithm

in parallel is unable to preserve a consistent map quality.This approach provides a

good option for parallelism but does not allow for a complete parallel solution as

the PAR-VSOM and HLS-VSOM variants.

The URI’s Par-VSOM and HLS-VSOM solutions have advantages over other

state-of-the-art parallel SOM algorithms, the most notable advantage being their

high performance. The higher performance can be attributed to the use of fully

vectorized data structures, neighborhood caching, asynchronous memory speed

gains, pipelining, loop unrolling, and array partitioning. As a result, URI’s parallel

algorithm solutions are leading the way toward highly optimized SOM algorithms,

thereby providing a high-performance alternative to SOM algorithm.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Lutz Hamel for his advise, cooperation,

and most importantly, for sharing his wisdom and patience throughout the research

milestones necessary to materialize this dissertation into reality. His astounding

ability to project significant ideas into academic papers is something I admire and

hope to achieve in the future. Furthermore, I will always appreciate his willingness

to include me as part of his research team and guide me in generating outstanding

Ph.D. research and writing quality academic papers.

In addition to Dr. Hamel, I would like to thank the rest of my dissertation

committee: Dr. Noah Daniels, Dr. Resit Sendag and Dr. Gordon Dash for

reviewing the content within this dissertation, for taking the time to serve and

participate in the comprehensive examination and dissertation defense.

Also, I am very grateful with NUWC team for proofreading my papers, making

recommendations, and providing a long-term grant to focus on this research efforts.

Finally yet importantly, I would like to thank my wife, Mariana, and my

daughter, Elena. I want to apologize for some absence during the last six years; I

thank you both for your understanding, patience, and support in helping me reach

my educational goals.

v

PREFACE

This dissertation is written in the manuscript format. It consists of two

manuscripts organized as follows:

Manuscript 1:

Omar X. Rivera Morales, Lutz Hamel “Par-VSOM:Parallel and Stochastic

Self-Organizing Map Training Algorithm”, will be submitted to 14th International

Conference on Neural Computation Theory and Applications NCTA 2022 : 14th

International Joint Conference on Computational Intelligence (IJCCI ’22), Val-

letta, Malta, 2022.

Manuscript 2:

Omar X. Rivera Morales, Lutz Hamel, “High-Level Synthesis Parallelization

and Optimization of Vectorized Self-Organizing Maps”, submitted to the 18th

International Conference on Data Science (ICDATA’22), Nevada, USA, 2022

vi

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . v

PREFACE . vi

TABLE OF CONTENTS . vii

MANUSCRIPT

1 Par-VSOM: Parallel and Stochastic Self-Organizing Map
Training Algorithm . 1

1.1 Abstract . 2

1.2 Introduction . 3

1.3 The SOM and VSOM Algorithms 4

1.3.1 The SOM and VSOM Competitive Step 5

1.3.2 The SOM and VSOM Update Step 7

1.4 Related Work . 9

1.4.1 SOM Parallel Hybrid Methods 9

1.4.2 SOM Vectorization . 10

1.4.3 SOM in Multiple Parallel Architectures 10

1.5 Par-VSOM: Parallel Vectorized SOM 11

1.5.1 Hardware For Parallel Vectorization 11

1.5.2 Par-VSOM Algorithm 11

1.5.3 Limitations . 15

1.6 Experiments . 16

vii

Page

viii

1.6.1 Hardware setup . 16

1.6.2 Par-VSOM setup and Hyper-Parameters 16

1.6.3 Results . 21

1.7 Conclusions . 25

List of References . 26

2 High-Level Synthesis Parallelization and Optimization of
Vectorized Self-Organizing Map 29

2.1 Abstract . 30

2.2 Introduction . 31

2.3 High Level Synthesis . 32

2.4 Vectorization of Self-Organizing Maps 34

2.4.1 The SOM and VSOM Competitive Step 35

2.4.2 The SOM and VSOM Update Step 37

2.5 High-Level Synthesis VSOM . 38

2.5.1 HLS VSOM Algorithm 38

2.5.2 Pipelining and Dataflow 39

2.5.3 HLS VSOM Horizontal Unrolling (Vectorization) 41

2.5.4 HLS Par-VOM Memory Transformations 43

2.5.5 HLS Matrix Reduction with Systolic Arrays 44

2.6 Related Work . 45

2.6.1 Stochastic SOM with FPGA SoC 46

2.6.2 A Scalable SOM based on a Sequential Systolic NoC . . 46

2.6.3 High Level Synthesis (HLS) for K-means algorithm . . . 47

Page

ix

2.6.4 High-Performance Computing Applications via High-
Level Synthesis . 47

2.6.5 SOMs in GPUs . 48

2.7 Experiments . 48

2.7.1 Hardware setup . 48

2.7.2 HLS-VSOM setup and Hyper-Parameters 49

2.7.3 Results . 54

2.8 Conclusions . 56

List of References . 59

APPENDIX

A Introduction and review of the problem 62

A.1 Introduction . 62

A.2 Review of the Problem . 63

A.2.1 The SOM and VSOM Algorithm 64

A.2.2 Parallel SOM . 70

A.2.3 Hardware Architectures for Parallel SOMs 73

A.2.4 Parallel Vectorized SOM 76

A.2.5 High Level Synthesis for Parallel SOMs 77

A.2.6 Systolic Array with HLS 78

List of References . 80

B Methodology and Source code 82

B.1 Methodology . 82

B.1.1 Research Design . 83

Page

x

B.1.2 Data Sets . 84

B.2 Readme File . 85

B.3 Source Code . 91

B.3.1 Par-VSOM Cuda Kernel 91

B.3.2 HLS-VSOM . 103

List of References . 120

C Conclusion . 122

1

MANUSCRIPT 1

Par-VSOM: Parallel and Stochastic Self-Organizing Map Training
Algorithm

by

1Omar X. Rivera Morales, Lutz Hamel will be submitted to 14th International

Conference on Neural Computation Theory and Applications NCTA 2022 : 14th

International Joint Conference on Computational Intelligence (IJCCI ’22),

Valletta, Malta, 2022.

1Omar X. Rivera Morales and Lutz Hamel are with Department of Computer Science
and Statistics, University of Rhode Island, Kingston, RI, 02881, Email {oxriveramorales,
lutzhamel}@uri.edu.

2

1.1 Abstract

This work proposes Par-VSOM, a novel parallel version of VSOM, a very

efficient implementation of stochastic training for self-organizing maps inspired

by ideas from tensor algebra. The new algorithm is implemented using parallel

kernels on GPU accelerators. It provides performance increases over the original

VSOM algorithm, PyTorch Quicksom parallel version, Tensorflow Xpysom parallel

variant, as well as Kohonen’s classic iterative implementation. Here we develop

the algorithm in some detail and then demonstrate its performance on several real-

world datasets. We also demonstrate that our new algorithm does not sacrifice map

quality for speed using the convergence index quality assessment.

3

1.2 Introduction

The self-organizing map (SOM) is a neural network designed for unsupervised

machine learning [1]. The generated maps are powerful data analysis tools applied

to diverse areas such as atmospheric science, nuclear physics, pattern recognition,

medical diagnosis, computer vision and other data domains [2, 3, 4]. See reference

[1] for a more comprehensive literature survey. Here we introduce the Parallel

VSOM (Par-VSOM), a parallel implementation of the efficient VSOM algorithm

[5]. The novel approach presented here, replaces all iterative constructs of the

SOM algorithm with kernels running in a hardware accelerator to perform vector

and matrix operations in parallel. The algorithm kernels provide substantial per-

formance increases over Kohonen’s SOM iterative algorithm, the XpySom[6], and

Quicksom [7, 8] parallel BatchSOM implementations.

The training of the SOM is computationally demanding, but a great advantage

of SOMs is that the computations can be parallelize with algorithm modifications

like in the BatchSOM or using hardware vectorization. Currently, various types

of hardware accelerators are easily available, allowing us to process Big-Data [9]

datasets using high-performance computers (HPC), Graphical Processing Units

(GPU), and Field Programmable Gate Arrays (FPGA)[10, 11].This research pro-

vides an alternative efficient SOM algorithm to accelerate the training of highly

complex rectangular maps.

Our experiments demonstrate that our parallel algorithm is better suited for

highly computational demanding maps, such as the maps generated with large

SOMs. Using a large number of neurons provides a higher resolution clustering

of the data and facilitates the pattern recognition during the analysis, as shown

in Figure 1. Furthermore, the maps produced by the Par-VSOM are equivalent

in quality to the maps produced by the original SOM iterative algorithm. The

4

current Par-VSOM model is parallel and multi-threaded, and therefore well suited

as a replacement for other parallel algorithms to train the self-organizing maps.

The paper is organized as follows: In Section 1.3, we start our discussion with

an overview of the SOM and a brief introduction to the VSOM [5] vectorized rules,

which can be viewed as an implementation of a competitive learning scheme com-

prised of a competitive step and an update step with vector and matrix training.

The relevant details about related research work are included in Section 2.6. As

part of Section 1.5, we develop the Par-VSOM vector-based parallel training and

examine the data level parallelisms achievable using vectorized single instruction

with multiple data (SIMD) registers and discuss the limitations. Under Section 2.7,

we included the study of the performance of our parallel vectorized training imple-

mentation by comparing it to various CPU and GPU SOMs variants. Finally, in

Section 2.8, we conclude our discussion with a summary of the observations and

some future research ideas under consideration.

1.3 The SOM and VSOM Algorithms

The origins of the self-organizing maps model can be traced back to the Vector

Quantization (VQ) method [1]. The VQ is a signal-approximation algorithm that

approximates a finite “codebook” of vectors mi ∈ Rn, i = 1, 2, ..., k to the distri-

bution of the input data vector x ∈ Rn. In the SOM context, the approximated

codebook allows us to categorize the nodes and form an “elastic network,” which

becomes a meaningful, coordinated map or grid system.

From a computational perspective, the SOM can be described as a mapping

of high dimensional input data onto a low dimensional neural network projected

as a 2D or three-dimensional (3D) constrained topological map [12]. The mapping

is accomplished by assuming that the input data set is a real vector such as xk =

[ξ1, ξ2, ..., ξn]
T ∈ Rn. The SOM neuronal map can be defined as a model containing

5

the parametric real vectormi = [ui1, ui2, ..., uin]
T ∈ Rn associated with the neurons’

weights. If we consider the distance between the input vector xk and the neuron

vector mi then we can establish an initial minimum distance relation between

the input and the neurons by calculating the Euclidean distances. Then, these

distances are used to identify the best matching unit (BMU) index with equation

(14).

c =i (||mi − xk||2) (1)

To define the SOM in terms of matrix and vector operations it is assumed

that the map’s neurons are stored in a n×d matrix M where each row i represents

the neuron mi with d components,

M[i,] = mi = (m1, . . . ,md)i, (2)

with i = 1, . . . , n. The training data x consists of a set D= {x1, . . . ,xl}. The set

can be defined as a l × d matrix where each row k represents the training vector

xk with d components,

D[k,] = xk = (x1, . . . , xd)k, (3)

with k = 1, . . . , l.

Essential details to consider include (1) the dimensionality d for the input,

and (2) the neuron vectors are required to be the same size for well-defined matrix

operations.

1.3.1 The SOM and VSOM Competitive Step

In the competitive step, we find the BMU for a particular training instance

xk. In the classic SOM we use an iterative process to find the BMU using 1. Here

the i = 1, 2, ..., n represents the index of the neurons in the map and mi represents

6

Figure 1: IRIS 15x10 small SOM and IRIS 100x100 large SOM, neuronal heatmaps
patterns with different resolutions.

the neuron in index i. The argmin is a function that returns the minimum value

and c contains the index of the BMU.

In the VSOM context this step requires us to calculate the Euclidean distance

as a set of vector and matrix operations. These operations find the c index asso-

ciated with the neuron with the minimum distance to the training instance. The

BMU c index corresponds to the neuron in the map with the highest resemblance

to the particular xk selected for training during the epoch.

The first step to calculate the BMU requires us to compute a matrix X to hold

a randomly selected training vector. The matrix X in equation (4) is defined with

a component sizes of n × d, where each row is holding the current epoch training

vector xk = (x1, x2, . . . , xd)k, which is randomly selected from matrix D,

X = 1n ⊗ xk. (4)

Here, the symbol ⊗ represents the outer product and 1n is a column vector defined

as,

1n = (1, 1, . . . , 1︸ ︷︷ ︸
n

)T. (5)

Since 1n is a column vector and xk is a row vector the operation in (4) is well

defined. After populating the instance matrix X with the duplicated xk values,

7

equations (6), (7) and (8) are used to compute the square of the Euclidean distances

between all the map neurons and the selected input vector,

∆ = M−X (6)

Π = ∆ ◦∆ (7)

s = Π× 1d (8)

In equation (6) we calculate the difference between the matrices with an element-

by-element matrix subtraction. In equation (7) we use the Hadamard product to

allow us to calculate the Π matrix, in this context ◦ represents the element-by-

element matrix product and X, M, ∆ and Π are all n× d matrices.

Lastly, in equation (8) we use a ‘row sum’ matrix reduction to compute the

vector s of size n. Here, 1d is a column vector similar to (5) with the dimensionality

defined by the value of d.

1.3.2 The SOM and VSOM Update Step

In the classic stochastic SOM, after completing the BMU calculations, the

updates to the neuronal weights are accomplished using the training instance xk

to influence the best matching neuron and its surrounding neighborhood.

mi ←mi − η(mi − xk)h(c, i) (9)

The weights update step in equation (9), affects every neuron inside the neigh-

borhood radius of influence. Here, the learning rate η serves as a scaling factor

between 0 and 1. The h(c, i) acts as the loss function , where i = 0, 1, ... , n and

it can be defined as,

h(c, i) =

{
1 if i ∈ Γ(c),
0 otherwise,

(10)

8

where Γ(c) is the neighborhood of the best matching neuron mc with c ∈ Γ(c). In

the classic SOM, the learning factor and the loss function both decreased mono-

tonically over time [1].

In the VSOM, the update step for all the neurons in the map is accomplished

with matrix operations and is defined as,

M←M− η∆ ◦ Γc. (11)

Here, η is the learning rate, ∆ contains the calculations of the difference between

the neurons and the selected training instance as computed in (6), and the symbol

◦ represents the Hadamard product. Similarly to the SOM, in the VSOM, the

learning rate η is linearly reduced as epochs increase.

However, our experimental results demonstrate that a constant learning rate

η generates higher quality convergence indexes in large map instances. Initially,

the update rule for each best matching neuron has a very large radius of influence

and includes all the neurons on the map. After multiple training epochs, the

neighborhood radius around the BMU gradually shrinks to the point that the field

of influence only includes the best matching neuron mc as shown in (12).

Γ(c)|t≫0 = {c}. (12)

The competitive and the update steps are computed during each epoch using

the randomly selected training instances until some convergence criterion is ful-

filled. After reaching a maximum convergence, every neuron will be assigned to an

specific data point forming clusters in the grid and preserving the neighborhood

topology as shown in Figure 2.

Algorithm 1 and 2 summarizes the matrix and vector operations required for

the parallel Par-VSOM training. For a more detailed explanation of the SOM and

VSOM algorithms, see reference [5].

9

Figure 2: SOM preserving the neighborhood topology in 3D space [12].

1.4 Related Work

In this section, we look at prior work related to parallel SOM algorithms and

applications to pattern recognition. Recent parallel self-organizing maps research

has demonstrated promising improvements using various parallel methods. Some

of the methodology mentioned in current scientific publications on this topic in-

clude: combining data and network partitioning techniques [10, 13], exploiting

cache effects [14], using map-reduce programming paradigm [?, 15, 16], replac-

ing the SOM iterative construct with vector and matrix operations [5], and using

various types of accelerated architectures for parallelism [17, 18, 11, 19, 20]. In

addition, recent publications demonstrate how to utilize SOM as a pattern recog-

nition tool [21, 22, 23]. In general, recent research publications share similars goals

such as: finding new applications, improving optimal performance and increasing

speed-up using different SOM approaches.

1.4.1 SOM Parallel Hybrid Methods

The combination of data and network partitioned parallel methods develop by

Richarson et al. [10] splits up the map to compute the best matching calculation

and nodes update on separate threads. This hybrid methodology also divides the

data amongst individual threads for data partition parallelism. As part of their

10

research findings, they concluded that parallelizing the classic SOM algorithm

using such techniques in a GPU can save computation time and increase the speed-

up by nearly 15X in maps with 10,000 points and 5 dimensions. A similar method

was proposed by Silva et al. [13], achieving a performance increases of 1.27X

training large maps on a small HPC cluster.

1.4.2 SOM Vectorization

The VSOM [5] by Hamel replaced all the iterative constructs of the standard

stochastic SOM algorithm with vector and matrices operations. The VSOM im-

plementation resulted in a performance increase of up to 60X faster after running

10000 iterations in a 25 X 20 map. Since the VSOM seems to be offering the high-

est speed-up increase of all the current SOM research publications, our research

is focus on the parallelization of the VSOM algorithm and its implementation in

hardware accelerators.

1.4.3 SOM in Multiple Parallel Architectures

Among the SOM parallel approaches previously discussed, no too many offer

an available open source repository to validate the research findings or continue

with further investigations. In this paper, we decided to compare our proposed

parallel implementation with some of the widely available parallel SOM projects

packages. As part of the GPU comparisons we utilize, Quicksom [8] which offers

a parallel GPU Batch-SOM algorithm implemented using the Python PyTorch

framework and speed-ups results showed at least a 20 speed-up over the CPU

version using bioinformatics datasets [7]. In addition, we also included a compari-

son with XpySom [6] a parallel Batch-SOM variant implemented using the Google

Tensorflow 2.0 framework and Python Numpy library. The XpySom package is

based on the Minisom[24], a non-parallel, minimalistic and Numpy based widely

11

know implementation of the SOM. The XpySom research paper [19] indicates their

parallel variants outperforms the popular SOM GPU package Somoclu by two and

three orders of magnitude.

1.5 Par-VSOM: Parallel Vectorized SOM
1.5.1 Hardware For Parallel Vectorization

Our novel parallel implementation is based on the VSOM algorithm proposed

by Hamel [5]. On the VSOM, the stochastic SOM training is redefined to execute

as a set of vector and matrix operations. Since all the matrix data elements are

independent of each other, they can be executed as coarse-grained “embarrasingly

parallel” tasks to exploit multiple hardware threads (or cores) available in the

devices [25]. In the VSOM context, the vectorization of the calculations can be

implemented as vector instructions, which are also known as SIMD instructions

and are a form of Data-Level Parallelism. These vector instructions apply the same

operation over multiple data elements (like integers and floating-point values) con-

currently, given that these items are stored contiguously in vector/SIMD registers

[26]. In modern Intel and AMD CPU architectures, these vector instructions are

known as Advance Vector Extensions (AVX), AVX2 and AVX-512 instruction sets.

In contrast, the GPUs with their substantial amount of nodes allows for the

creation of thousands of threads to perform vector calculations simultaneously.

Furthermore, the current NVIDIA GPUs can access there memory much faster

when accessing adjacent data concurrently. This is optimized when groups of 32

GPU threads or warps do the request simultaneously, causing “memory coalescing”

[27].

1.5.2 Par-VSOM Algorithm

In the classic SOM with iterative operations, the operations per column are

solved sequentially. This serial dependency results in high overhead and additional

12

Figure 3: The time comparison of ∆ calculation during the competitive step for
SOM, VSOM, and PAR-VSOM demonstrate modern architecture advances in vec-
torization capability increases the primitive operations’ overall speed-up perfor-
mance.

latency during every training epoch. Conversely, the VSOM vector and matrix

operations are vectorized by the compiler, and they are executed in the CPU

as vector operations. To illustrate, in a data set with 32 instances, the VSOM

using vectorized operations will need to execute a total of four “minus” operations

to compute a ∆ matrix entirely. Using the VSOM vectorization, the ∆ matrix

“minus” operation can be completed with a speed-up increase of 4X compared to

the SOM, as illustrated in Figure 3.

In the Par-VSOM, the vector and matrix operations of the original VSOM are

replaced with parallel computational kernels executing in hardware accelerators

architecture. The parallel kernels manipulate the matrices columns in a unified

vector Vu as shown in equation (13). In the kernel, the matrices are expressed

as tuples of column vectors and encapsulated into one unifying vector. Based on

13

the data of our example in Figure 3, the unifying vector technique will result in

executing the 32 elements operation in one single vectorized operation, providing

a performance increase of 128x.

Vu[i ∗ n] = (t1, . . . , tn)1 ∪ (t1, . . . , tn)2 . . . ∪ (t1, . . . , tn)i (13)

In the unifying vector equation (13), we have shown how the matrices can be

express in terms of tuples. In the Par-SOM algorithm (1) and (2), we are assuming

all the matrices of the VSOM are implemented as a data structure consisting of

multiple tuples (t1, t2, ..., tn) where each column is represented by the tuple (tn)i

with i representing the dimensionality of the matrix and n the number of instances.

This technique allows the data-level parallelism to occur by executing all the matrix

operations as optimized vector operations inside the Φ kernels as presented in

algorithm 1 and 2.

In our GPU implementation, we decided to use CUDA Thrust. Considering

that the Par-VSOM is a parallel and vectorized implementation of the VSOM

algorithm, the Thrust template is an ideal candidate due to the vast number of

vector functions available. In addition, Thrust manages all the CUDA kernel

initialization, memory transfers and allocation in the background, and provides

highly optimized libraries for vector operations [28].

Since most of the VSOM algorithm consists of matrix operations, we utilized

Thrust specialized transformation and reduction functions to process the matrices

as vectors. In the case of a matrix with three columns, storing 3d points as an array

of float3 in CUDA is generally a bad idea, since array accesses are not properly

coalesced [28]. To address this memory access issue, the number of rows n was

used as a delimiter to identify the beginning and the end of each column in the

unifying vector V u. The column-wise encapsulation of the matrix transforms the

14

Algorithm 1 The Par-VSOM training algorithm.

1: Given:
2: D ← {training instances, a l x d matrix}
3: M ← {neurons, a n x d vector of tuples}
4: η ← {learning rate 0 < η < 1}
5: Γ(c)← {neighborhood function for some neuron c}
6: minIndex(s) ← {func, returns location of min. val in s}
7: Φ← {Vectorized kernel operation, with all matrices
8: columns unified as tuples in a single column vector.}

9: Repeat :
10: /***Select a matrix training instance as vector
11: for some k = 1, ..., l and f = 1, ..., d : ***/
12:

13: xk ← D[k][1] ∪D[k][2]... ∪D[k][f]
14:

15: /***Find the winning neuron using vectorized kernels ***/
16: X← Φx(1

n ⊗ xk)
17: ∆← Φ∆(M−X)
18: Π← ΦΠ(∆ ◦∆)
19: /***Sum of vector subsections (rowsum) ***/
20: s← Φs(Π1...(n∗1) + Π(n∗1)...(n∗2) +
21: ... Π(n∗(d−1)...(n∗d))
22: c = minIndex(s)
23:

24: /***Update neighborhood with vector operations ***/
25: Γc ← ΦΓ(Γ(c))
26: Mnew ← ΦMnew(Mcurrent − η∆ ◦ Γc)
27: done
28: return Mnew

three-dimensional columns in to one V u vector. This allows coalesced memory

access and faster operation execution.

One of the important differences between the original VSOM algorithm and

the Par-VSOM algorithm , is the data structure manipulation during the selection

of the D matrix random training instance algorithm 1 (line 13). Here, the training

computation transforms the selection into an Xk vector that includes all the matrix

D columns and allows us to find the BMU using vector operations. To be able to

use the optimized “minIndex(s)” function in line 22, we reduced the Π vector with

15

Algorithm 2 The Par-VSOM Neighborhood Function Γ.

1: given:
2: c← {index of winning neuron}
3: n← {the number of neurons on the map}
4: nsize← {neighborhood radius}
5: P← {an n× 2 vector with pi = P[i,] = (xi, yi)}
6: 1n ← {constant column vector with value 1}
7: 0n ← {constant column vector with value 0}
8: Φ← Vectorized kernel operation, with all matrices
9: columns unified as tuples in a single column vector.

10: x← { x values in vector first section: 1,...,(n2 − 1)}
11: y← { y values in vector second section: n

2 , ..., (n× 2)}
12:

13: Pc ← Φpc(P [c,])
14: C← ΦC(1

n ⊗ pc)
15: ∆← Φ∆(P−C)
16: Π← ΦΠ(∆ ◦∆)
17: /***Perform rowsum with vector subsections
18: d← Φd(Πx+Πy)
19: hood← Φhood(ifelse(d < (nsize× 1.5)2,1n,0n))
20: return hood

length n ∗ d into a vector of length n, using operations equivalent to a rowsum

across d dimensions in line 20.

Similarly, the Par-VSOM neighborhood Function Γ in algorithm 2, emulates

the rowsum operations of algorithm 1 in line 18 by utilizing the vector elements

representing the x and y columns accordingly and returns one vector that includes

the distances of the neurons in the grid. In lines 19 to 20 using the computed

distances, the vector neighborhood determination is performed and return a hood

vector that activates the neurons considered to be part of the neighborhood by

flipping to “1” their corresponding neurons index.

1.5.3 Limitations
Large Computational Workloads

The Par-VSOM is recommended for clustering problems requiring high com-

putational workloads. To obtain our experimental results, we tested with multiple

16

datasets and various map sizes. The results demonstrated the Par-VSOM is not

suitable for small maps, low-dimensional datasets, or minimal computational work-

loads. Here, we assume the users will have a GPU hardware accelerator available

as part of their setup.

In general, Big data and other extensive datasets analysis requires generating

large neuronal maps as part of the pattern analysis and clusters visualizations. The

GPUs have become one of the default tools to process high complexity problems

and are easily accessible in cloud environments, but we are aware that not everyone

may have access to one.

1.6 Experiments
1.6.1 Hardware setup

All the Par-VSOM, Xpysom and Quicksom parallel experiments were per-

formed using the Amazon AWS cloud service instances with Linux and Deep

Learning Amazon Machine Images (AMI). The sequential CPU experimental set-

ting included an Intel I7-7700K running at 4.20 GHz/ 4.50GHz turbo with four

cores and capable of executing eight threads. The GPU tests were performed in

an AWS P3.2xlarge with 18 virtual Intel Xeon E5 2686 CPU operating at 2.7

GHz/ 3.0 GHz turbo and an NVIDIA Tesla V100. The Tesla V100 contains 5120

NVIDIA Cuda cores with 16 Gb of HBM2 memory. The Tesla V100 memory clock

setting was 877 Mhz with memory graphics clocked at 1530 Mhz.

1.6.2 Par-VSOM setup and Hyper-Parameters

The experimental setup utilized the default values of the SOM and VSOM

Popsom [29]. For the Quicksom[7] and Xpysom[19] BatchSOM packages, we main-

tained the learning rate constant to obtain higher convergence indexes and tune

the hyper-parameters as defined in Table 4.

17

Table 1: Par-VSOM Hyper-Parameters.

Hyper-Parameters **Values**

Training Iterations 1× 100 ... 1× 105

Learning Rate η 0.7
Neighborhood Radius Bubble, Gaussian(for Quicksom)

Map sizes 15x10, 150x100, 200x150
Datasets Iris, Epil, WDBC

18

T
ab

le
2:

T
im

es
an

d
S
p
ee
d
-u
p
ga
in
s
of

th
e
P
ar
-V

S
O
M

fo
r
d
iff
er
en
t
tr
ai
n
in
g
al
go
ri
th
m
s
u
si
n
g
a
20
0
×
15
0
m
ap

.

it
er

T
im

e
T
im

e
T
im

e
T
im

e
T
im

e
S
p
ee
d
-u
p

S
p
ee
d
-u
p

S
p
ee
d
-u
p

S
p
ee
d
-u
p

S
O
M
(s
)

V
S
O
M
(s
)

P
-V

S
O
M
(s
)

X
p
y
so
m
(s
)

Q
u
ic
k
so
m
(s
)

P
a
r-
V
S
O
M
/

P
ar
-V

S
O
M
/

P
a
r-
V
S
O
M
/

P
a
r-
V
S
O
M
/

C
P
U

C
P
U

G
P
U

C
P
U
-G

P
U

C
P
U
-G

P
U

S
O
M

V
S
O
M

X
p
y
so
m

Q
u
ic
k
so
m

R
\C

R
\F

or
tr
an

C
u
d
a
T
h
ru
st

T
en

so
rF

lo
w

P
y
T
or
ch

*
**

Ir
is

D
=
4*

**
1

1.
14

8
0.
03

5
0.
02

7
0
.3
01

0.
25

7
4
2.
5

1
.3

1
1
.1

9
.5

10
1.
35

0
0.
04

6
0.
0
29

0.
3
19

0
.2
57

46
.6

1
.6

11
.0

8
.9

10
0

2.
36

2
0.
06

7
0.
04

9
0
.4
14

0.
43

4
4
8.
2

1
.4

8
.4

8
.9

10
00

13
.4
47

0.
32

4
0.
2
35

1.
4
08

2.
32

57
.2

1
.4

6
.0

9
.9

10
00

0
12

4.
01

1
2.
75

6
1.
92

5
1
0.
74

2
21

.4
5
6

6
4.
4

1
.4

5
.6

1
1
.1

10
00

00
12

28
.8
11

26
.2
10

18
.2
75

11
0.
9
00

21
2
.7
91

67
.2

1
.4

6
.1

1
1
.6

**
*
E
p
il
D
=
8
**

*
1

1.
83

1
0.
05

3
0.
04

6
0
.3
00

0.
26

2
3
9.
8

1
.2

6
.5

5
.7

10
1.
94

9
0.
05

8
0.
0
49

0.
3
13

0
.2
59

39
.8

1
.2

6
.9

5
.3

10
0

3.
12

5
0.
10

8
0.
07

2
0
.4
12

0.
64

3
4
3.
4

1
.5

5
.7

8
.9

10
00

14
.8
54

0.
55

4
0.
2
94

1.
4
11

4
.6
67

50
.5

1
.9

4
.8

1
5
.8

10
00

0
13

2.
19

3
4.
92

8
2.
57

7
1
0.
66

0
46

.7
5
5

5
1.
3

1
.9

4
.1

1
8
.1

10
00

00
13

06
.7
93

47
.5
60

22
.5
35

11
5.
3
72

46
2
.9
08

58
.0

2
.1

5
.1

2
0
.5

*
**

W
D
B
C

D
=
3
0*

*
*

1
0.
96

6
0.
15

2
0.
12

5
0
.3
03

0.
26

2
7.
7

1
.2

2
.4

2
.0

10
1.
16

7
0.
16

5
0.
1
30

0.
3
19

0
.2
56

9.
0

1
.3

2
.5

2
.0

10
0

3.
16

1
0.
34

2
0.
17

4
0
.4
16

0.
76

2
1
8.
2

2
.0

2
.5

4
.4

10
00

23
.2
36

2.
07

6
0.
6
01

1.
3
87

6
.3
86

38
.7

3
.5

2
.3

1
0
.6

10
00

0
22

2.
03

4
19

.1
05

4.
71

2
1
1.
38

9
63

.8
7
1

4
7.
1

4
.1

2
.4

1
3
.6

10
00

00
22

24
.1
34

18
8.
08

0
46

.1
14

11
1.
2
23

63
4.
6
87

48
.2

4
.1

2
.4

1
3
.8

19

T
ab

le
3:

Q
u
al
it
y
of

m
ap

s
p
ro
d
u
ce
d
b
y
th
e
d
iff
er
en
t
tr
ai
n
in
g
al
go
ri
th
m
s
(S
O
M
=
C
la
ss
ic
S
O
M
,
V
S
M
=
V
S
O
M
,
P
-V

=
P
ar
-V

S
O
M
,

X
-P
=
X
p
y
so
m
,
Q
-S
=
Q
u
ic
k
so
m

an
d
D
=
D
im

en
si
on

s)
.

it
er

1
5x

1
0

15
0x

10
0

20
0x

1
5
0

1
0x

S
O
M

V
S
M

P
-V

X
-P

Q
-S

S
O
M

V
S
M

P
-V

X
-P

Q
-S

S
O
M

V
S
M

P
-V

X
-P

Q
-S

**
*
Ir
is
,
D
=
4*
**

1
|0
.5
0

0.
1
5

0
.0
9

0
.5
0

0
.4
5|

|0
.4
1

0.
00

0.
00

0.
50

0.
12
|
|0
.4
0

0.
00

0
.0
0

0
.5
0

0
.0
8|

2
|0
.4
3

0.
5
3

0
.4
8

0
.3
7

0
.4
9|

|0
.0
2

0.
45

0.
49

0.
50

0.
50
|
|0
.3
4

0.
45

0
.4
9

0
.4
7

0
.5
0|

3
|0
.9
2

0.
9
5

0
.9
3

0
.8
8

0
.4
8|

|0
.4
2

0.
79

0.
49

0.
40

0.
50
|
|0
.1
2

0.
85

0
.7
7

0
.3
2

0
.5
0|

4
|0
.9
3

0.
9
1

0
.9
1

0
.9
2

0
.3
7|

|0
.9
2

0.
91

0.
96

0.
28

0.
48
|
|0
.9
2

0.
93

0
.9
1

0
.2
9

0
.4
8|

5
|0
.9
5

0.
9
4

0
.9
4

0
.8
7

0
.2
7|

|0
.9
6

0.
99

0.
95

0.
26

0.
41
|
|0
.9
0

0.
99

0
.9
7

0
.3
2

0
.3
7|

**
*
E
p
il
,
D
=
8*
**

1
|0
.0
3

0.
1
4

0
.1
5

0
.7
2

0
.4
0|

|0
.1
2

0.
00

0.
00

0.
46

0.
06
|
|0
.1
2

0.
00

0
.0

0
.4
6

0
.1
3|

2
|0
.7
0

0.
5
6

0
.4
0

0
.6
0

0
.4
8|

|0
.0
3

0.
45

0.
45

0.
49

0.
50
|
|0
.0
7

0.
38

0
.4
0

0
.5
0

0
.5
0|

3
|0
.9
2

0.
9
2

0
.9
4

0
.8
1

0
.8
0|

|0
.3
1

0.
68

0.
53

0.
36

0.
50
|
|0
.2
7

0.
40

0
.6
4

0
.4
1

0
.5
0|

4
|0
.9
4

0.
9
2

0
.9
3

0
.6
5

0
.7
9|

|0
.4
5

0.
48

0.
68

0.
29

0.
86
|
|0
.8
5

0.
60

0
.5
6

0
.4
0

0
.5
6|

5
|0
.9
6

0.
9
1

0
.9
3

0
.9
5

0
.7
8|

|0
.8
5

0.
97

0.
96

0.
40

0.
84
|
|0
.9
1

0.
98

0
.9
3

0
.3
8

0
.5
4|

**
*
W

D
B
C
,
D
=
30
**
*

1
|0
.3
1

0.
1
4

0
.1
1

0
.6
8

0
.3
7|

|0
.0
0

0.
00

0.
00

0.
62

0.
13
|
|0
.0
7

0.
00

0
.0
0

0
.5
0

0
.0
0|

2
|0
.5
0

0.
5
3

0
.5
0

0
.6
7

0
.6
6|

|0
.0
8

0.
51

0.
45

0.
53

0.
55
|
|0
.2
7

0.
55

0
.4
4

0
.5
0

0
.5
0|

3
|0
.9
0

0.
9
2

0
.8
8

0
.5
0

0
.8
0|

|0
.3
0

0.
48

0.
64

0.
40

0.
66
|
|0
.4
0

0.
60

0
.6
3

0
.4
0

0
.5
0|

4
|0
.9
2

0.
9
0

0
.9
0

0
.6
9

0
.6
7|

|0
.4
7

0.
81

0.
80

0.
43

0.
89
|
|0
.5
2

0.
85

0
.8
5

0
.4
4

0
.5
0|

5
|0
.9
3

0.
9
2

0
.9
3

0
.6
8

0
.6
8|

|0
.8
8

0.
90

0.
91

0.
37

0.
76
|
|0
.8
1

0.
97

0
.9
8

0
.3
7

0
.5
0|

20

As part of our tests, we compared the performance and the quality of the

maps generated by our parallel Par-VSOM with two CPU SOM and two GPU

SOM variants. The quality of the maps is based on the convergence index as

define in [30]. The CPU single-node tests used the SOM and the VSOM algorithms

included as part of the R language Popsom package with C bindings applications.

In contrast, the parallel comparisons were done using the two GPU-based SOM

packages; Quicksom with Python 3, Pytorch 1.4 and Xpysom using Tensorflow 2.0

in their implementation.

For our experiments we used three real-world datasets to train our algorithms:

1. Iris [31] - a dataset with 150 instances and 4 attributes that describes three

different species of Iris.

2. Epil [32] - a dataset on two-week seizure counts for 59 epileptics. The data

consists of 236 observations with 8 attributes. The dataset has two classes -

placebo and progabide, a drug for epilepsy treatment.

3. Wisconsin Breast Cancer Dataset (wdbc) [33] - a dataset with 30 features

and 569 instances related to breast cancer in Wisconsin, for our experiment

we generated a random normalized sample of 100 instances. The dataset has

two classes: malignant and benign.

These datasets are purposely selected to test the algorithm performance by

increasing the dimensionality complexity of the input data. To measure the Par-

VSOM performance, we ran each timing test three times and took the average

time over these runs. The times reported are the time required for the CPU to

perform the calculations and it is given in CPU seconds. Similarly, the quality

tests were done by averaging three quality measurements using the convergence

index (CI) explain in detail in [30] and included as part of the R Popsom Package

21

Figure 4: Iris Training Time

[29]. The CI provides a 0 to 1 numbering scale to measure the maps’ quality, with

0 represents the lowest quality and 1 the highest quality. Furthermore, three map

sizes were considered for these experiments, 15×10 (small), 150×100 (medium),

200×150 (large), to see how the different implementations perform on different

map sizes. In addition, we trained with various number of training iterations (in

powers of 10) to discover what type of effect a change of training duration had on

the implementations.

1.6.3 Results

In the large map environment results included in Table 2, we see the recurrent

speed-up gains of the algorithm with larger maps. The large size of data buffers

require for the calculations, the CPU cache memory size limitations and DDR4

lower clock rate does present an performance impact for the SOM and VSOM CPU

variants. The large workload and substantial computational resources available

in the GPU, allows the Par-VSOM performance scale further. Here, the Par-

VSOM achieves a speed-up of 67 in comparison to the SOM. The table results

22

Figure 5: Epil Training Time

demonstrates, the Par-VSOM achieves superior speed-up in all the three datasets

comparisons, surpassing the speed rates of all the other algorithm implementations.

Due to the parallel BatchSOM algorithm used by the Xpysom and Quicksom, the

speed-up patterns are influenced by the dimensionality and dataset instance size

and do not follow a uniform pattern like the SOM speed-ups. In this large map

environment, the Par-VSOM surpassed the SOM with a 67, the VSOM with a 4.1,

Xpysom with 6.1 and the Quicksom by 20 speed-up increase.

The training time charts included in Figure 1.6.3, capture a generalize rep-

resentation of the overall results. The Par-VSOM offers speedup performance

increases for the three datasets in medium and larger size maps instances. The ob-

tained results allows us to establish a direct relation between large neuronal maps

and better achievable times using the Par-VSOM. That is, with a higher number

of neurons an scalable speed up can be achieved.

The Table 7 illustrates the baseline quality of original algorithms using our

three datasets. The results present us with a recurring behaviour in most of the

maps, their is a pattern to decrease the convergence quality when the datasets

23

Figure 6: WDBC Training Time

dimensionality increases. However, we also identified as the size of the maps in-

creases, there is tendency for the vectorized variants (VSOM and Par-VSOM)

to generate higher quality maps. Furthermore, our testing demonstrates Xpysom

and Quicksom SOM parallel versions can not reach a high convergence index when

larger map sizes are used.

Figure 7: Iris Convergence Index (Map Quality)

24

Figure 8: Epil Convergence Index (Map Quality)

Figure 9: WDBC Convergence Index (Map Quality)

In terms of the quality of the maps, Figure 7 - 9 captures all the algorithm

convergence indexes for the three datasets. As illustrated, the Par-VSOM main-

tains relatively the same quality as the original SOM and the VSOM variants in all

the maps. In contrast, the parallel GPU SOM variants (Xpysom and Quicksom)

only obtained good quality indexes with smaller maps (15 x 10). In both of these

25

parallel packages, the convergence index quality starts decreasing drastically after

trying to organized medium and larger SOM maps.

1.7 Conclusions

This work introduced the Par-VSOM, a highly parallel, vectorized and matrix-

based implementation of stochastic training for self-organizing maps. The novel

implementation presented here provides substantial performance increases over Ko-

honen’s iterative SOM algorithm (up to 67 times faster), the CPU based vectorized

VSOM (up to 4 times faster), the GPU Xpysom (up to 6.1 times) and Quicksom’s

GPU (up to 20 times) in large maps environments. The performance gains fol-

low a direct relation with the increment of the map sizes, as shown in Figure 4 -

6. Furthermore, the results obtained by increasing the dimensionality and maps

sizes demonstrated the Par-VSOM provides a scalable speed-up performance when

the neuronal map size increases. In terms of the quality of the maps, the maps

produced by Par-VSOM approximates the high quality values generated by the

VSOM iterative algorithms and original Kohonen’s SOM algorithm.

In the proposed design, the Par-VSOM is a multi-threaded algorithm running

in a GPU and therefore is an adequate replacement for iterative stochastic training

of SOM and parallel SOM variants. We are currently investigating how the Par-

VSOM can be implemented in an FPGA and what kind of performance increase

we can expect from this type of hardware architecture. Based on our results, the

Par-VSOM can be viewed as an alternative to parallel SOM and a new alternative

for other parallel algorithms for clustering and pattern recognition. In summary,

since the training algorithms results demonstrate the produce maps are roughly the

same quality, the Par-VSOM provides a parallel and high-performance alternative

to SOM algorithms.

26

List of References

[1] T. Kohonen, Self-organizing maps. Springer Berlin, 2001.

[2] B. Barney, Introduction to Parallel Computing. Lawrence Livermore National
Laboratory, 2018.

[3] J. Li, B. M. Chen, and G. H. Lee, “So-net: Self-organizing network for point
cloud analysis,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 9397–9406.

[4] M. A. C. Ramos, B. C. C. Leme, L. F. de Almeida, F. C. P. Bizarria, and
J. W. P. Bizarria, “Clustering wear particle using computer vision and self-
organizing maps,” in 2017 17th International Conference on Control, Automa-
tion and Systems (ICCAS), 2017, pp. 4–8.

[5] L. Hamel, VSOM: Efficient, Stochastic Self-organizing Map Training: Pro-
ceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2, 01
2019, pp. 805–821.

[6] G. L. T. C. R. Mancini, A. Rotacco, “Xpysom,” https://github.com/
Manciukic/xpysom, 2020.

[7] V. Mallet, M. Nilges, and G. Bouvier, “quicksom: Self-organizing maps
on gpus for clustering of molecular dynamics trajectories,” Bioinformatics,
vol. 37, no. 14, pp. 2064–2065, 2021.

[8] V. Mallet, M. Nilges, and G. Bouvier, “Quicksom,” https://github.com/
bougui505/quicksom, 2021.

[9] A. Morán, J. L. Rosselló, M. Roca, and V. Canals, “Soc kohonen maps based
on stochastic computing,” in 2020 International Joint Conference on Neural
Networks (IJCNN), 2020, pp. 1–7.

[10] T. Richardson and E. Winer, “Extending parallelization of the self-organizing
map by combining data and network partitioned methods,” Advances in En-
gineering Software, vol. 88, 10 2015.

[11] M. Abadi, S. Jovanovic, K. Ben Khalifa, S. Weber, and M. Bedoui, “A scalable
flexible som noc-based hardware architecture,” 01 2016.

[12] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learn-
ing, ser. Springer Series in Statistics. New York, NY, USA: Springer New
York Inc., 2001.

[13] B. Silva and N. Marques, “A hybrid parallel som algorithm for large maps in
data-mining,” New Trends in Artificial Intelligence, 2007.

https://github.com/Manciukic/xpysom
https://github.com/Manciukic/xpysom
https://github.com/bougui505/quicksom
https://github.com/bougui505/quicksom

27

[14] P. T. Rauber, Andreas and D. Merkl, “parsom: a parallel implementation of
the self-organizing map exploiting cache efects: making the som fit for interac-
tive high-performance data analysis,” in Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks. IJCNN 2000, vol. 6, 2000.

[15] S.-J. Sul and A. Tovchigrechko, “Parallelizing blast and som algorithms with
mapreduce-mpi library,” in 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and Phd Forum. IEEE, 2011, pp.
481–489.

[16] E. S. Schabauer, Hannes and T. Weishaupl, “Solving very large traveling
salesman problems by som parallelization on cluster architectures,” in Sixth
Internatioanl Conference on Parallel and Distributed Computer Applications
and Technologies PDCAT’ 05, 2005.

[17] G. Davidson, “A parallel implementation of the self organising map using
opencl,” University of Glasgow, 2015.

[18] F. C. Moraes, S. C. Botelho, N. Duarte Filho, and J. F. O. Gaya, “Parallel
high dimensional self organizing maps using cuda,” in 2012 Brazilian Robotics
Symposium and Latin American Robotics Symposium. IEEE, 2012, pp. 302–
306.

[19] R. Mancini, A. Ritacco, G. Lanciano, and T. Cucinotta, “Xpysom: high-
performance self-organizing maps,” in 2020 IEEE 32nd International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-
PAD). IEEE, 2020, pp. 209–216.

[20] P. Wittek, S. C. Gao, I. S. Lim, and L. Zhao, “Somoclu: An efficient parallel
library for self-organizing maps,” arXiv preprint arXiv:1305.1422, 2013.

[21] K.-H. Kim, S.-T. Yun, S. Yu, B.-Y. Choi, M.-J. Kim, and K.-J.
Lee, “Geochemical pattern recognitions of deep thermal groundwater in
south korea using self-organizing map: Identified pathways of geochemical
reaction and mixing,” Journal of Hydrology, vol. 589, p. 125202,
2020. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0022169420306624

[22] T. Li, G. Sun, C. Yang, K. Liang, S. Ma, and L. Huang, “Using
self-organizing map for coastal water quality classification: Towards a
better understanding of patterns and processes,” Science of The Total
Environment, vol. 628-629, pp. 1446–1459, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0048969718305552

[23] S. Lokesh, P. M. Kumar, M. R. Devi, P. Parthasarathy, and C. Gokulnath,
“An automatic tamil speech recognition system by using bidirectional recur-
rent neural network with self-organizing map,” Neural Computing and Appli-
cations, vol. 31, no. 5, pp. 1521–1531, 2019.

https://www.sciencedirect.com/science/article/pii/S0022169420306624
https://www.sciencedirect.com/science/article/pii/S0022169420306624
https://www.sciencedirect.com/science/article/pii/S0048969718305552

28

[24] G. Vettigli, “Minisom,” https://github.com/JustGlowing/minisom, 2021.

[25] P. Jaaskelainen, “Task parallelism with opencl: A case study.” Journal of
Signal Processing Systems, pp. 33–46, 2019.

[26] L. L. Pilla, “Basics of vectorization for fortran applications,” Research Report,
vol. RR-9147, pp. 1–9, 2018.

[27] N. G. Dickson, K. Karimi, and F. Hamze, “Importance of explicit vectorization
for cpu and gpu software performance,” Journal of Computational
Physics, vol. 230, no. 13, pp. 5383–5398, 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021999111002026

[28] Nvidia.com, “Thrust quick start guide,” https://docs.nvidia.com/cuda/
thrust/index.html#abstract, accessed: 2020-04-30.

[29] L. Hamel, B. Ott, and G. Breard, popsom: Functions for Constructing and
Evaluating Self-Organizing Maps, 2016, r package version 4.1.0. [Online].
Available: https://CRAN.R-project.org/package=popsom

[30] L. Hamel, “Som quality measures: An efficient statistical approach,” in Ad-
vances in Self-Organizing Maps and Learning Vector Quantization. Springer,
2016, pp. 49–59.

[31] R. A. Fisher, “The use of multiple measurements in taxonomic problems,”
Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[32] P. F. Thall and S. C. Vail, “Some covariance models for longitudinal count
data with overdispersion,” Biometrics, pp. 657–671, 1990.

[33] W. N. Street, W. H. Wolberg, and O. L. Mangasarian, “Nuclear feature ex-
traction for breast tumor diagnosis,” in IS&T/SPIE’s Symposium on Elec-
tronic Imaging: Science and Technology. International Society for Optics
and Photonics, 1993, pp. 861–870.

https://github.com/JustGlowing/minisom
https://www.sciencedirect.com/science/article/pii/S0021999111002026
https://docs.nvidia.com/cuda/thrust/index.html#abstract
https://docs.nvidia.com/cuda/thrust/index.html#abstract
https://CRAN.R-project.org/package=popsom

29

MANUSCRIPT 2

High-Level Synthesis Parallelization and Optimization of Vectorized
Self-Organizing Map

by

1Omar X. Rivera Morales, Lutz Hamel submitted to the 18th International

Conference on Data Science (ICDATA’22), Nevada, USA, 2022.

1Omar X. Rivera Morales and Lutz Hamel are with Department of Computer Science
and Statistics, University of Rhode Island, Kingston, RI, 02881, Email {oxriveramorales,
lutzhamel}@uri.edu.

30

2.1 Abstract

The nature of the Self-Organized Maps (SOM) requires a constant improve-

ment of performance to address the increasing complexity of datasets. These de-

mands have led to high-performance algorithms that run in hardware accelerators

such as Graphical Processing Units (GPU) and Field Programmable Gate Array

(FPGA). This work introduces a novel High-Level Synthesis (HLS) FPGA imple-

mentation for the vectorized SOM algorithm. The proposed algorithm is imple-

mented using HLS parallelization and design optimization techniques available on

the Xilinx Alveo FPGA Accelerator Card. This paper introduces the HLS-based

algorithm and discusses the pipelining, unrolling, systolic array matrix reduction,

and memory transformation techniques to improve the VSOM algorithm perfor-

mance. Our HLS-VSOM experimental results show a significant performance in-

crease over SOM CPU and parallel GPU variants.

31

2.2 Introduction

The self-organizing map (SOM) is a neural network designed for unsupervised

machine learning [1]. After clustering the neurons, the generated maps can be

utilized in a diverse range of domains such as atmospheric science, nuclear physics,

medical diagnosis, and other data domains [2]. See reference [1] for a more com-

prehensive literature survey.

This paper demonstrates the performance achievable using various HLS tech-

niques for the VSOM, a highly efficient SOM algorithm published by Hamel [3].

The HLS-VSOM replaces all iterative constructs of the algorithm with a highly

optimized kernel running in an FPGA. The HLS kernel provides substantial per-

formance increases over Kohonen’s SOM iterative algorithm, VSOM, and other

GPU SOM variants.

The FPGA implementation addresses the increasing demands for high-

performance computing and optimization by using various HLS transformations.

The HLS optimization can be categorized into three major classes: Pipelining, Scal-

ing, and Memory. Pipelining transformations allow overlapping the instructions

from the processor through increasing the execution flow. Scaling are transfor-

mations that increase the computational parallelism, and memory transformation

increases the read and write efficiency. In addition, we utilized a systolic array ma-

trix reduction using Digital Signal Processors (DSPs) to accelerate some portions

of the algorithm.

Our experimental results show that the maps produced by the HLS-VSOM

are equivalent in quality to the maps produced by the VSOM and the original

SOM iterative algorithm. The current HLS-VSOM model is parallel and highly

optimized, therefore, well suited as a replacement for other parallel algorithms to

train the self-organizing maps. Since the FPGAs are currently the only hardware

32

accelerators allowing the use of HLS tools, the algorithm HLS transformations are

focused on the context of the FPGA accelerator. The HLS-VSOM implementation

presented here is written in OpenCL with Pragmas directives and compiled with

the Xilinx Vitis Vivado compiler. The Vitis compiler uses a high-level synthesis

to generate traditional hardware design languages like VHDL or Verilog. The

HLS connects the hardware and software developments on a single compilation

environment and enables basic performance portability [4].

The paper is organized as follows: In Section 2.3 starts our discussion with

an overview of the HLS and a brief description of the major stages. Under sec-

tion 2.4, we included an introduction to the VSOM [3] vectorized rules; this is an

implementation of a competitive learning scheme comprised of a competitive step

and an update step with vector and matrix training. The relevant details about

related research work are included in Section 2.6. As part of Section 2.5, we de-

velop the HLS-VSOM training and examine the instruction pipelining, scaling data

level parallelisms, array partitioning, and memory optimization transformations.

Under section 2.7, we included the study of the performance of our parallel vec-

torized training implementation by comparing it to various CPU and GPU SOMs

variants. Finally, in Section 2.8 , we conclude our discussion with a summary of

the observations and some future research ideas under consideration.

2.3 High Level Synthesis

The HLS acceleration serves as an answer to address the complex and error-

prone hardware design process. The HLS has been known to cope with these

losses, obtaining design productivity gains by separating functional system veri-

fication, performed from a time-agnostic high-level language, from timed system

verification, performed after automatically inferring hardware-specific code [5].

Nowadays, the software and hardware communities are embracing the HLS

33

tools. The HLS bridges the gap between hardware and software development

and enables fundamental performance portability implemented in the compilation

system. [4]. Generally, the HLS systems rely on the abstraction and low-level

hardware control provided by C/C++ and OpenCL languages.

Companies like Xilinx with the Vivado/Vitis HLS design suite and Intel FPGA

SDK offer a structured high-level languages solution for people trying to program

configurable hardware, such as FPGAs. However, the HLS approach does not

come with some problems. Robattu in [6] listed some of the significant drawbacks

of using the HLS.

• Imperative high-level programming languages imperative formulations can

not differentiate between iterations over time and iterations over space. This

limitation does not translate appropriately to hardware architecture where

all the events are occurring in parallel.

• The substantial level of parallelization leads to a ”bottleneck” on memory

accesses at the implementation level, which immediately leads to a “bottle-

neck” on memory accesses [7].

These drawbacks can be circumvented by relying upon so-called applicative or

functional languages in which algorithms are described as a (mathematical) com-

position of side-effect free functions [6]. Another solution is to provide a hardware

behavior and software iterations description. The HLS environment allows the

programmer to include “Pragmas” directives with a vast amount of functionality

encapsulating an instruction of the expected system architecture behavior.

The HLS source to hardware stacks process transforms an imperative code

into a hardware design language (HDL) such as Verilog or Vhdl. Here, we provide

a sequential description of the major stages based on Johannes [4]:

34

1. High-level synthesis converts an imperative and procedural source code

description into functional hardware-level description. This generally trans-

lates as converting high level languages with Pragmas directives like C++

or OpenCL into a Hardware Description Language (HDL) such as Verilog or

VHDL.

2. Hardware synthesis creates a logical mapping between the register level

circuits description from the HDL and the physical component available in

the target architectures.

3. Place and Route maps the hardware logical mapping into the physical

components available in the hardware. During this, the system performs

target-specific optimization to minimize between registers and cable length.

As part of the optimization, the system will configure a hardware environ-

ment that increases the best achievable frequency.

4. Bitstream generation creates the bitstream image that will be translated

into the gate array configuration to form the equivalent to a specific circuit.

2.4 Vectorization of Self-Organizing Maps

The origins of the self-organizing maps model can be traced back to the Vector

Quantization (VQ) method [1]. The VQ is a signal-approximation algorithm that

approximates a finite “codebook” of vectors mi ∈ Rn, i = 1, 2, ..., k to the distri-

bution of the input data vector x ∈ Rn. In the SOM context, the approximated

codebook allows us to categorize the nodes and form an “elastic network,” which

becomes a meaningful, coordinated map or grid system.

From a computational perspective, the SOM can be described as a mapping

of high dimensional input data onto a low dimensional neural network projected as

a 2D or three-dimensional (3D) map. The mapping is accomplished by assuming

35

that the input data set is a real vector such as x = [ξ1, ξ2, ..., ξn]
T ∈ Rn. The SOM

neuronal map can be defined as a model containing the parametric real vector

mi = [ui1, ui2, ..., uin]
T ∈ Rn associated with the neurons’ weights. If we consider

the distance between the input vector xk and the neuron vector mi then we can

establish an initial minimum distance relation between the input and the neurons

by calculating the Euclidean distances. Then, these distances are used to identify

the best matching unit (BMU) index with equation (14).

c = argmini(||mi − xk||2) (14)

To define the SOM in terms of matrix and vector operations it is assumed

that the map’s neurons are stored in a n×d matrix M where each row i represents

the neuron mi with d components,

M[i,] = mi = (m1, . . . ,md)i, (15)

with i = 1, . . . , n. The training data x consists of a set D= {x1, . . . ,xl}. The set

can be defined as a l × d matrix where each row k represents the training vector

xk with d components,

D[k,] = xk = (x1, . . . , xd)k, (16)

with k = 1, . . . , l.

Essential details to consider include (1) the dimensionality d for the input,

and (2) the neuron vectors are required to be the same for well-defined matrix

operations.

2.4.1 The SOM and VSOM Competitive Step

In the classic SOM we use an iterative process to find the BMU using 14. Here

the i = 1, 2, ..., n represents the index of the neurons in the map and mi represents

36

the neuron in index i. The argmin is a function that returns the minimum value

and c contains the index of the BMU.

In contrast, in the VSOM competitive step, we find the BMU for a particular

training instance xk calculating the Euclidean distance as a set of vector and matrix

operations. These operations find the c index associated with the neuron with the

minimum distance to the training instance. The BMU c index corresponds to the

neuron in the map with the highest resemblance to the particular xk selected for

training during the epoch.

The first step to calculate the BMU requires us to compute a matrix X to hold

a randomly selected training vector. The matrix X in equation (17) is defined with

a component sizes of n × d, where each row is holding the current epoch training

vector xk = (x1, x2, . . . , xd)k, which is randomly selected from matrix D,

X = 1n ⊗ xk. (17)

Here, the symbol ⊗ represents the outer product and 1n is a column vector defined

as,

1n = (1, 1, . . . , 1︸ ︷︷ ︸
n

)T. (18)

Since 1n is a column vector and xk is a row vector the operation in (17) is well

defined. After populating our epoch training instance matrix X with the duplicated

xk values, equations (19), (20) and (21) are used to compute the square of the

Euclidean distances between the map neurons and the input vector,

∆←M−X (19)

Π←∆ ◦∆ (20)

s← Π× 1d (21)

In equation (19) we calculate the difference between the matrices with an element-

by-element matrix subtraction. In equation (20) we use the Hadamard product to

37

allow us to calculate the Π matrix, in this context ◦ represents the element-by-

element matrix product and X, M, ∆ and Π are all n× d matrices.

Lastly, in equation (21) we use a ‘row sum’ matrix reduction to compute the

vector s of size n. Here, 1d is a column vector similar to (18) with the dimensional-

ity defined by the value of d. In order to find the BMU, we search for the location

of the minimum value in vector s.

2.4.2 The SOM and VSOM Update Step

In the classic stochastic SOM, the update step occurs after completing the

BMU calculations, the updates to the neuronal weights are accomplished using

the training instance xk to influence the best matching neuron and its surrounding

neighborhood.

mi ←mi − η(mi − xk)h(c, i) (22)

The weights update step in equation (22), affects every neuron inside the

neighborhood radius of influence. Here, the learning rate η serves as a scaling

factor between 0 and 1. The h(c, i) acts as the loss function , where i = 0, 1, ... ,

n and it can be defined as,

h(c, i) =

{
1 if i ∈ Γ(c),
0 otherwise,

(23)

where Γ(c) is the neighborhood of the best matching neuron mc with c ∈ Γ(c). In

the SOM, the learning factor and the loss function both decreased monotonically

over time [1].

In the VSOM, the update step also occurs after the BMU calculations but

all the neurons update operations are accomplished with matrix operations and is

defined as,

M←M− η∆ ◦ Γc. (24)

38

Here, η is the learning rate, ∆ contains the calculations of the difference between

the neurons and the selected training instance as computed in (19), and the symbol

◦ represents the Hadamard product. Similarly to the SOM, in the VSOM, the

learning rate η is linearly reduced as epochs increase.

The competitive and the update steps are computed during each epoch us-

ing the randomly selected training instances until some convergence criterion is

fulfilled. After completing multiple learning iterations and updating the neurons

weights, every vector will be assigned or clustered to specific neurons in the grid,

preserving the neighborhood topology.

2.5 High-Level Synthesis VSOM
2.5.1 HLS VSOM Algorithm

In the HLS-VSOM, the vector and matrix operations of the original VSOM

are executed using a High-Level Synthesis kernel executing in custom FPGA ar-

chitecture. The HLS kernel allows us to generate parallel operations and obtain

performance increase gains by manipulating the algorithm behavior within the

FPGA fabric. Algorithm 3 and 4 summarizes the matrix and vector operations

required for the parallel HLS-VSOM training. For a more detailed explanation of

the SOM and VSOM algorithms, see reference [3].

This work proposes a set of HLS transformations that are imperative to gener-

ate an efficient hardware kernel. As part of our HLS algorithm design, we employ

three major classes of transformation to improve performance: pipelining, that

allows us to improve execution during the for loops within the SOM; scaling to

manipulate the instructions parallelism and allow us to execute Single Instruc-

tion Multiple Data (SIMD) instructions and memory enhancing transformation

to select more efficient memory architectures and access ports settings. Some

of the HLS transformation are “Pragma” directives and attribute instruction in-

39

Algorithm 3 The HLS-VSOM training algorithm.

1: Given:
2: D ← {training instances, a l x d matrix}
3: M ← {neurons, a n x d vector of tuples}
4: η ← {learning rate 0 < η < 1}
5: Γ(c)← {neighborhood function for some neuron c}
6: minIndex(s) ← {func, returns location of min. val in s}
7: Φ← {Rowsum reduction using Systolic Array dot product}
8: Ω← {Pipeline, unrolled loops kernel operations}
9: R← {Random index values list}

10: O ← {constant column vector with value of 1’s}
11:

12: Repeat :
13: /***Select a matrix training instance as vector
14: for some k = 1, ..., l : ***/
15:

16: xk ← D[Rk]
17:

18: /***Find the winning neuron using accelerated kernels ***/
19: X← Ωx(1

n ⊗ xk)
20: ∆← Ω∆(M−X)
21: Π← ΩΠ(∆ ◦∆)
22: /***Reduction (Rowsum) Using Systolic Arrays and DSP***/
23: s← Φs(Π ·O)
24: c = minIndex(s)
25:

26: /***Update neighborhood with vector operations ***/
27: Γc ← ΩΓ(Γ(c))
28: Mnew ← ΩMnew(Mcurrent − η∆ ◦ Γc)
29: done
30: return Mnew

serted in the code and interpreted by the HLS compiler, while others may re-

quire adding or modifying the configuration files. Some of the Pragmas utilized in

our implementation included the opencl unroll hint(X), xlc pipeline loop(X) and

xlc array partition(complete, X).

2.5.2 Pipelining and Dataflow

The pipeline transformations are an essential aspect to consider during the

HLS integration. Pipelining allows to efficiently send data directly from one compu-

40

Algorithm 4 The HLS-VSOM Neighborhood Function Γ.

1: given:
2: c← {index of winning neuron}
3: n← {the number of neurons on the map}
4: nsize← {neighborhood radius}
5: P← {an n× 2 matrix with pi = P[i,] = (xi, yi)}
6: 1n ← {constant column vector with value 1}
7: 0n ← {constant column vector with value 0}
8: Ω← {Pipeline and unrolled loops kernel operations}
9:

10:

11: Pc ← Ωpc(P [c,])
12: C← ΩC(1

n ⊗ pc)
13: ∆← Ω∆(P−C)
14: Π← ΩΠ(∆ ◦∆)
15:

16: /***Perform rowsum matrix reduction
17: d← Ωd(Πx+Πy)
18: hood← Ωhood(ifelse(d < (nsize× 1.5)2,1n,0n))
19: return hood

tational unit to the next, permitting instruction-level parallelism. This technique

maximizes the usage of every core available of the processor with some instruction

by dividing incoming instructions into a series of sequential steps performed by

different processor units with different parts of instructions processed in parallel

[8] as shown in Figure 10.

41

Figure 10: Pipelining HLS - [8]

Similarly to Pipelining, the Dataflow optimization allow to send data effi-

ciently but it works between the Kernel functions. In our design, the dataflow

Pragma enables the parallel execution between the functions within a kernel.

The pipelining in terms of the HLS-VSOM, improves the iterations within each

one of the vectorized loop instruction by overlapping the instructions to compute

all the matrix operations shown in the HLS-Vsom Algorithm 3 and 4. In our HLS

kernel, we are pipelining all the matrix and vector operations to maximize the

execution per clock ratio.

2.5.3 HLS VSOM Horizontal Unrolling (Vectorization)

In the VSOM algorithm, the stochastic SOM training is redefined to execute as

a set of vector and matrix operations. Utilizing the unrolling HLS transformations

to create vectorization for the loop iterations allows the FPGA fabric to create

42

parallel copies of the body of the loop to increase the algorithm performance. This

is the most straightforward way of adding parallelism, as it can often be applied

directly to an inner loop without further reordering or drastic changes to the nested

loop structure. Vectorization is more powerful in HLS than SIMD operations on

load/store architectures, as the unrolled compute units are not required to be

homogeneous, and the number of units are not constrained to fixed sizes [4].

In the HLS-VSOM, all the matrix data elements are independent of each other

and they can be executed as coarse-grained “embarrasingly parallel” [9] computing

units allowing us to exploit the available hardware resources exploit multiple in

the target platform .

In the HLS-VSOM context, the vectorization of the calculations can be imple-

mented as vector instructions, or horizontal unrolling similar the SIMD instructions

and are a form of Data-Level Parallelism as illustrated in Figure 11. These vector

instructions apply the same operation over multiple data elements (like integers

and floating-point values) concurrently, given that these items are stored contigu-

ously in vector/SIMD registers [10]. For our implementation using an unrolling

Pragma with a factor of 64 provided the best performance gains for our type of

map sizes.

Figure 11: Scalability Transformations HLS - here the rectangles represent buffer
space, such as FPGA registers or on chip Ram [4] and the CU refers to computa-
tional units.

43

2.5.4 HLS Par-VOM Memory Transformations

In the classic SOM with iterative operations, the operations per column are

solved sequentially. This serial dependency results in high overhead and additional

latency during every training epoch per memory access request. The HLS memory

access transformation allows us to optimize the efficiency of the off-chip memory

access, as shown in Figure 12

Figure 12: Par-VSOM HLS Memory (Striping) Access Transformations.

In our Xilinx Alveo cards, multiple banks with dedicated channels (e.g. High

Bandwidth Memory (HBM) lanes) are available, this allows increasing the arrays

bandwidth accessed by a factor equivalent to the number of memory interfaces

connected, this is known as memory striping. The HLS environment allows us

to explicitly define the striping by indicating the modules and the variables name

associated to the data banks as shown in Figure 12. The stripping results in

parallel read and writes increase the overall bandwidth.

The Alveo accelerator cards contain HBM DRAM and DDR DRAM as ex-

ternal memory resources. In addition, in some accelerator cards, an additional

44

internal memory resource called PLRAM (UltraRAM and block RAM) is avail-

able. In the HLS-VSOM the global M matrix and the buffer containing the Data

set are stored in PLRAM space. The less used buffers such as number of iterations

and X k random index array are allocated in the HBM space. All the other algo-

rithm matrices are stored internally in local memory as part of the Block RAM or

in registers.

Accessing the external memory has significant latency; it is recommended to

use a burst accesses to global me High Bandwidth Memory (HBM) memory in

and from PLRAM memory. Here, PLRAM is small shared memory that consist

of UltraRAM/block RAM memory resources available in the FPGA.

As part of our HLS optimization, we also utilized array partitioning for all the

internal VSOM vectors. The array partitioning converts the vectors into smaller

arrays or separates them into individual registers elements. Since this transforms

the elements of the array into registers, it increases the ports for read and write

operations and improves the throughput of the design. Therefore, the array parti-

tioning is recommended for smaller arrays since fully partitioning may cause quality

and clock delays due to design complexity.

2.5.5 HLS Matrix Reduction with Systolic Arrays

In a systolic array, all processing elements, called systolic cells, perform com-

putations simultaneously, while data, such as initial inputs, partial results, and

final outputs, is being passed from cell to cell. When partial results are moved

between cells, they are computed over these cells in a pipeline fashion. In this

case, the computation of each single output is partitioned over these cells [11].

For our systolic array matrix “rowsum” reduction operations illustrated in

Figure 13, we use the DSP available in the FPGA as independent Processing

Elements (PE); communications between the PEs between and input and output

45

for the algorithm will take simultaneously achieving high performance.

As part of our HLS algorithm development, we discovered one of the major

bottlenecks was the matrix rowsum reduction included in Algorithm 3 line 23.

The latency of this instruction is due to the high amount of read and write access

requested to the same local BRAM memory locations. Using the systolic array

DSP approach allow us to access and execute in multiple PE at the same time

alleviating the BRAM traffic and increasing the overall performance.

In the algorithm, we use a dot product Φs(Π ·O) with the systolic array. Here

Π contains the square of the differences of the distances calculated during the BME

step, and O is a column vector of one. The result is a vector representative of a

rowsum matrix reduction.

Figure 13: Systolic Array Matrix Multiplication. [12]

2.6 Related Work

In this section, we look at prior work related to high-level synthesis and FPGA

SOM implementations. The recent research has demonstrated promising improve-

ments using various methodologies associated with reconfiguration hardware meth-

46

ods. Recent scientific publications on this domain include: using a system on chip

(SoC) to generate stochastic SOM [13], SOM Network-on-Chip (NoC) based solu-

tion [14], High Level Synthesis (HLS) targeting K-means algorithm [15], achieving

high-performance computing applications via High-Level Synthesis [16], and using

various types of hardware optimization techniques in FPGAs [17, 18, 19].

In general, all the research publications share the goal of finding optimal

speed-up performance facilitating the higher synthesis implementation or using a

hardware design language.

2.6.1 Stochastic SOM with FPGA SoC

In his work, Moran proposed a novel System-on-Chip for a stochastic Self-

Organizing map implementation. As part of his implementation, he generated

several stochastic block design the Winner-Take-All (WTA) similarity check. This

map acceleration solution can perform the self-learning and classification task with

the same error rate as Matlab and consume 4 times less power consumption 21.5

mW than other Internet of Things (IoT) Devices.

2.6.2 A Scalable SOM based on a Sequential Systolic NoC

Mehdi et al. adapted the NoC for SOM computations. His architecture con-

sisted of a Vector Element Processing block to calculate the distance and update

the weights; a Local Winner Search circuit (LWS) which compares the local dis-

tances and the received neighbour’s distance; an Update Signal Generator (USG).

As part of his experiments, he did a performance comparison against Core I7,

Parallel FPGA, Systolic Array FPGA and the Noc Sequential systolic FPGA.The

proposed NoC Sequential systolic FPGA architecture performs up to 724 MCUPS

during the learning and 1168 MCPS in the recall phase for a 32-element input vec-

tor and promise a scalable performance by optimizing the architecture pipelining

47

[13].

2.6.3 High Level Synthesis (HLS) for K-means algorithm

The research presented by Younes[15] includes an efficient architecture im-

plementation for a K-Nearest Neighbor (KNN) hardware accelerator targeting a

modern System-on-Chips (SoCs). This KNN approach revolves in using a HLS de-

sign and was implemented on the Xilinx Zynqberry FPGA platform. The results

compared with other state-of-the-art implementation indicate the proposed KNN

offers between 1.4x and 875x speed and 41% and to 94% of energy consumption. In

addition, they enhance the architecture with algorithmic level Approximate Com-

puting Technique (ACTs) and improved the classification performance by 2.3x,

loss a 3% percent of accuracy and reduced the energy consumption by 69% on

average.

2.6.4 High-Performance Computing Applications via High-Level Syn-
thesis

In his paper [16] Muslim presents an OpenCL HLS-based FPGA implemen-

tation applicable to K-nearest neighbor, Monte Carlo method for financial models

and the Bitonic Sorting algorithm. The paper includes a performance compari-

son in terms of execution time, energy, and power consumption for some high-end

GPUs is performed as well. One of the interesting aspect is, both of the algorithms

have been implemented in OpenCL for the GPU and the FPGA. He concluded the

FPGAs could surpass the GPU performance with HLS optimization directives. In

addition, the FPGA are highly energy-efficient than GPUs in all the considered

algorithms.

48

2.6.5 SOMs in GPUs

The GPUs also provide an excellent hardware solution for the parallelization

of the SOM. The SOM GPUs implementations are a recurrent topic in recent

publications. Most of the SOM GPU variants are based on the batch SOM algo-

rithm using new programming languages optimized for parallelism like OpenCL.

In his research, Davidson[20] developed a parallel SOM with OpenCL for an Intel

i7, AMD, and Nvidia GPU architectures. His research concluded that the paral-

lel OpenCL SOM processing larger maps and running on a GPU could achieve a

speed-up factor of more than 10X compared to the run time of SOM PAK run

serially.

Among the SOM parallel approaches previously discussed, not too many offer

an available open-source repository to validate the research findings or continue

with further investigations. In this paper, we decided to compare our proposed

HLS implementation with some of the widely available state-of-the-art parallel

SOM projects packages. As part of the GPU comparisons, we utilize, XPySom

[21] a parallel Batch-SOM variant implemented using the Google Tensorflow 2.0

framework and Python Numpy library. The XPySom package is based on the

Minisom[22], a non-parallel, minimalistic and Numpy based widely known imple-

mentation of the SOM. The XPySom research paper [21] indicates their parallel

variants outperforms the popular SOM GPU package Somoclu by two and three

orders of magnitude. In addition, we also compare our HLS-VOM with the PAR-

VSOM, our own GPU version of the Parallel VSOM written in CUDA Thrust.

2.7 Experiments
2.7.1 Hardware setup

The Par-VSOM HLS FPGA experiments used the Xilinx Alveo U50 Data

Center accelerator cards to provide the optimized acceleration. The Alveo FPGA

49

Figure 14: 15 x 10 Self Organizing Map for the Iris Dataset.

includes a Xilinx UltraScale Plus with 8 Gb of HBM memory and the host system

included 8 virtual CPUs with a 128 GB of memory. The Par-VSOM and XPysom

GPU parallel experiments were performed using the Amazon AWS cloud service

instances with Linux and Deep Learning Amazon Machine Images (AMI). The

sequential CPU experimental setting included an Intel Xeon E5 2686 running 2.7

GHz/ 3.0 GHz with 18 cores and capable of executing 36 threads. The GPU tests

were performed in an AWS P3.2xlarge with 18 virtual Intel Xeon E5 2686 CPU

operating at 2.7 GHz/ 3.0 GHz turbo and an NVIDIA Tesla V100. The Tesla V100

contains 5120 NVIDIA Cuda cores with 16 Gb of HBM2 memory. The Tesla V100

memory clock setting was 877 Mhz, with memory graphics clocked at 1530 Mhz.

2.7.2 HLS-VSOM setup and Hyper-Parameters

The CPU experimental setup utilized the default values of the SOM and

VSOM Popsom [23]. For XPySom[21] package, we maintained the learning rate

50

constant to obtain higher convergence indexes and tune the hyper-parameters as

defined in Table 4. For our map size selection, we followed the method proposed by

Vesanto in [24]. That is, the recommended map size should contain approximately

not less than 5 ∗ sqrt(N) neurons where N is the number of data set observations.

For the IRIS dataset that will be 61 neurons, in which case we started testing with

8 x 8 as an approximation but eventually we decided to increase our map size to

15 x 10 larger for more complexity.

Table 4: HLS-VSOM Hyper-Parameters.

Hyper-Parameter **Values**

Training Iterations Range 1× 100 ... 1× 104

Learning Rate η 0.7
Neighborhood Radius Bubble
Training Data Sets Iris, Epil, WDBC

51

T
ab

le
5:

T
im

es
an

d
S
p
ee
d
-u
p
ga
in
s
of

th
e
H
L
S
P
ar
-V

S
O
M

fo
r
d
iff
er
en
t
tr
ai
n
in
g
al
go
ri
th
m
s
u
si
n
g
a
15
×
10

m
ap

.

it
er

T
im

e
T
im

e
T
im

e
T
im

e
T
im

e
S
p
ee
d
-u
p

S
p
ee
d
-u
p

S
p
ee
d
-u
p

S
p
ee
d
-u
p

S
O
M
(s
)

V
S
O
M
(s
)

P
-V

S
O
M
(s
)

X
-S
om

(s
)

H
-V

S
O
M
(s
)

H
-V

S
O
M
/

H
-V

S
O
M
/

H
-V

S
O
M
/

H
-V

S
O
M
/

C
P
U

C
P
U

G
P
U

C
P
U
-G

P
U

F
P
G
A

S
O
M

V
S
O
M

P
a
r-
V
S
O
M

X
P
y
S
o
m

R
\C

R
\F

or
tr
a
n

T
h
ru
st

T
en

so
rF

lo
w

O
p
en

C
L

**
*
Ir
is

D
=
4*

**
1

0
.0
3
3

0.
0
17

0.
00

5
0.
00

1
0.
00

00
34

96
1.
1

49
5.
1

1
4
5
.6

2
9
.1

10
0.
0
31

0
.0
1
7

0
.0
07

0.
00

9
0.
00

01
02

30
3.
9

1
66

.7
6
8
.6

8
8
.2

1
00

0.
0
36

0
.0
1
8

0
.0
24

0.
09

9
0.
00

04
81

74
.8

3
7.
4

4
9
.9

2
0
5
.8

10
00

0.
0
75

0
.0
2
1

0
.1
70

0.
98

6
0.
00

40
52

18
.5

5.
2

4
1
.9

2
4
3
.3

10
00

0
0
.4
6
9

0.
0
40

1.
54

8
9.
45

4
0.
03

53
12

13
.3

1
.1

4
3
.8

2
6
7
.7

**
*
E
p
il
D
=
8*

**
1

0
.0
4
0

0.
0
22

0.
01

1
0.
00

1
0.
00

00
66

60
0.
0

33
0.
0

1
6
2
.0

1
5
.0

10
0.
0
41

0
.0
2
0

0
.0
13

0.
01

0
0.
00

01
46

28
0.
8

1
37

.0
8
9
.1

6
8
.5

1
00

0.
0
43

0
.0
2
1

0
.0
35

0.
10

2
0.
00

05
11

84
.0

3
9.
1

6
8
.4

2
0
5
.2

10
00

0.
0
92

0
.0
2
6

0
.2
21

1.
02

4
0.
00

38
11

24
.1

6.
3

5
8
.0

2
7
4
.4

10
00

0
0
.5
4
6

0.
0
63

1.
96

5
10

.2
41

0.
03

30
91

16
.5

1.
9

5
9
.4

3
0
9
.5

**
*
W

D
B
C

D
=
30

**
*

1
0.
0
41

0
.0
2
0

0
.0
18

0.
00

1
0.
00

01
43

28
6.
0

1
39

.5
1
2
5
.6

7
.0

1
0

0
.0
4
3

0.
0
20

0.
02

4
0.
01

0
0.
00

02
60

16
5.
4

76
.9

9
2
.3

3
8
.5

10
0

0
.0
4
6

0.
0
22

0.
06

3
0.
10

3
0.
00

08
15

56
.4

28
.2

7
7
.7

1
2
6
.3

1
00

0
0
.1
8
1

0.
0
34

0.
45

2
1.
10

4
0.
00

59
46

30
.4

5
.7

7
6
.0

1
8
5
.7

1
00

00
0.
9
25

0
.1
5
7

4
.2
26

10
.1
30

0.
05

00
86

18
.5

3
.1

8
4
.3

2
0
2
.3

52

Table 6: Times and Speed-up gains of the HLS-VSOM compare against a non-
accelerated FPGA HLS-VSOM using a 15× 10 map. Our accelerated HLS-VSOM
uses pipelined loops, dataflow, horizontal unrolling, array partitioning and systolic
arrays for row sum reductions.

iter Time Time Speed-up
HLS-VSOM(ms) HLS-VSOM(ms) Accel vs
FPGA Non-Accel FPGA Accel Non-Accel

*** Iris D=4***
1 0.035 0.034 1.0

10 0.127 0.088 1.5
100 0.591 0.481 1.2

1000 5.074 4.052 1.3
10000 49.796 35.312 1.4

*** Epil D=8***
1 0.110 0.066 1.6

10 0.524 0.146 3.6
100 4.262 0.511 8.3

1000 41.494 3.811 10.9
10000 413.546 33.091 12.5

*** WDBC D=30***
1 0.233 0.143 1.6

10 2.033 0.260 7.8
100 18.891 0.815 23.1

1000 187.477 5.946 31.5
10000 1873.383 50.086 37.4

As part of our tests, we compared the performance and the quality of the maps

generated by our parallel HLS-VSOM with two CPU SOM and two GPU SOM

variants. The quality of the maps is based on the convergence index as defined

in [25]. The CPU single-node tests used the SOM and the VSOM algorithms

included as part of the R language Popsom package. In addition, the GPU parallel

comparison was made using the GPU-based SOM packages Tensorflow 2.0 for

XPySom and our own Par-VSOM parallel GPU implementation based on NVIDIA

53

Table 7: Quality of maps using the convergence index [25] produced by the different
training algorithms. (VSM=VSOM, P-V=Par-VSOM, X-P=XPySom, H-P=HLS
and D=Dimensions)

Iters CI
10x SOM VSM P-V X-P H-P

*** Iris, D=4***
1 |0.16 0.15 0.09 0.50 0.35|
2 |0.43 0.45 0.70 0.50 0.50|
3 |0.92 0.95 0.91 0.88 0.97|
4 |0.93 0.94 0.91 0.92 0.95|

*** Epil, D=8***
1 |0.14 0.17 0.15 0.72 0.17|
2 |0.56 0.45 0.52 0.49 0.34|
3 |0.92 0.92 0.94 0.91 0.92|
4 |0.94 0.92 0.93 0.65 0.92|

*** WDBC, D=30***
1 |0.12 0.15 0.11 0.68 0.16|
2 |0.23 0.40 0.55 0.53 0.47|
3 |0.90 0.92 0.88 0.68 0.91|
4 |0.90 0.92 0.93 0.69 0.92|

Thrust.

For our experiments, we used three real-world datasets to train our algorithms:

1. Iris [26] - a dataset with 150 instances and 4 attributes that describes three

different species of Iris.

2. Epil [27] - a dataset on two-week seizure counts for 59 epileptics. The data

consists of 236 observations with 8 attributes. The data set has two classes

- placebo and progabide, a drug for epilepsy treatment.

3. Wisconsin Breast Cancer Dataset (wdbc) [28] - a dataset with 30 features

and 569 instances related to breast cancer in Wisconsin. The features are

54

computed from a digitized image of a fine needle aspirate (FNA) of a breast

mass. They describe the characteristics of the cell nuclei present in the image.

The data set has two classes: malignant and benign.

These datasets are purposely selected to test the algorithm performance by

increasing the dimensionality complexity of the input data. As previously men-

tioned, Iris has four attributes, Epil eight attributes, and WDBC 30 attributes.

This provides significant dimensions variability to test the algorithm. To measure

the HLS-VSOM performance, we ran each timing test three times and took the av-

erage time over these runs. The times reported are the time required for the CPU

to perform the calculations, and it is given in CPU seconds. Similarly, the quality

tests were done by averaging three quality measurements using the convergence

index (CI) explain in detail in [25] and included as part of the R Popsom Package

[23]. The CI provides a 0 to 1 numbering scale to measure the maps’ quality, with

0 representing the lowest quality and 1 the highest quality.In addition, we trained

with various iterations to discover what type of effect a change of training duration

had on the implementations.

2.7.3 Results

The following tables includes the experimental results obtained for two differ-

ent map sizes and three data sets.

In the 150 neurons experimental results, included in Table 5, we see the time

comparison and the speed-up gains of the algorithm. The optimization achievable

by the HLS FPGA significantly boots the performance when compared against

the SOM and VSOM CPU variants. In the maps instances under test, the FPGA

provides enough computational resource to construct an efficient design without

impacting the algorithm performance. However, designs using larger maps (25,000

neurons) demonstrated that optimization could not be achieved due to FPGA

55

resources limitations (e.g clock don’t meet thresholds, routing logic too complex

and global iteration problems making the design unable to be completed).

In addition, as part of the result, is it observable that the VSOM in a CPU

trains the given maps in a fraction of a second. Achieving performance increase

on this scale is important due to the high demand in the military and aerospace

industries for acceleration in real-time operating system applications, where the

requirements are defined in terms of minimum seconds and milliseconds.

The results illustrate, the HLS-VSOM achieves a speed-up of not less than 6x

on average at the convergence iteration (1000) in comparison to the VSOM. The

Table 5 results demonstrates, the HLS-VSOM achieves superior speed-up for all the

three datasets comparisons, surpassing the speed rates of all the other algorithm

implementations. In this map environment, the HLS-VSOM surpassed the SOM

with a 30.4x and the VSOM with a 6.3x when reaching the convergence point as

summarized in table 8. The comparison with the GPU version demonstrates the

GPU versions are not well suited for regular and small size maps due to the low

computational workloads. The performance obtained for the GPU variants were

76.0x for the Par-VSOM and 185.7x for the XPysom.

The training time charts included in Figures 15 - 17, capture a generalize

representation of the overall results tendencies. The HLS-VSOM offers speedup

performance increases for the three datasets. The obtained results allows us to

establish a direct relation between the dimentionality of neuronal maps and better

achievable times using the HLS-VSOM. That is, with more dimentionality com-

plexity in the dataset a better speed up can be achieved making it scalable.

Table 6 results include the times and Speed-up gains of the HLS-VSOM com-

pared against a non-accelerated FPGA HLS-VSOM using an 15 × 10 map. The

proposed accelerated HLS-VSOM uses pipelined loops, dataflow, horizontal un-

56

Figure 15: Iris Training Time

rolling, array partitioning, and systolic arrays for row sum reductions allow us to

achieved 31.1X performance increase gain when compared with the default Non-

accelerated HLS-VSOM. Here, the Non-Accel version refers to running only the

default pipeline implemented by the Vitis compiler without any predefined Prag-

mas directives for optimization.

In terms of the quality of the maps, Table 7 captures all the algorithm con-

vergence indexes for the three datasets. As presented, the HLS-VSOM maintains

relatively the same quality as the original SOM and the VSOM variants in all the

maps.

2.8 Conclusions

This work introduced the HLS-VSOM, a high-level synthesis parallel version

of the vectorized and matrix-based implementation of stochastic training for self-

organizing maps. The novel HLS implementation presented here provides substan-

tial performance increases over Kohonen’s iterative SOM algorithm (up to 30.4X

times faster) and the CPU based vectorized VSOM (up to 6.3x times faster).

Our comparisons against the GPU variants also demonstrate the optimized FPGA

VSOM surpasses the GPU Par-VSOM and XPySom GPUs version by two or three

57

Figure 16: Epil Training Time

Figure 17: WDBC Training Time

orders of magnitudes of performance in various datasets. The achievable perfor-

mance gains surpassed all the other architectures implementations and scale expo-

nentially with dimensional increases, as shown in Figure[15 - 17]. Furthermore,

the results demonstrate that the HLS-VSOM provides possibly the best perfor-

mance SOM currently available. In terms of the quality of the maps, the maps

produced by HLS-VSOM approximates the values generated by the VSOM itera-

tive algorithms and original Kohonen’s SOM algorithm.

In the proposed design, the HLS-VSOM is a highly optimized algorithm run-

58

Table 8: HLS-VSOM FPGA Speed-ups Summary

Dataset **MAX** **@ Convergence***
Speed-up vs SOM-CPU: 1000 iters

IRIS 961.1 18.5
EPIL 600 24.1
WDBC 286 30.4

Dataset **MAX** ** @ Convergence***
Speed-up vs VSOM-CPU: 1000 iters

IRIS 495.1 5.2
EPIL 330.0 6.3
WDBC 139.5 5.7

Dataset **MAX** ** @ Convergence***
Speed-up vs Par-V-GPU: 1000 iters

IRIS 145.6 41.9
EPIL 162.0 58.0
WDBC 125.6 76.0

Dataset **MAX** ** @ Convergence***
Speed-up vs Xpysom-GPU: 1000 iters

IRIS 267.7 243.3
EPIL 309.5 274.4
WDBC 202.3 185.7

ning in a FPGA Accelerator Card and therefore is an adequate replacement for

iterative stochastic training of SOM and parallel SOM variants. Future research on

this topic will include investigating how the HLS-VSOM can be implemented in a

tensor-core based acceleration environment and what kind of performance increase

we can expect from this type of hardware architecture. In the literature, the SOM

data partitioning has been used exclusively as the starting point for parallel SOM

implementations up to this point, e.g. [29, 30]. Given the results reported here, the

HLS-VSOM can be viewed as an alternative to parallel SOM and a new alternative

starting point for other parallel algorithms for clustering. In summary, since the

training algorithms results demonstrate the produce maps are roughly the same

59

quality, the HLS-VSOM provides a parallel and high-performance alternative to

SOM algorithms.

List of References

[1] T. Kohonen, Self-organizing maps. Springer Berlin, 2001.

[2] B. Barney, Introduction to Parallel Computing. Lawrence Livermore National
Laboratory, 2018.

[3] L. Hamel, VSOM: Efficient, Stochastic Self-organizing Map Training: Pro-
ceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2, 01
2019, pp. 805–821.

[4] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transformations
of high-level synthesis codes for high-performance computing,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1014–1029,
2020.

[5] M. Pelcat, C. Bourrasset, L. Maggiani, and F. Berry, “Design productivity
of a high level synthesis compiler versus hdl,” in 2016 International Confer-
ence on Embedded Computer Systems: Architectures, Modeling and Simula-
tion (SAMOS). IEEE, 2016, pp. 140–147.

[6] C. Rubattu, F. Palumbo, C. Sau, R. Salvador, J. Sérot, K. Desnos, L. Raffo,
and M. Pelcat, “Dataflow-functional high-level synthesis for coarse-grained
reconfigurable accelerators,” IEEE Embedded Systems Letters, vol. 11, no. 3,
pp. 69–72, 2018.

[7] J. Backus, “Can programming be liberated from the von neumann
style? a functional style and its algebra of programs,” Commun.
ACM, vol. 21, no. 8, p. 613–641, aug 1978. [Online]. Available:
https://doi.org/10.1145/359576.359579

[8] wiki.com, “Wiki pipelininig,” https://en.wikipedia.org/wiki/Instruction
pipelining, accessed: 2021-11-27.

[9] P. Jaaskelainen, “Task parallelism with opencl: A case study.” Journal of
Signal Processing Systems, pp. 33–46, 2019.

[10] L. L. Pilla, “Basics of vectorization for fortran applications,” Research Report,
vol. RR-9147, pp. 1–9, 2018.

[11] H. T. Kung, Systolic Array. GBR: John Wiley and Sons Ltd., 2003, p.
1741–1743.

https://doi.org/10.1145/359576.359579
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Instruction_pipelining

60

[12] Z. Yang, L. Wang, D. Ding, X. Zhang, Y. Deng, S. Li, and Q. Dou, “Sys-
tolic array based accelerator and algorithm mapping for deep learning algo-
rithms,” in IFIP International Conference on Network and Parallel Comput-
ing. Springer, 2018, pp. 153–158.

[13] A. Morán, J. L. Rosselló, M. Roca, and V. Canals, “Soc kohonen maps based
on stochastic computing,” in 2020 International Joint Conference on Neural
Networks (IJCNN), 2020, pp. 1–7.

[14] M. Abadi, S. Jovanovic, K. B. Khalifa, S. Weber, and M. H. Bedoui, “A
scalable flexible som noc-based hardware architecture,” in Advances in Self-
Organizing Maps and Learning Vector Quantization. Springer, 2016, pp.
165–175.

[15] N. Paulino, J. C. Ferreira, and J. M. Cardoso, “Optimizing opencl code for
performance on fpga: k-means case study with integer data sets,” IEEE Ac-
cess, vol. 8, pp. 152 286–152 304, 2020.

[16] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno, “Efficient fpga imple-
mentation of opencl high-performance computing applications via high-level
synthesis,” IEEE Access, vol. 5, pp. 2747–2762, 2017.

[17] R. Li, H. Huang, Z. Wang, Z. Shao, X. Liao, and H. Jin, “Optimizing memory
performance of xilinx fpgas under vitis,” arXiv preprint arXiv:2010.08916,
2020.

[18] J. de Fine Licht and T. Hoefler, “hlslib: Software engineering for hardware
design,” arXiv preprint arXiv:1910.04436, 2019.

[19] M. Masten, E. Tyurin, K. Mitropoulou, E. Garcia, and H. Saito, “Function/k-
ernel vectorization via loop vectorizer,” in 2018 IEEE/ACM 5th Workshop on
the LLVM Compiler Infrastructure in HPC (LLVM-HPC). IEEE, 2018, pp.
39–48.

[20] G. Davidson, “A parallel implementation of the self organising map using
opencl,” University of Glasgow, 2015.

[21] R. Mancini, A. Ritacco, G. Lanciano, and T. Cucinotta, “Xpysom: high-
performance self-organizing maps,” in 2020 IEEE 32nd International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-
PAD). IEEE, 2020, pp. 209–216.

[22] G. Vettigli, “Minisom,” https://github.com/JustGlowing/minisom, 2021.

[23] L. Hamel, B. Ott, and G. Breard, popsom: Functions for Constructing and
Evaluating Self-Organizing Maps, 2016, r package version 4.1.0. [Online].
Available: https://CRAN.R-project.org/package=popsom

https://github.com/JustGlowing/minisom
https://CRAN.R-project.org/package=popsom

61

[24] J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,” IEEE
Transactions on Neural Networks, vol. 11, no. 3, pp. 586–600, 2000.

[25] L. Hamel, “Som quality measures: An efficient statistical approach,” in Ad-
vances in Self-Organizing Maps and Learning Vector Quantization. Springer,
2016, pp. 49–59.

[26] R. A. Fisher, “The use of multiple measurements in taxonomic problems,”
Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[27] P. F. Thall and S. C. Vail, “Some covariance models for longitudinal count
data with overdispersion,” Biometrics, pp. 657–671, 1990.

[28] W. N. Street, W. H. Wolberg, and O. L. Mangasarian, “Nuclear feature ex-
traction for breast tumor diagnosis,” in IS&T/SPIE’s Symposium on Elec-
tronic Imaging: Science and Technology. International Society for Optics
and Photonics, 1993, pp. 861–870.

[29] R. D. Lawrence, G. S. Almasi, and H. E. Rushmeier, “A scalable parallel
algorithm for self-organizing maps with applications to sparse data mining
problems,” Data Mining and Knowledge Discovery, vol. 3, no. 2, pp. 171–195,
1999.

[30] P. Wittek, S. C. Gao, I. S. Lim, and L. Zhao, “Somoclu: An efficient parallel
library for self-organizing maps,” arXiv preprint arXiv:1305.1422, 2013.

62

APPENDIX A

Introduction and review of the problem

A.1 Introduction

The academic, financial, and industrial sectors are highly interested in finding

optimal parallelization of unsupervised machine learning algorithms. Nowadays,

scientists in atmospheric sciences, nuclear physics, medical diagnosis, and others

are looking for more sophisticated ways of processing large amounts of data in

their domains, utilizing various parallel computational approaches [1].

The parallel operations make program execution run faster by performing

several computations simultaneously in multiple nodes and minimizing the data

dependencies between them [2]. Due to this processing advantage, the parallel

implementation of the algorithms seems like the next logical step to solving large

and more complex problems. In addition to processing large amounts of data, the

parallelization of the algorithms could be highly beneficial because it can minimize

system operational costs, and the total energy spent [3].

The results of this research are highly significant because, based on the current

SOM research literature review, the proposed parallel method is potentially the

fastest parallel SOM implementation known in the scientific community. Further-

more, our experimental research approach allows us to enhance the knowledge of

the machine learning community by providing answers to the following questions:

• How the Parallel VSOM algorithm can offers superior performance rates in

comparison with previously proposed parallel SOM methods?

• Can we generate good quality maps in less computational time than previ-

ously proposed parallel SOM methods?

63

• Which of the Parallel VSOM algorithm programming languages are more

convenient in terms of compilation times, coding complexity, and resources

required?

• Which hardware accelerator architecture offers us new upper limits in terms

of speed-up rates with the Parallel VSOM algorithms?

A.2 Review of the Problem

During the last decade, machine learning modeling for big data, pattern recog-

nition, prediction analysis, and other applications has continued evolving, becom-

ing an industry standard for analyzing the sheer amount of data dimensionality

complexity investigated [4] . As a result, the machine learning community has been

focusing their research efforts on obtaining better computational performance and

higher speed-up rates to address the algorithms’ demands.

The present work is centered on seeking to improve the SOM algorithms

by reducing the computational processing time and memory demands required

during the execution of unsupervised machine learning applications. In general,

the research revolves around investigating a new parallel approach for Kohonen’s

self-organizing map (SOM) in multiple hardware accelerators environments and

mainly focuses on the development of new parallel versions for the vectorized

SOM (VSOM) algorithm proposed by Hamel [5]. The parallel VSOM algorithms

(Par-VSOM & HLS-VSOM) replace the vector and matrix operations of the orig-

inal VSOM algorithm with parallel computational kernels executing in hardware-

accelerated architectures.

The primary motivation of this research revolves in reducing the high com-

putational times of complex data sets, which results in exceeding the cost for

system-specific operations [6]. In order to address the increasing computational

64

time problem, this research offers improvements to the SOM training and com-

putational time demands by: reducing the total convergence time of the SOM

algorithm by utilizing hardware accelerator architectures for execution; creating a

parallel versions of the vectorized SOM algorithm that will provide better perfor-

mance and speed-up gains; discovering the current state of hardware accelerators

for SOMs algorithms and identify their potential benefits and limitations.

A.2.1 The SOM and VSOM Algorithm

In this research, the SOM algorithm is the population under test. The SOM

mapping model is based on neural network interactions derived from Vector Quan-

tization (VQ) lgorithm method[7]. The VQ is a signal-approximation algorithm

that approximates a finite “codebook” of vectors mi ∈ Rn, i = 1, 2, ..., k to the dis-

tribution of the input data vector x ∈ Rn. In the SOM context, the approximated

codebook allows us to categorize the nodes and form an “elastic network,” which

becomes a meaningful, coordinated map or grid system.

From a computational science perspective, the SOM can be described as a

mapping of high dimensional input data onto a low dimensional neural network

projected as a 2D or 3D map. The mapping is accomplished by assuming the

set of input data is a real vector such as x = [ξ1, ξ2, ..., ξn]
T ∈ Rn. The SOM

neuronal map can be defined as a model containing the parametric real vector

mi = [ui1, ui2, ..., uin]
T ∈ Rn associated with the original weights or locations of

the neurons. If we consider the distance between the input vector x and the neuron

vector mi then we can establish an initial minimum distance relation between the

input and the neurons by calculating the euclidean distances and identifying the

best matching unit (BMU) array mc with

c = argmin{d(x,mi)} Best Matching Unit

65

Figure A.18: SOM preserving the neighborhood topology [5]

or

∥x−mc∥ = min{∥x−mi∥}

After initializing the neuronal model, we create data neighborhoods Ni around

the neurons mi by associating every input x(t) into a sublist of every mi neuron

vector. Then, using the Ni sublist values, we can identify the generalized median

X̄i or the arithmetic mean of the sublist with the closest distance.

The next step of the algorithm calculates the X̄i for the neighborhood and

replace the old mi with the calculated X̄i. This realigns the neuronal map based

on the new X̄i and counts as the first iteration or epoch. After finishing the first it-

eration, the algorithm continues the iterative process updating the calculating the

distances, learning rate parameters, and generating the X̄i until it asymptotically

converges. After multiple iterations of the neurons location or weights readjust-

ments, every vector will be assigned or clustered to a specific neuron in the grid,

preserving the neighborhood topology as shown in figure 2.

In order to identify how far or close the SOM will be selecting the neighbor-

hood topology boundaries, we used a smoothing kernel definition over the shape

of the neuronal network. In the basic SOM, we use an on-line weight method to

66

update each neuron weight, one by one every time. Where time t = 0, 1, ... is

an integer, x(t) is the input vector given to the network, hci(t) acts as the neigh-

borhood function and α(t) is the adaptation gain or learning-rate factor between

0 and 1 (0 < α(t) < 1). The learning factor and the neighborhood function radius

σ both decreased monotonically over time.

mi(t+ 1) = mi(t) + hci(t)[x(t)−mi(t)] Update Step

In contrast, for a parallel SOM implementation, it is preferred to use a batch

mode (BatchSOM) learning. In the BatchSOM variant, the whole set of input

vectors is known in advance (constant), and the weights values are updated based

on this input. Due to the importance of timing when running a parallel instance,

the update step times can now be expressed in terms of epochs by t = eT + t
′

where e = 0, 1, ...is the epoch number, T is the epoch length, and 0 < t
′
< T the

time running inside an epoch [2]. Here we maintain, the hci constant during the

epoch, and the weight update for the batch update can be expressed as:

mi(e+ 1)T = mi(eT) + hci

(T−1∑
t′=0

Γ(x(t
′
)−mi(eT))

)
BatchSOM update with time terms

where Γ is the smoothing kernel that classifies whether the input vector Xi

belongs to the winner neighborhood or not. In practice, a list of winners and input

vectors has to be maintained. “Other modifications exist, in which on-line and

batch algorithms are combined for the election of winners or weight updates [2].”

Recent research has introduced more efficient implementations of the SOMs.

The vectorized SOM (VSOM) results prove that additional performance gains are

obtainable by replacing the classic stochastic SOM iterative construct with vector

and matrix operations[13]. In the VSOM constructs, the BMU can be determined

67

by representing the neuron weights using a n×d matrix M as M[i,] = (m1, ...,md)i

and the input data as a l × d matrix D as D[k,] = (x1, ..., xd)k. These matrices

can be used to generate a vector s that holds the square of Euclidean distance of

each neuron from the data vectors following this equation:

s[i] = ∆[i,] ·∆[i,]

=∥ ∆[i,] ∥2

=∥ M[i,]− X[i,] ∥2

=∥ mi − xk ∥2 VSOM BMU

In order to make the matrix operations well defined, the D matrix is used as the

basis to generate the X matrix by using the computation of the outer product of

X with a column vector 1n as:

X = 1n ⊗Xk

and

1n = (1, 1, ..., 1)T︸ ︷︷ ︸
n

The VSOM vectorized neighborhood update step also takes advantage of the ma-

trix and vector operations, redefining the update rules as :

M[i,]new ← M[i,]current − η∆[i,] ◦ Γc VSOM Update Step

Utilizing the Hadamard product between η∆[i,] and Γc; and defining Γc as:

Γc[i,] =

{
1d

′
if Γ(c)[i] = 1,in neighborhood

0d
′
otherwise notinneighborhood

68

Algorithm 5 Stochastic SOM training algorithm.

1: given:
2: mi ← {neurons for i = 1, . . . , n}
3: xk ← {training instances for k = 1, . . . , l}
4: η ← {learning rate, 0 < η < 1}

5: h(c, i)←
{

1 if i ∈ Γ(c),
0 otherwise,

6:

7: repeat
8: /*** Select a training instance ***/
9: xk for some k = 1, . . . , l :

10:

11: /*** Find the winning neuron ***/
12: c← 1
13: v ← ||mc − xk||2
14: for i = 2, n do
15: d← ||mi − xk||2
16: if d < v then
17: c← i
18: v ← d
19: end if
20: end for
21:

22: /*** Update neighborhood ***/
23: for i = 1, n do
24: mi ←mi − η(mi − xk)h(c, i)
25: end for
26: until done
27: return mi for all i = 1, . . . , n

Algorithm 6 The Neighborhood Function Γ.

1: given:
2: c← {index of winning neuron}
3: n← {the number of neurons on the map}
4: nsize← {neighborbood radius}
5: pi ← {position of mi on the map with pi = (xi, yi)}
6: pc ← {position of mc on the map with pc = (xc, yc)}
7:

8: hood← {}
9:

10: for i in 1, 2, . . . , n do
11: d← ||pi − pc||
12: if d < nsize× 1.5 then
13: hood← hood ∪ {i}
14: end if
15: end for
16: return hood

69

Algorithm 7 The VSOM training algorithm.

1: given:
2: D← {training instances, a l × d matrix}
3: M← {neurons, a n× d matrix}
4: η ← {learning rate, 0 < η < 1}
5: Γ(c)← {neighborhood function for some neuron c}
6: minloc(s)← {func. returns location of min. val. in s}
7:

8: repeat
9: /*** Select a training instance ***/

10: xk ← D[k,] for some k = 1, . . . , l :
11:

12: /*** Find the winning neuron ***/
13: X← 1n ⊗ xk

14: ∆←M−X
15: Π←∆ ◦∆
16: s← Π× 1d

17: c = minloc(s)
18:

19: /*** Update neighborhood ***/
20: Γc ← Γ(c)⊗ 1d

′

21: M←M− η∆ ◦ Γc

22: until done
23: return M

Algorithm 8 The Vectorized Neighborhood Function Γ.

1: given:
2: c← {index of winning neuron}
3: n← {the number of neurons on the map}
4: nsize← {neighborbood radius}
5: P← {an n× 2 matrix with pi = P[i,] = (xi, yi)}
6: 1n ← {constant column vector with value 1}
7: 0n ← {constant column vector with value 0}
8:

9: pc ← P[c,]
10: C← 1n ⊗ pc

11: ∆← P−C
12: Π←∆ ◦∆
13: d← Π× 12

′

14: hood← ifelse(d < (nsize× 1.5)2,1n,0n)
15: return hood

70

A.2.2 Parallel SOM

The classic parallel SOM model follows an approach similar to the training set

parallelism proposed in the classical parallel models, as demonstrated by Hama-

linen in [2]. The model will split the total amount of input vectors evenly and

distribute its elements across the available computational nodes during the BMU

unit calculation for better performance gains and calculate the neuron competitive

step in a similar manner.

The design of the BMU portion of the implemented parallel algorithm includes

a two-stage parallel reduction. The first goal of the parallel BMU is to find all the

distances between neurons and the input vector {d(x,mi)} and, secondly, identify

the BMU in parallel stages. In order to accomplish this, the algorithm acquires the

total number of input vectors and the amount of computational units to calculate

the parallel chunk size specific for the hardware environment. The parallel chunk-

size is calculated using the following equation:

PCS =
Vector Units(V u)

ComputationalUnits(Cu)
Parallel Chunk Size

During the execution, the number of vector units is equivalent to the total of

input vectors that will be connected to the neurons on the SOM map and the Cu

represent the computational nodes available on the type of acceleration device. The

Cu should have an equally balanced amount of vector units to process during the

parallel iterations. The PCS calculation is utilized to select the correct size of data

that will be distributed through each one of the computational nodes available by

parallel threads or with parallelization of matrix operations (depending on version

of the algorithm under test) in order to acquire the optimal workload for each

processing element available.

The Parallel Chunk Size is used to determine the parallelization schema; the

71

parallel BMU kernel calculates the values for the distance map between all the

inputs vectors and the neuron map; and proceeds to find the best matching units

(BMU) in parallel as described in Algorithm 9.

72

Algorithm 9 Parallel Distance Calculation and BMU - SOM
1.1

1: Given:
2: Vu ← Amount of Vector Units
3: Cu ← Amount of Computational Units
4: PCS ← Vu/Cu ▷ Parallel Chunk Size

5: Parallel Threads Instances Size Calculations :
6: /***Max and minimun input vector indexes for parallel instances ***/
7: for pi = 1,Cu do
8: if pi > 1 then
9: t(pi,min) ← t(pi−1,max) + 1

10: t(pi,max) ← pi ∗ PCS
11: else
12: t(pi,min) ← 1

13: t(pi,max) ← pi ∗ PCS
14: end if
15: end if
16: end for
17: end for

18: Parallel Distance and BMU :
19: /*** Select Parallel Training Instance per Thread***/
20: Xt for some t = tmin, ..., tmax

21: /*** Finding Distance and BMU on each Parallel Instance***/
22: c ← 1 (Init index of BMU)
23: v ← ∥xt −mc∥2
24: for i = 2,n do (In Parallel)
25: d← ∥xt −mi∥2
26: if d < v then ▷ Update the BMU index if the distance is less
27: c ← i
28: v ← d
29: end if
30: end if
31: end for
32: end for

73

Additional parallel instructions can be introduced during the SOM calculation

to modify the weight of the vectors for the neuron neighborhood locations . This

part of the parallel algorithm updates the weight vectors associated to each SOM

neuron location using the original update weight and predetermined learning rate.

The Algorithm 10 describes the parallel update neighborhood process.

Algorithm 10 Parallel Update Function - SOM
1

1: Given:
2: c ← Index of BMU
3: /*** Parallel Instances Max and Min Input Vector Indexes***/
4: t ← Max and Min indexes

5: Update Neighborhood :
6: for i = 1,n do (In Parallel)
7: mi ← mi − η(mi − xt)h(c, i))
8: end for
9: end for

By providing an initial amount of parallel instances or the numeric quantity

of the parallel threads for our architecture, we can generate a parallel function

to optimize the neuronal updates calculations. The parallel version of the update

step is very similar to the sequential counterpart of the original SOM. The parallel

implementation will require the minimum and maximum values of the input vectors

for each instance and a parallelization loop instruction to distribute the instances

across the processors or nodes for execution.

A.2.3 Hardware Architectures for Parallel SOMs

Multiple hardware acceleration architectures were utilized during the data

collection process. As previously mentioned, the main goal of the research is to

establish a comparison between the three acceleration environments and reach a

conclusion in terms of SOM’s optimal performance and speed-up. For our ex-

perimental setup, we utilized a Graphics Processor Unit (GPU) and a Field Pro-

74

Figure A.19: Parallel Program execution[6]

grammable Gate Array (FPGA) to test our parallel algorithms implementations.

The first type of environment involves the utilization of the high amount

of processing cores available in a GPU to obtain significant parallelization and

improve the overall algorithm performance. This type of environment allows com-

puter scientists and engineers to execute programs in multiple system threads by

splitting (See Figure 3 A.19) Single Instruction, Multiple Data (SIMD) programs

and distributing them among the available system nodes for faster processing ca-

pability. The GPU architecture (see figure reffig:GPU Grid is a collection of inter-

connected multiprocessors with high parallelism potential. Each one of the nodes

can process its own data independently. The GPU graphic processors and Central

Processing Unit (CPU) communicate using a globally shared memory mechanism,

allowing them to read, write and modify the same memory space as illustrate in

Figure A.21. The shared global memory provides us with more flexibility for pro-

cess synchronization between the nodes by sharing the same memory windows and

scheduling of processing events.

The programming of the processes running in the GPU can be accomplished

using the CUDA Application Programming Interface (API). CUDA provides the

users with C extensions, hiding the complexity of managing the C language threads

and facilitating the parallelization of sequential behavior by using simpler CUDA

75

Figure A.20: GPU Grid Diagram [8]

Figure A.21: GPU memory diagram [4]

kernels and CUDA threads function calls. However, the amount of CUDA threads

is directly dependent on the specific GPU chip architecture. The programmers

should experiment accordingly to obtain peak performance and efficient memory

access based on their algorithm design requirements.

The second accelerator environment is the FPGA. The FPGA is a recon-

figurable hardware device composed of highly customizable programmable logic

blocks (LU), LU Interconnects and reconfigurable I/O Blocks (see Figure]A.22

FPGA Block Diagram). Industry enthusiasts and academic researchers have

76

Figure A.22: [FPGA Block Diagram[16]]

demonstrated how the FPGA could implement the requirements of any application

using a high-performance ratio (performance to power ratio)[15].

Compared to the CPU and GPUs acceleration environments, the FPGA is

a more complex system to program due to the lack of a microprocessor archi-

tecture, shared-memory-less architecture, and lower abstraction level perspective.

This lower abstraction level of customization allows us to optimize the algorithm

processing, data movements, memory access, and system power consumption. Due

to the high configuration flexibility available, the FPGA has become one of the

most widely used target systems for parallel research, algorithm speed-up, and

applications performance in the machine learning field.

A.2.4 Parallel Vectorized SOM

As part of our Parallel VSOM implementation testing, we experimented with

various types of performance- increasing techniques to obtain optimal results. The

techniques included network partitioning, data partitioning [4], manipulating the

types of memory used by the kernels, efficient memory management, HLS tech-

niques and asynchronous kernel execution.

The data partitioning technique can be implemented is possible by using mul-

tiple processors or SIMD (single instruction multiple data)[9]. Using hardware ac-

77

celerators with SIMD capability, we can distribute each matrix and vector compo-

nents into individual threads allowing us to operate on the components in parallel.

This vectorization provides performance increases when compared with sequential

execution, as illustrated in Figure 3

In addition to data partitioning, we manipulated the type of memory that

was used during the kernel execution. By using memory types with higher transfer

rates, we can achieve higher speed-up rates and improve the overall performance

of the algorithm.

The Parallel VSOM model executes the vectors and matrices operations in

the accelerated architecture using kernels. The kernels identified as Φ in Algo-

rithm 1 and Ω in 3 ,distributes all the components of the vectors and matrices

into independent threads for a parallel execution during each training epoch. A

secondary set of parallel kernel instructions are introduced to the VSOM algorithm

during the neuron neighborhood calculation in the ΦΓ. This part of the algorithm

is executed in a similar manner, using kernels instead of functions and operating

in all the matrices components in parallel.

A.2.5 High Level Synthesis for Parallel SOMs

The Vitis™ HLS is a high-level synthesis tool that allows C, C++, and

OpenCL™ functions to become hardwired onto the device logic fabric and

RAM/DSP blocks as illustrated in figure A.23. Vitis HLS implements hardware

kernels in the Vitis application acceleration development flow and uses C/C++

code for developing RTL IP for Xilinx® device designs in the Vivado® Design

Suite [10].

The HLS acceleration serves as an answer to address the complex and error-

prone hardware design process. The HLS has been known to cope with these

losses, obtaining design productivity gains by separating functional system veri-

78

Figure A.23: HLS VSOM in Alveo FPGA

fication, performed from a time-agnostic high-level language, from timed system

verification, performed after automatically inferring hardware-specific code [11].

Imperative high-level programming languages imperative formulations can not dif-

ferentiate between iterations over time and iterations over space. This limitation

does not translate appropriately to hardware architecture where all the event are

occurring in parallel.

A.2.6 Systolic Array with HLS

The systolic array is a composed of multiple data processing units (DPUs)

called cells or nodes. Each node or DPU operates and execute partial result of

the algorithm functions using the data received from the neighbours DPU. In

order to maintain the partial result the DPU stores the data within itself and

passes to the next DPUs. A multiple networked DPUs executing in parallel can

greatly increase the performance of certain math matrix function by executing

using multiple element in parallel and store partial results. When partial results

are moved between cells, they are computed over these cells in a pipeline fashion.

79

In this case, the computation of each single output is partitioned over these cells

[12].

In our HLS-VSOM algorithm we employ a systolic array approach to execute

a matrix “rowsum” reduction operation. The Xilinx compiler transforms the HLS

instructions into a Digital Signal Processors (DSP) operations. The Alveo FPGA

provides DSPs than act the as independent Processing Elements (PE); communi-

cations between the PEs between and input and output for the algorithm will take

simultaneously achieving high performance.

Figure A.24: Systolic Array Matrix Multiplication. [12]

As part of our HLS algorithm development, we discovered one of the major

bottleneck was the matrix rowsum reduction included in Algorithm 3 line 23. The

latency of this instruction is due to the high amount of read and write access re-

quested to the same memory local BRAM memory locations. Using the systolic

Digital Signal Processor (DSP) approach, allow us to access and execute in multi-

ple PE at the same time alleviating the BRAM traffic and increasing the overall

80

performance. In the algorithm, we use a dot product s(·O). Here contains the

square of the differences of the distances calculated during the BME step and O is

a column vector of one. The result is a vector representative of a rowsum matrix

reduction.

List of References

[1] B. Barney, Introduction to Parallel Computing. Lawrence Livermore National
Laboratory, 2018.

[2] Haskel, “Parallelism vs. concurrency,” https://wiki.haskell.org/index.php?
title=Parallelism vs Concurrency&oldid=62377, accessed: 2018-03-38.

[3] J. Zhang, Parallel Computing. University of Kentucky, 2017, https://www.
cs.uky.edu/jzhang/CSC621/chapter7.pdf(visited 2016-01-01).

[4] T. Richardson and E. Winer, “Extending parallelization of the self-organizing
map by combining data and network partitioned methods,” Advances in En-
gineering Software, vol. 88, 10 2015.

[5] L. Hamel, VSOM: Efficient, Stochastic Self-organizing Map Training: Pro-
ceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2, 01
2019, pp. 805–821.

[6] E. S. Schabauer, Hannes and T. Weishaupl, “Solving very large traveling
salesman problems by som parallelization on cluster architectures,” in Sixth
Internatioanl Conference on Parallel and Distributed Computer Applications
and Technologies PDCAT’ 05, 2005.

[7] T. Kohonen, Self-organizing maps. Springer Berlin, 2001.

[8] “Thread Hierarchy in Cuda Programming.”

[9] P. T. Rauber, Andreas and D. Merkl, “parsom: a parallel implementation of
the self-organizing map exploiting cache efects: making the som fit for interac-
tive high-performance data analysis,” in Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks. IJCNN 2000, vol. 6, 2000.

[10] Xilinx, “Vitis unified software platform documentation applica-
tion acceleration development ug1393 (v2021.1) july 19, 2021,”
https://www.xilinx.com/support/documentation/sw manuals/xilinx2021 1/
ug1393-vitis-application-acceleration.pdf, accessed: 2022-03-10.

https://wiki.haskell.org/index.php?title=Parallelism_vs_Concurrency&oldid=62377
https://wiki.haskell.org/index.php?title=Parallelism_vs_Concurrency&oldid=62377
https://www.cs.uky.edu/jzhang/CSC621/chapter7.pdf
https://www.cs.uky.edu/jzhang/CSC621/chapter7.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug1393-vitis-application-acceleration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug1393-vitis-application-acceleration.pdf

81

[11] M. Pelcat, C. Bourrasset, L. Maggiani, and F. Berry, “Design productivity
of a high level synthesis compiler versus hdl,” in 2016 International Confer-
ence on Embedded Computer Systems: Architectures, Modeling and Simula-
tion (SAMOS). IEEE, 2016, pp. 140–147.

[12] Z. Yang, L. Wang, D. Ding, X. Zhang, Y. Deng, S. Li, and Q. Dou, “Sys-
tolic array based accelerator and algorithm mapping for deep learning algo-
rithms,” in IFIP International Conference on Network and Parallel Comput-
ing. Springer, 2018, pp. 153–158.

82

APPENDIX B

Methodology and Source code

B.1 Methodology

Our research methodology followed a quantitative process to generate multiple

numerical comparisons for analysis. The principal methods of data acquisition and

measurement included the speed-up and total time to converge.

The speed-up definition is given by Amdahl’s Law [1] and it allow us to mea-

sure the improvement in execution speed of the Parallel VSOM algorithm in various

architectures.

S(pa) =
ts + tp

ts +
tp

c1∗Pan+c2∗Pa(n+1)+...

Speed-Up

In this equation n is considered a natural number, pan represents an identifier of the

used processors , ts is the estimated amount of time spent by serial operations in

one (single serial) processor and tp is the estimated amount of time running parallel

parts on a single processor. The cn are employment coefficients representing the

amount of the usage of the processors utilized during the parallel processes. For our

test comparison, dividing the amount of time of algorithm execution in architecture

A by the time of execution in architecture B, will suffice to provide the speed-up

rate for our further analysis. In addition, we utilized the total time of the algorithm

during execution but excluded the time of writing the neuron file in the system

(hard drive write).

Additional quantitative evaluation methods were used to determine the qual-

ity of the maps generated with our proposed algorithm. In our evaluations, we

considered the maps’ embedding accuracy and the topological quality by using the

equations proposed by Hamel in [2]. The embedding accuracy is a measurement

83

of how closely the neurons appear to be drawn from the same distribution as the

training instances. From our perspective, we define a feature as being embedded if

its variance and mean appear to be drawn from the same distribution for both the

training data and the neurons. The topographic accuracy is a statistical approach

used to measure the quality or organization of the neurons on the map. This

evaluation method utilizes the BMU and the second BMU for each data instance

to quantify how well the map neurons are organized after finishing the neuronal

training.

B.1.1 Research Design

The research design included a group of comparative components focusing

on the behavior of different parallel algorithms in multiple hardware platforms.

The control group includes the SOM algorithm running in a standard non-parallel

single node environment, the VSOM running in CPU, and the Batch SOM running

on a GPU establishing the baseline for our two VSOM experimental comparisons.

The experimental group is composed of a set of VSOM parallel algorithms

executing in different hardware architecture environments. Table 1 summarizes our

proposed research design for multiple experimental settings and our consideration

of success criteria.

* The proposed success criteria expect the Parallel VSOM to provide better Bt

and Nt performance results, and superior speed-up rates when compared against

the baseline algorithms executing in various hardware architectures. Furthermore,

to validate the quality of the produced maps, the topographic ta′ and estimated

embedded accuracy ea [2] of the maps will be calculated using the convergence

index ci for each one of the experimental settings. The Parallel VSOM will be

tested using a small, medium, and large maps sizes in addition to training the

maps with various datasets to reduce the possibility of datasets bias.

84

Parallel-VSOM Research Design
Control
Group

Experimental
1

Experimental
2

Success Criteria*

(Baseline)
Sequential
SOM
Intel I7

Parallel
VSOM
GPU

Parallel
VSOM
FPGA

Speedup > 1.0X;

{Exp1t, Exp2t} < Baseline T ime

ci ≈ Baseline Map Quality

(Baseline)
Vectorized
SOM
Intel I7

Parallel
VSOM
GPU

Parallel
VSOM
FPGA

Speedup > 1.0X;

{Exp1t, Exp2t} < Baseline T ime

ci ≈ Baseline Map Quality

(Baseline)
Parallel
BatchSOM

in (GPU)

Parallel
VSOM
GPU

Parallel
VSOM
FPGA

Speedup > 1.0X;

{Exp1t, Exp2t} < Baseline T ime

ci ≈ Baseline Map Quality

Table 1: Parallel-VSOM research design

B.1.2 Data Sets

As part of the research, two different sample types will be considered:(1)

The data sets selection used for the Parallel-VSOM experimentation and (2) the

architectural environments used to test the algorithms (See Hardware Architecture

for Parallel SOMs section for details).

The possibility of data sampling bias will be reduced by selecting datasets

from multiple domains. The selection will be representative of datasets commonly

used by the academic community for machine learning clustering experiments. The

following list provides details of the dataset selection that will be utilized for our

experimental tests:

• Iris [3]-a dataset with 150 instances and 4 attributes that describe three

85

different species of iris.

• Epil [4]-a dataset on 2-week seizure counts for 59 epileptics. The data consists

of 236 observations with 8 attributes. The dataset has two classes: placebo

and progabide, a drug for epilepsy treatment.

• Wisconsin Breast Cancer Dataset (wdbc) [5]-a dataset with 30 features and

569 instances related to breast cancer in Wisconsin. The features are com-

puted from a digitized image of a fine needle aspirate (FNA) of a breast mass.

They describe the characteristics of the cell nuclei present in the image. The

data set has two classes: malignant and benign.

B.2 Readme File

The following Readme file contains information related to the experimenta-

tion and tools utilized during the Par-VSOM and HLS-VSOM testing. The files

illustrate examples and screen capture of the script and the parameters used.

The Parallel-Vectorized Self-Organizing Maps is a software implementing Ko-

honen’s self-organizing maps with a number of distinguishing features: A very

efficient, parallel, stochastic training algorithm based on ideas from tensor alge-

bra.The new algorithm is implemented using parallel kernels on GPU hardware

accelerators. It provides performance increases over the original VSOM algorithm,

Py-Torch Quicksom parallel version, Tensorflow Xpysom parallel variant, as well as

Kohonen’s classic SOM iterative implementation. In this research we develop the

algorithm in some detail and then demonstrate its performance on several real-

world datasets. We also demonstrate that our new algorithm does not sacrifice

map quality for speed using the convergence index quality assessment.

I. Datasets Information: For our experiments we used three real-world datasets

to train our algorithms:

86

1. Iris - a dataset with 150 instances and 4 attributes that describes three

different species of Iris.

2. Epil - a dataset on two-week seizure counts for 59 epileptics. The data

consists of 236 observations with 8 attributes. The dataset has two classes -

placebo and progabide, a drug for epilepsy treatment.

3. Wisconsin Breast Cancer Dataset (wdbc) – a dataset with 30 features and

569 instances related to breast cancer in Wisconsin, for our experiment we

generated a random normalized sample of 100 instances. The dataset has

two classes: malignant and benign.

The datasets are available in the following links:

1. Iris:https://archive.ics.uci.edu/ml/datasets/iris

2. Epil:https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/epil.html

3. WDBC: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+

(Diagnostic)

II. External Software Packages: This research utilized various software package

and programming language to test and generate our experimental results. The

following list provides brief details and the links to find additional information or

download the open source packages.

1. R Popsom 4.0.1– For the CPU SOM, VSOM and Convergence Index ex-

periments we utilized the Popsom package version 4.0.1. Using the 4.0.1

version is very important because it allow us to maintain a constant learn-

ing through the training iterations. During our experiment, we confirmed

the constant learning rate allows the medium and large sizes maps to reach

https://archive.ics.uci.edu/ml/datasets/iris
https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/epil.html
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

87

higher convergence indexes. Note: we included an script to generate vsom

and som in each one of the dataset folders. The R package is available

@:https://github.com/lutzhamel/popsom/releases/tag/4.0.1

2. Xpysom- A high performance Self-Organizing Maps implemented in

Python/TensorFlow. This package uses the batch SOM parallel to gain

performances in a GPU environment. The Xpysom package is available

@:https://github.com/Manciukic/xpysom

3. Quicksom-A GPU implementation of the Self-Organizing Maps run-

ning in Python/PyTorch The Quicksom package is available @:

https://github.com/bougui505/quicksom

III. Par-VSOM Source code details: The source code for the Par-VSOM ex-

periments is included under the datasets folder structure. The Cuda/Thrust

source code for the Par-VSOM and the R-scripts for the convergence index

analysis are included in their respective folders (IRIS, EPIL, WDBC).

IV. Experimental Environment Setup:

1. System Setup Details: For all of our experiment we set the NVIDIA GPU

clocks to the following to the following setting (need sudo access and nvidia-

smi installed) a. NVIDIA V100 clock setup : sudo nvidia-smi –ac 877,1530

–i 0

2. How to Compile- Par VSOM in CUDA Compilation in AWS GPU system:

a. First, navigate to the directory containing the Par-vsom source code e.g.

/home/ubuntu/GPUCodeDirectory/ b. Execute the nvidia compiler using

the following command in the shell : nvcc -o par vsom par vsom source.cu

(that is nvcc –o executable source.cu)

https://github.com/lutzhamel/popsom/releases/tag/4.0.1
https://github.com/Manciukic/xpysom
https://github.com/bougui505/quicksom

88

3. How to run experiments command: a. Run the Par-vsom training with

the corresponding arguments (size of x, size of y , number of iterations) :

./par vsom 15 10 10000

Par-VSOM Executing in Shell screeshot

This means, execute the par vsom with a grid of 15x10 with 10000 iterations.

At the end of the run, the screen will display the total run time and the name

of the map (neuronal weights) file created. Figure 1- Executing Par-VSOM

command with arguments

4. How to run convergence index (CI) quality test: These tests require to have

the R language installed, the R-script command available in the shell and

the Popsom package 4.0.1 to run all the library files as expected. a. The

script can executed suing an R-script running the following command

Par-VSOM Executing in R screeshot

Figure 2- Rscript command with arguments The format of the command is

: Rscript “name of the script” arg1 arg2 arg3 arg4 For our application: arg1

89

= X size arg2 = Y size arg3 = number of iterations arg4 = name of the file

to be analyzed. If everything works as intended, the output will contain the

CI for CPU and CI for GPU. The idea of the script is to generate a CPU CI

that we can compare with our GPU CI to validate quality.

Par-VSOM Results

Figure 3- R-script Convergence Index output

5. How to configure the Xpysom commands: These tests require to have Python

and Tensorflow available in the system environment prior to run. Xpysom

also needs to be previously installed using the Python PIP tool. Since

Xpysom runs on top of Python, we need to specify the argument to be used

during the script execution.

Xpysom Parameters

Figure 4- XPysom SOM creation with parameters Here, we are creating a 200

x 150 map, with 4 dimensions, constant learning rate, linear decay and bubble

neighborhood. The script includes the rest of the python code to generate a

map, with this types of argument. The XpySom function provides additional

flexibility and offer multiple neighborhood functions to create maps.

6. How to run Quicksom commands: Quicksom require to have Python and Py-

torch available in the system environment prior to running. Also, Quicksom

90

can be invoke as a Python library. Since Quicksom runs on top of Python, we

need to specify the arguments that will be used during the script execution.

The Quicksom package interface, does not permit the users to manipulate

the learning rate. Due to out experimental setup, we were required to modify

the included SOM library to set the learning rate to constant inside som.py.

The fix included the following modification: From : alpha op = self.alpha

* learning rate op To: alpha op = self.alpha In addition, to configure the

Quicksom parameters for the som, we specify the values inside the python

script:

Quicksom Parameters

Figure 5 - Quicksom SOM configuration.

7. How to run som/vsom commands: The vsom and som are generating using

R scripts. Each one of the dataset folders includes a script to generate a

vsom or som (e.g. vsom or som iris.R). Replacing the algorithm parameter

“vsom,som”, allows the user to select the type of som. The script allows the

users to modify the properties of the algorithm:

91

Table B.10: Algorithm Parameters.

code

ms = map.build(data,..
Learning Rate η

xdim = 15,
ydim = 10,
alpha = 0.7,

train = 100000,
algorithm=“vsom”)

end time = Sys.time()
delta time = end time - start time

print(delta time)
print(map.convergence(ms,verb=TRUE))

B.3 Source Code

Under this section we provide an example of the source code for the PAR-

VSOM CUDA Thrust source and the HLS-VSOM Opencl Driver, Kernels and

configuration files.

B.3.1 Par-VSOM Cuda Kernel

The Par-VSOM CUDA Thrust Code

// i r i s −par−vsom . cu/

// v e r s i o n 3 .0

// Author (s) :Omar X. Rivera Morales

//

// This f i l e c o n s t i t u e s a s e t o f r o u t i n e s which are u s e f u l in c o n s t r u c t i n g

// and e v a l u a t i n g s e l f −o r g an i z i n g maps (SOMs) in a GPU environment .

// The a p p l i c a t i o n a l l ow s t h e user to d e f i n e t h e s i z e o f t h e maps and the number

// i t e r a t i o n s as pa r t o f t h e arguments :

//Usage : v s om ex e cu t a b l e . exe [X s i z e] . . . [Y s i z e] . . . [Number i t e r] . . .

//asumming we want a 150 x 100 amps wi th a 100 i t e r a t i o n s we run :

// v s om ex e cu t a b l e . exe 150 100 1000

// L icense

92

// This program i s f r e e s o f twa r e ; you can r e d i s t r i b u t e i t and/ or modi fy i t under

// th e terms o f t h e GNU General Pub l i c L i cense as p u b l i s h e d by t he Free So f tware

// Foundation .

// This program i s d i s t r i b u t e d in t h e hope t h a t i t w i l l be u s e f u l , bu t WITHOUT ANY

// WARRANTY; w i t hou t even the imp l i e d warranty o f MERCHANTABILITY or FITNESS FOR A

// PARTICULAR PURPOSE. See t h e GNU General Pub l i c L i cense f o r more d e t a i l s .

//

// A copy o f t h e GNU General Pub l i c L i cense i s a v a i l a b l e a t

// h t t p s : //www. gnu . org / l i c e n s e s

//Load L i b r a r i e s

#include <th rus t / d ev i c e v e c t o r . h>

#include <th rus t / ho s t v e c t o r . h>

#include <th rus t / transform . h>

#include <th rus t / sequence . h>

#include <th rus t /copy . h>

#include <th rus t / f i l l . h>

#include <th rus t / r ep l a c e . h>

#include <th rus t / f un c t i ona l . h>

#include <th rus t / i t e r a t o r / z i p i t e r a t o r . h>

#include <th rus t /random . h>

#include <th rus t / f un c t i ona l . h>

#include <iostream>

#include <fstream> // s t d : : i f s t r e am

#include <s t r ing>

#include <sstream>

#include <s t d i o . h>

#include <s t d l i b . h> /∗ srand , rand ∗/

#include <time . h> /∗ t ime ∗/

#include <ctime>

#include <cmath>

#include <algorithm> // s t d : : max

#include <vector>

#include <omp . h>

//For random sample

#include <random>

#include <algorithm>

#include <i t e r a t o r>

/// Pro t o t yp e s ///

// We ’ l l use a 2− t u p l e to s t o r e our 2d v e c t o r c o o r d i n a t e s t y p e s

typedef th rus t : : tuple<f loat , f loat> Float2 ;

// This f un c t o r implements t h e RowSum f o r 2d v e c t o r s

struct RowSum 2d : public th rus t : : unary funct ion<Float2 , f loat>

{

h o s t d e v i c e

f loat operator () (const Float2& a) const

{

93

return th rus t : : get<0>(a) + thrus t : : get<1>(a) ;

}

} ;

// This f un c t o r implements hood f un c t i o n

struct hood func

{

int n e i s i z e ;

hood func (int n s) : n e i s i z e (n s) {} ;

h o s t d e v i c e

f loat operator () (f loat x) const

{

i f (sq r t (x) < n e i s i z e ∗ 1 . 5)

{return 1 ;}

else

{return 0 ;}

}

} ;

//This f un c t o r implements t h e update M (upda t e s t h e neuron we i a gh t s)

struct update m functor

{

template <typename Tuple>

h o s t d e v i c e

void operator () (Tuple t)

{

th rus t : : get<3>(t) = thrus t : : get<3>(t) − (thrus t : : get<1>(t) ∗

(thrus t : : get<0>(t))) ∗ th rus t : : get<2>(t) ;

}

} ;

//This f un c t o r implements f i n d t h e winning neuron (BMU)

struct f ind bmu functor

{

template <typename Tuple>

h o s t d e v i c e

void operator () (Tuple t)

{

th rus t : : get<2>(t) = pow(thrus t : : get<0>(t) − th rus t : : get<1>(t) , 2) ;

}

} ;

// We ’ l l use a 4− t u p l e to s t o r e our 4d v e c t o r t ype

typedef th rus t : : tuple<f loat , f loat , f loat , f loat> Float4 ;

// This f un c t o r implements t h e RowSum f o r 4d v e c t o r s

struct RowSum 4d : public th rus t : : unary funct ion<Float4 , f loat>

{

h o s t d e v i c e

94

f loat operator () (const Float4& a) const

{

return th rus t : : get<0>(a) + thrus t : : get<1>(a) +

thrus t : : get<2>(a) + thrus t : : get<3>(a) ;

}

} ;

//This f un c t o r e x e c u t e s t h e PI and De l ta t r an s f o rming t h e c o o r d i n a t e s

struct f i n d n e i f u n c t o r

{

template <typename Tuple>

h o s t d e v i c e

void operator () (Tuple t)

{

th rus t : : get<2>(t) = pow(thrus t : : get<0>(t) − th rus t : : get<1>(t) , 2) ;

}

} ;

// Funct ion D e f i n i t i o n s ///

// Return a ho s t v e c t o r w i th random va l u e s in t h e range (0 ,1) f o r t h e I n i t i a l

// we i g h t s

th rus t : : hos t vec to r<f loat> random vector (const s i z e t N,

unsigned int seed = thrus t : : de fau l t random eng ine : : d e f au l t s e e d)

{

th rus t : : de fau l t random eng ine rng (seed) ;

th rus t : : u n i f o rm r e a l d i s t r i b u t i o n <f loat> u01 (0 . 0 f , 1 . 0 f) ;

th rus t : : hos t vec to r<f loat> temp(N) ;

for (s i z e t i = 0 ; i < N; i++) {

temp [i] = u01 (rng) ;

}

return temp ;

}

////Main program sequence o f t h e Par−VSOM

// the e x e c u t a b l e r e c e i v e s 3 argumentes (x s i z e , y s i z e , number o f i t e r s)

int main (int argc , char ∗argv [])

{

int x va l ;

x va l=a to i (argv [1]) ;

int y va l ;

y va l=a to i (argv [2]) ;

int i t e r s v a l ;

i t e r s v a l=a to i (argv [3]) ;

int N;

int new n = x va l ∗ y va l ;

N = new n ;

// I n i t t h e GPU b e f o r e s t a r t p r o c e s s i n g

95

cudaFree (0) ;

// ///

// I n i t C locks to measure t o t a l t im e e l a p s e d

std : : c l o c k t c s t a r t = std : : c l o ck () ;

std : : c l o c k t c end ;

// Def ine d e v i c e (GPU) v e c t o r to ho l d t r a i n i n g data (4 columns)

th rus t : : d ev i c e v e c t o r < f loat > f i l e d 0 ;

th rus t : : d ev i c e v e c t o r < f loat > f i l e d 1 ;

th rus t : : d ev i c e v e c t o r < f loat > f i l e d 2 ;

th rus t : : d ev i c e v e c t o r < f loat > f i l e d 3 ;

// Def ine d e v i c e i t e r a t o r s to c r e a t e t u p l e (4 colums matr ix)

typedef th rus t : : d ev i c e vec to r<f loat > : : i t e r a t o r F l o a t I t e r a t o r d ;

typedef th rus t : :

tuple<F loa t I t e r a t o r d , F l oa t I t e r a t o r d , F l oa t I t e r a t o r d , F l oa t I t e r a t o r d>

Floa t I t e ra to rTup l e d ;

typedef th rus t : : z i p i t e r a t o r <Float I t e ra to rTup le d> F l oa t 4 I t e r a t o r d ;

srand ((unsigned) time (NULL)) ;

// Vec tors d e c l a r a t i o n :

// Tra in i g v e c t o r D (l x d)

th rus t : : h o s t v e c t o r < f loat > f i l e v e c t o r d ;

//Neuron v e c t o r M (n x d)

th rus t : : d ev i c e vec to r<f loat> M vector d = random vector (N∗4 , rand () % 100000 + 1) ;

// Vector X (Holds t h e s e l e c t e d t r a i n i n g i n s t an c e)

// ’X ’ v e c t o r N∗4=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> X vector d (N∗4 , 0) ;

// Vector De l ta ’D ’

// ’D ’ v e c t o r ’ De l t a ’ N∗4=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> D vector d (N∗4 , 0) ;

// Vector PI ’P ’

// v e c t o r ’P ’ v e c t o r N∗4=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> P vector d (N∗4 , 0) ;

//The ’S ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> S(N, 0) ;

// Vector Pc ’ P coo rd ina t e s ’ f o r gamma f un c t i o n

// v e c t o r Pc N∗2 , c o o r d i n a t e s f o r BMU x and y in one v e c t o r

th rus t : : d ev i c e vec to r<f loat> P coors (N∗2 , 0) ;

// v e c t o r i s a merger o f a l l c o o r d i na t e x and y v e c t o r N∗2 =s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> P co o r s a l l (N∗2 , 0) ;

96

// Vector PI in c o o r d i n a t e s (gamma)

// v e c t o r to con ta in t h e PI c o o r d i n a t e s

th rus t : : d ev i c e vec to r<f loat> PI coor s (N∗2 , 0) ;

// Vector D coor d (h o l d s a l l t h e d i s t a n c e s)

// n 0 components o f t h e ’ D coor ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> D coor d (N, 0) ;

// Vector hood to ne i (gamma)

// v e c t o r to con ta in t h e ne i (1 , 0)

th rus t : : d ev i c e vec to r<f loat> hood vec d (N, 0) ;

// v e c t o r to con ta in t h e ne i (1 , 0)

th rus t : : d ev i c e vec to r<f loat> hood vec d dim (N∗4 , 0) ;

//Mask v e c t o r in GPU

th rus t : : d ev i c e vec to r<f loat> mask vec d (N, 0) ;

//Neghborhood cache (Huge v e c t o r c on t a i n i n g t h e ne i f o r each i n s t an c e)

th rus t : : d ev i c e vec to r<f loat> ne i cache (new n ∗ N, 0) ;

// Vector f o r Eta v a l u e s

th rus t : : d ev i c e vec to r<f loat> Eta d (N∗4 , 0) ;

// F i l l Eta v e c t o r w i th e t a con tan t v a l u e

th rus t : : f i l l (Eta d . begin () , Eta d . end () , 0 . 7) ;

// Create P Matr ix v e c t o r s (h o l d s t h e c o o r d i n a t e s)

// n 0 (x) components o f t h e ’ P coor ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> P coor0 (N, 0) ;

// n 1 (y) components o f t h e ’ P coor ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> P coor1 (N, 0) ;

// I n i t P Matr ix w t i h sequence f o r c a l c u l a t i o n s (h o l d s t h e c o o r d i n a t e s)

th rus t : : sequence (P coor0 . begin () , P coor0 . end ()) ;

th rus t : : sequence (P coor1 . begin () , P coor1 . end ()) ;

// Create Operator Matr ix f o r c oo r d i na t e c a l c u l a t i o n

// f i l l w i t h x s i z e v a l u e s to c a l c u l a t e c oo r d i na t e sys tem

th rus t : : d ev i c e vec to r<f loat> Oper row (N) ;

th rus t : : f i l l (Oper row . begin () , Oper row . end () , x va l) ;

th rus t : : d ev i c e vec to r<f loat> Oper co l (N) ;

th rus t : : f i l l (Oper co l . begin () , Oper co l . end () , x va l) ;

// Ca l c u l a t e X coo r d i n a t e s

th rus t : : t ransform (P coor0 . begin () , P coor0 . end () , Oper row . begin () , P coor0 . begin () ,

th rus t : : d iv ides<int > ()) ;

// Ca l c u l a t e y c o o r d i n a t e s

th rus t : : t ransform (P coor1 . begin () , P coor1 . end () , Oper co l . begin () , P coor1 . begin () ,

th rus t : : modulus<int > ()) ;

97

// I n i t o f v e c t o r f o r c oo r i dna t e merge in b i g v e c t o r

P co o r s a l l . r e s i z e (P coors . s i z e ()) ;

th rus t : : copy (P coor0 . begin () , P coor0 . end () , P c o o r s a l l . begin ()) ;

th rus t : : copy (P coor1 . begin () , P coor1 . end () , P c o o r s a l l . begin ()+N) ;

// Vec tors f o r C Matrix

// n 0 components o f t h e ’C ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> C0 coor (N, 0) ;

// n 1 components o f t h e ’C ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> C1 coor (N, 0) ;

// Def ine d e v i c e i t e r a t o r s to c r e a t e t u p l e c o o r d i n a t e s

typedef th rus t : : d ev i c e vec to r<f loat > : : i t e r a t o r

F l o a t I t e r a t o r c ;

typedef th rus t : : tuple<F l oa t I t e r a t o r c , F l o a t I t e r a t o r c>

F loa t I t e r a t o rTup l e c ;

typedef th rus t : : z i p i t e r a t o r <Floa t I t e ra to rTup l e c>

F l o a t 2 I t e r a t o r c ;

// I t e r a t o r f o r Row2 coo r d i n a t e s

F l o a t 2 I t e r a t o r c f i r s t P I c o o r = thrus t : : make z i p i t e r a t o r

(thrus t : : make tuple (PI coor s . begin () ,

PI coor s . begin () + N)) ;

F l o a t 2 I t e r a t o r c l a s t P I c o o r = thrus t : : make z i p i t e r a t o r

(thrus t : : make tuple (PI coor s . begin ()

+ N, PI coor s . end ())) ;

// Create i t e r a t o r f o r C Matrix (t ype F l o a t 2 I t e r a t o r)

F l o a t 2 I t e r a t o r c f i r s t C = thrus t : : make z i p i t e r a t o r

(thrus t : : make tuple (C0 coor . begin () , C1 coor . begin ())) ;

F l o a t 2 I t e r a t o r c l a s t C = thrus t : : make z i p i t e r a t o r

(thrus t : : make tuple (C0 coor . end () , C1 coor . end ())) ;

// Create De l t a c oo r Matr ix //

// //////////////////////////////

// n 0 components o f t h e ’C ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> D0 coor (N, 0) ;

// n 1 components o f t h e ’C ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> D1 coor (N, 0) ;

// Create i t e r a t o r f o r D Matrix (t ype F l o a t 2 I t e r a t o r)

F l o a t 2 I t e r a t o r c f i r s t D c o o r = thrus t : : make z i p i t e r a t o r

(thrus t : : make tuple (D0 coor . begin () , D1 coor . begin ())) ;

F l o a t 2 I t e r a t o r c l a s t D coo r = thrus t : : make z i p i t e r a t o r

(thrus t : : make tuple (D0 coor . end () , D1 coor . end ())) ;

// Create PI coor Matr ix ///

// //////////////////////////////

// n 0 components o f t h e ’ P i coor ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> P0 coor (N, 0) ;

// n 1 components o f t h e ’ P i coor ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> P1 coor (N, 0) ;

98

F l o a t 2 I t e r a t o r c f i r s t P c o o r = thrus t : : make z i p i t e r a t o r

(thrus t : : make tuple (P0 coor . begin () , P1 coor . begin ())) ;

F l o a t 2 I t e r a t o r c l a s t P c oo r = thrus t : : make z i p i t e r a t o r (

th rus t : : make tuple (P0 coor . end () , P1 coor . end ())) ;

// Create D coor Matr ix ///

// //////////////////////////////

// n 0 components o f t h e ’ D coor ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> D coor (N, 0) ;

// Create hood v e c t o r

// n 0 components o f t h e ’ D coor ’ v e c t o r N=s i z e , and i n i t t o 0

th rus t : : d ev i c e vec to r<f loat> hood vec (N, 0) ;

// I t e r a t o r o f M Matrix (Random Neuron Weights) f o r debug

F l oa t 4 I t e r a t o r d f i r s t M1= thrus t : : make z i p i t e r a t o r (th rus t : : make tuple

(M vector d . begin () , M vector d . begin () + (N ∗ 1) , M vector d . begin () +

(N ∗ 2) , M vector d . begin () + (N∗ 3))) ;

Float4 m 1 = f i r s t M1 [0] ;

// s t d : : cou t << ” Pr in t out M Matrix (Random Weights)” << s t d : : end l ;

// f o r (s i z e t i = 0 ; i < N; i++)

// {

// m 1 = f i r s t M1 [i] ;

// s t d : : cou t << ”(” << t h r u s t : : ge t <0>(m 1) << ” ,”

<< th rus t : : get<1>(m 1) << ” , ” << th rus t : : get<2>(m 1) << ” , ”

<< th rus t : : get<3>(m 1) << ”) ” << std : : endl ;

// }

//Randow v a r i a b l e s e l e c t i o n f o r Xk (use s i z e o f d a t a s e t + 1)

int v1 = rand () % 149 + 1 ;

// I n i t i a l i z e t h e Matr ix s i z e to read Matr ix D Data

f loat f i l e ma t [1 5 0] [4] ;

// read Data f i l e and l oad i n t o cpu array

std : : i f s t r e am reader (” i r i s . data”) ;

i f (! r eader)

std : : c e r r << ”Error opening f i l e ” ;

else

{

for (int i = 0 ; i < 150 ; i++)

{ for (int j = 0 ; j < 4 ; j++)

{

reader >> f i l e ma t [i] [j] ;

r eader . i gnore () ;

}

f i l e d 0 . push back (f i l e ma t [i] [0]) ;

f i l e d 1 . push back (f i l e ma t [i] [1]) ;

f i l e d 2 . push back (f i l e ma t [i] [2]) ;

f i l e d 3 . push back (f i l e ma t [i] [3]) ;

}

99

}

// l oad data from cpu array i n t o d e v i c e (GPU) v e c t o r

for (int j = 0 ; j < 4 ; j++)

{ for (int i = 0 ; i < 150 ; i++)

{

f i l e v e c t o r d . push back (f i l e ma t [i] [j]) ;

}

}

// Def ine neurons f i l e and o t h e r v a r i a b l e s b e f o r e epocs l oop

std : : o fstream neuronsF i l e ;

// I n i t t r a i n i t e r a t i o n s

int t r a i n = i t e r s v a l ;

// I n i t index o f c as 0

int c index = 0 ;

// Dec lare x , y as i n t

int x , y ;

// Dec lare t u p l e

th rus t : : pair<th rus t : : d ev i c e vec to r<f loat > : : i t e r a t o r , th rus t : : d ev i c e vec to r<f loat > : :

i t e r a t o r> tup l e v ;

// Va r i a b l e s f o r ne i ghborhood c a l c u l a t i o n s

int max val = max(x val , y va l) ;

int n e i s i z e = max val + 1 ;

f loat temp val = (f loat) t r a i n / n e i s i z e ;

int n e i s t e p = c e i l ((f loat) temp val) ;

int ne i c ount e r = 0 ;

i f (n e i s t e p == 0)

{

n e i s t e p = 1 ;

}

// Dec l a t e v e c t o r D i t e r a t o r s f o r Rowsum redu c t i on

F l oa t 4 I t e r a t o r d v e c t o r f i r s t D = thrus t : : make z i p i t e r a t o r (th rus t : :

make tuple (P vector d . begin () , P vector d . begin () + (N ∗ 1) , P vector d . begin ()

+ (N ∗ 2) , P vector d . begin () + (N∗ 3))) ;

F l o a t 4 I t e r a t o r d v e c t o r l a s t D = thrus t : : make z i p i t e r a t o r (th rus t : :

make tuple (P vector d . begin () + (N ∗ 1) , P vector d . begin () + (N ∗ 2) , P vector d . begin ()

+ (N ∗3) , P vector d . begin () + (N∗4))) ;

//Par−VSOM Main t r a i n i n g ”Epocs ” l o o p s ///

for (int epocs = 0 ; epocs < t r a i n ; epocs++)

{

100

// Ver i f y i f we need to reduce ne i ghborhood s i z e ///////////

ne i c ount e r = ne i coun t e r + 1 ;

i f (n e i c ount e r == ne i s t e p)

{

ne i c ount e r = 0 ;

n e i s i z e = n e i s i z e − 1 ;

// Clear t h e masking cache array

th rus t : : f i l l (mask vec d . begin () , mask vec d . end () , 0) ;

}

// ///

// S t a r t o f Best Matching Uni t s Search (BMU)///////////////////////////////////

// S e l e c t ramdow t r a i n i n g i n s t an c e index

v1 = rand () % 149 + 1 ;

// F i l l v e c t o r X wi th Xk v a l u e s X <−− 1ˆn ∗ Xk

th rus t : : f i l l (X vector d . begin () , X vector d . begin () + (N ∗ 1) , f i l e v e c t o r d [v1]) ;

th rus t : : f i l l (X vector d . begin () + (N ∗ 1) , X vector d . begin () +

(N ∗ 2) , f i l e v e c t o r d [150 ∗ 1 + v1]) ;

th rus t : : f i l l (X vector d . begin () + (N ∗ 2) , X vector d . begin () +

(N ∗ 3) , f i l e v e c t o r d [150 ∗ 2 + v1]) ;

th rus t : : f i l l (X vector d . begin () + (N ∗ 3) , X vector d . begin () +

(N ∗ 4) , f i l e v e c t o r d [150 ∗ 3 + v1]) ;

// Ca l c u l a t e d e l t a v e c t o r :

th rus t : : t ransform (M vector d . begin () , M vector d . end () , X vector d . begin () ,

D vector d . begin () , th rus t : : minus<f loat > ()) ;

// Ca l c u l a t e PI v e c t o r :

th rus t : : t ransform (D vector d . begin () , D vector d . end () , D vector d . begin () ,

P vector d . begin () , th rus t : : mu l t i p l i e s<f loat > ()) ;

// Ca l c u l a t e S Vector w i th Rowsum redu c t i on and s t o r e in S v e c t o r

th rus t : : t ransform (v e c t o r f i r s t D , ve c to r l a s t D , S . begin () , RowSum 4d ()) ;

//Find minimum

tup l e v = thrus t : : minmax element (S . begin () , S . end ()) ;

c index = (tup l e v . f i r s t − S . begin ()) ;

//Done wi th BMU///

//Check i f ne i ghborhood i s cached

i f (mask vec d [c index] == 1)

{

th rus t : : copy (ne i ca che . begin () + (new n ∗ c index) , ne i ca che . begin ()+

(new n ∗ c index) + N, hood vec d . begin ()) ;

}

101

// i f not in cache Ca l c u l a t e t h e ne i

else

{

mask vec d [c index] = 1 ;

// S t a r t o f Update ne i ghborhood ///

//Gamma Funct ion /////

// I n i t PC x

x = P coor0 [c index] ;

// I n i t PC y

y = P coor1 [c index] ;

// F i l l Matr ix C wi th index c o o r d i n a t e s X <−− 1ˆm ∗ Pc

th rus t : : f i l l (P coors . begin () , P coors . begin ()+ N, x) ;

th rus t : : f i l l (P coors . begin ()+ N, P coors . end () , y) ;

//Apply t h e f i n d c o o r d i n a t e s ne i ghborhood f un c t o r t r an s f o rma t i on (PI and De l ta) to

the cood inate s vec tor (vec tor with X and Y)

thrus t : : f o r e a ch (thrus t : : make z i p i t e r a t o r (th rus t : : make tuple (P c o o r s a l l . begin () ,

P coors . begin () , PI coor s . begin ())) ,

th rus t : : make z i p i t e r a t o r (th rus t : : make tuple (P c o o r s a l l . end () ,

P coors . end () , PI coor s . end ())) ,

f i n d n e i f u n c t o r ()) ;

// F ina l l y , we pass t h e z i p i t e r a t o r s i n t o t rans form () as i f t h ey

// were ’ normal ’ i t e r a t o r s f o r a d e v i c e v e c t o r <Float2 >.

th rus t : : t ransform (f i r s t P I c o o r , l a s t P I c oo r , D coor d . begin () , RowSum 2d ()) ;

// Ca l c u l a t e t h e hood us ing t h e hood func

th rus t : : t ransform (D coor d . begin () , D coor d . end () , hood vec d . begin () , hood func (n e i s i z e)) ;

//Copy c a l c u l a t e d hood in t he cache

th rus t : : copy (hood vec d . begin () , hood vec d . end () , n e i ca che . begin () + (new n ∗ c index)) ;

}

//End o f Gamma Funct ion

//New M Matrix Ca l c u l a t i o n

// De l ta ∗ Hood s t o r e d in De l ta

th rus t : : t ransform (D vector d . begin () , D vector d . begin () + (N ∗ 1) ,

hood vec d . begin () , D vector d . begin () , th rus t : : mu l t i p l i e s<f loat > ()) ;

th rus t : : t ransform (D vector d . begin () + (N ∗ 1) , D vector d . begin ()

+ (N ∗ 2) , hood vec d . begin () , D vector d . begin ()+ (N ∗ 1) , th rus t : : mu l t i p l i e s<f loat > ()) ;

th rus t : : t ransform (D vector d . begin () + (N ∗ 2) , D vector d . begin ()

+ (N ∗ 3) , hood vec d . begin () , D vector d . begin ()+ (N ∗ 2) , th rus t : : mu l t i p l i e s<f loat > ()) ;

th rus t : : t ransform (D vector d . begin () + (N ∗ 3) , D vector d . end () ,

hood vec d . begin () , D vector d . begin ()+ (N ∗ 3) , th rus t : : mu l t i p l i e s<f loat > ()) ;

102

// Constant l e a r n i n g r a t e e t a v a l u e = 0 .7

th rus t : : f i l l (Eta d . begin () , Eta d . end () , 0 . 7) ;

// De l ta ∗ e t a s t o r e s in De l ta

th rus t : : t ransform (D vector d . begin () , D vector d . end () , Eta d . begin () ,

D vector d . begin () , th rus t : : mu l t i p l i e s<f loat > ()) ;

//M − De l ta s t o r e s in M

th rus t : : t ransform (M vector d . begin () , M vector d . end () , D vector d . begin () ,

M vector d . begin () , th rus t : : minus<f loat > ()) ;

//Write to F i l e t h e neurons we i gh t i f we are in t h e l a s t i t e r a t i o n

i f (epocs == tra in −1)

{

using namespace std ;

// Stop c l o c k

c end = std : : c l o ck () ;

// F i l e Name b u f f e r and f o rma t t i n g

char f i l ename [] = ” ir i s GPU neurons ” ;

char underScore [] = ” ” ;

char txt [] = ” . txt ” ;

char x dim [3 3] ;

char y dim [3 3] ;

char i t e r v [3 3] ;

s np r i n t f (x dim , s izeof (x dim) , ”%d” , x va l) ;

s np r i n t f (y dim , s izeof (y dim) , ”%d” , y va l) ;

s np r i n t f (i t e r v , s izeof (i t e r v) , ”%d” , i t e r s v a l) ;

t ime t t = time (0) ; // g e t t ime now

struct tm ∗ now = lo ca l t ime (& t) ;

char t ime bu f f e r [1 2 0] ;

s t r f t ime (t ime bu f f e r , 120 , ”%X” ,now) ;

s t r c a t (f i l ename , underScore) ;

s t r c a t (f i l ename , x dim) ;

s t r c a t (f i l ename , underScore) ;

s t r c a t (f i l ename , y dim) ;

s t r c a t (f i l ename , underScore) ;

s t r c a t (f i l ename , i t e r v) ;

s t r c a t (f i l ename , underScore) ;

s t r c a t (f i l ename , t ime bu f f e r) ;

s t r c a t (f i l ename , underScore) ;

std : : cout << f i l ename << std : : endl ;

s t r c a t (f i l ename , txt) ;

std : : cout<<f i l ename<<std : : endl ;

neuronsF i l e . open (f i l ename) ;

// I t e r a t o r to wr i t o to f i l e

F l oa t 4 I t e r a t o r d f i r s t M1= thrus t : : make z i p i t e r a t o r (th rus t : :

make tuple (M vector d . begin () , M vector d . begin () + (N ∗ 1) , M vector d . begin ()

103

+ (N ∗ 2) , M vector d . begin () + (N∗ 3))) ;

Float4 m 1 = f i r s t M1 [0] ;

//Loop to w r i t e to f i l e

for (s i z e t i = 0 ; i < new n ; i++)

{

m 1 = f i r s t M1 [i] ;

neuronsF i l e << th rus t : : get<0>(m 1) << ” ” << th rus t : : get<1>(m 1) << ” ”

<< th rus t : : get<2>(m 1) << ” ” << th rus t : : get<3>(m 1) << ”\n” ;

}

}

}//New end o f main f o r l o0p ///

// Close neuron we i gh t f i l e

neuronsF i l e . c l o s e () ;

// Pr in t out t o t a l t r a i n i n g t ime in ms

f loat t ime e lapsed ms = 1000.0 ∗ (c end−c s t a r t) / CLOCKS PER SEC;

std : : cout << ”CPU time used : ” << t ime e lapsed ms << ” ms\n” ;

}

B.3.2 HLS-VSOM
The HLS-VSOM Openl Code (CPU Driver)

// i r i s −ho s t . cpp /

// v e r s i o n 1 .0

// Author (s) :Omar X. Rivera Morales

//

// This f i l e c o n s t i t u e s a s e t o f r o u t i n e s which are u s e f u l in c o n s t r u c t i n g

// and e v a l u a t i n g s e l f −o r g an i z i n g maps (SOMs) in a FPGA environment .

// The a p p l i c a t i o n a l l ow s t h e user to d e f i n e t h e d r i v e r and s e t up to cumunicate w i th

the VSOM FPGA Kernel

//Usage : This w i l l run the CPU d r i v e r f o r t h e FPGA ke r n e l ” v som kerne l . c l ” f i l e

//Note : Requ i re s Make f i l e t o run

#include ” xc l2 . hpp”

#include <vector>

#include <s t d i o . h>

#include <s t d l i b . h>

#include <s t r i n g . h>

#include <time . h>

#include <sys / types . h>

#include <iostream>

#include <iomanip>

104

#include <s t r ing>

#include <fstream>

#include <math . h>

#include <vector>

#include <sstream>

#include <type in fo>

#include <algorithm>

#include <random>

#include <chrono>

//Const D e f i n i t i o n s

stat ic const int DS ROWS = 150 ; //Rows in t h e d a t a s e t

stat ic const int DIMS SIZE = 4 ; // D imen t i ona l i t y o f Datase t and Neurons

stat ic const int DS SIZE = DS ROWS ∗ DIMS SIZE ; //Based on d a t a s e t

stat ic const int NEURONS MAP X = 8 ; //Neuron Map s i z e X

stat ic const int NEURONS MAP Y = 8 ; //Neuron Map s i z e Y

stat ic const int NEURONS W SIZE = (NEURONS MAP X ∗ NEURONS MAP Y) ∗ DIMS SIZE ;

//Based on Neuron Map

stat ic const int COOR SIZE = NEURONS MAP X ∗ NEURONS MAP Y;

//Based on Neuron Map e . g 15 x 10

using std : : de fau l t random eng ine ;

using std : : generate ;

using std : : u n i f o rm r e a l d i s t r i b u t i o n ;

using std : : u n i f o rm i n t d i s t r i b u t i o n ;

using std : : vec tor ;

f loat gen random f loat () {

// s t a t i c d e f au l t r andom eng i n e e ;// turn t h i s on f o r same randomw va l u e s

stat ic de fau l t random eng ine e (std : : random device {}()) ; // turn t h i s on f o r d i f f e r e n t randow va l u e s

stat ic un i f o rm r e a l d i s t r i b u t i o n <f loat> d i s t (0 . 0 , 1 . 0) ;

return d i s t (e) ;

}

f loat gen random int () {

// s t a t i c d e f au l t r andom eng i n e e ; // turn t h i s on f o r same randomw va l u e s

stat ic de fau l t random eng ine e (std : : random device {}()) ; // turn t h i s on f o r d i f f e r e n t randow va l u e s

stat ic un i f o rm in t d i s t r i bu t i o n<int> d i s t (0 , DS ROWS − 1) ; //random s e l e c t i o n o f t r a i n i n g i n s t a c e

return d i s t (e) ;

}

stat ic const std : : s t r i n g e r ro r message =

”Error : Result mismatch :\n”

” i = %d CPU r e s u l t = %d Device r e s u l t = %d\n” ;

// This example i l l u s t r a t e s t h e very s imp l e OpenCL example t h a t per forms

// an a d d i t i o n on two v e c t o r s

int main (int argc , char∗∗ argv) {

105

i f (argc != 2) {

std : : cout << ”Usage : ” << argv [0] << ” <XCLBIN Fi le>” << std : : endl ;

return EXIT FAILURE ;

}

std : : s t r i n g b ina ryF i l e = argv [1] ;

// compute t h e s i z e o f array in b y t e s

s i z e t s i z e i n b y t e s d s = DS SIZE ∗ s izeof (f loat) ;

s i z e t s i z e i n b y t e s d s r ow = 100000 ∗ s izeof (int) ;

//Holds t h e random t r a i n i n g v e c t o r i nd e x e s

s i z e t s i z e i n b y t e s n e u r = NEURONS W SIZE ∗ s izeof (f loat) ;

s i z e t s i z e i n b y t e s c o o r = COOR SIZE ∗ s izeof (f loat) ;

c l i n t e r r ;

c l : : CommandQueue q ;

c l : : Kernel krnl vsom ;

c l : : Context context ;

// c r e a t e Matr ix f o r d a t a s e t

f loat f i l e ma t [DS ROWS] [DIMS SIZE] ;

f loat f i l e ma t 1d [NEURONS W SIZE] ;

// Create F i l e f o r ou tpu t

std : : o fstream n e u r o n s f i l e (” i r i s n e u r o n s . txt ”) ;

int counter = 0 ;

// Def ine and i n i t v e c t o r X

vector<f loat , a l i g n ed a l l o c a t o r <int> > source x (NEURONS W SIZE, 0) ;

p r i n t f (”\n Print out F i l e Matrix:>> : \n \n”) ;

// s t o r i n g map data in map t i l e s

std : : i f s t r e am reader (” i r i s . csv ”) ;

i f (! r eader)

std : : c e r r << ”Error opening f i l e ” ;

else

{

for (int i = 0 ; i < DS ROWS; i++)

{

for (int j = 0 ; j < DIMS SIZE ; j ++)

{

reader >> f i l e ma t [i] [j] ;

f i l e ma t 1d [counter] = f i l e ma t [i] [j] ;

counter++;

reader . i gnore () ;

}

}

}

// d i s p l a y i n g map

//when n = amount o f t i l e s on x ax i s , c r e a t e a new l i n e f o r t h e nex t s e t

counter = 0 ;

for (int i = 0 ; i < DS ROWS; i++)

106

{

for (int j = 0 ; j < DIMS SIZE ; j++)

{

std : : cout << ” [” << counter <<”] ” << f i l e ma t [i] [j] << ” ” ;

i f (j == 3)

std : : cout << ”\n” ;

}

counter++;

}

for (int i = 0 ; i < 100 ; i++)

{

std : : cout << ” [”<< i <<”] ”<<f i l e ma t 1d [i]<< ” ” ;

std : : cout << ”\n” ;

}

std : : cout << std : : endl <<”End o f F i l e Matrix Pr int ” << std : : endl ;

srand (time (0)) ;

// Def ine an Data v e c t o r D to ho l d data s e t

vector<f loat , a l i g n ed a l l o c a t o r <int> > s ou r c e d s ;

for (int i = 0 ; i < 150 ∗ 4 ; i++)

{

s ou r c e d s . push back (f i l e ma t 1d [i]) ;

}

std : : cout << ”The content o f the ds vector i s : ” << std : : endl ;

for (int i =0; i < s ou r c e d s . s i z e () ; i++)

{

i f (i % 4 == 0){

std : : cout << ”\n” ;

}

std : : cout << s ou r c e d s . at (i) << ’ ’ ;

}

// Def ine an x k i n i t v e c t o r (h o l d s t h e random)

vector<int , a l i g n ed a l l o c a t o r <int> > s ou r c e x k (100000 , 0) ;

c l i n t i t e r s = 1 ;

vector<int , a l i g n ed a l l o c a t o r <int> > s o u r c e i t e r s (1 0 , 0) ;

//Ask f o r number o f i t e r a t i o n s

std : : cout << ”How many i t e r s ?” << std : : endl ;

std : : c in >> i t e r s ;

s o u r c e i t e r s [0] = i t e r s ;

s ou r c e x k . r e s i z e (i t e r s) ;

generate (begin (sou r c e x k) , end (sour c e x k) , gen random int) ;

std : : cout << ”The x k vector conta ins : ” <<std : : endl ;

107

for (int i =0; i < s ou r c e x k . s i z e () ; i++)

{

{

std : : cout << s ou r c e x k . at (i) << ’ ’ ;

}

}

std : : cout<<std : : endl ;

// Def ine an i n i t v e c t o r M

vector<f loat , a l i g n ed a l l o c a t o r <int> > source m (NEURONS W SIZE, 0) ;

generate (begin (source m) , end (source m) , gen random f loat) ;

// Input Randowm Neuron Weights

p r i n t f (” I n i t m be fo r e ke rne l= \n”) ;

for (int i = 0 ; i < 600 ; i++) {

p r i n t f (”%f ” , source m [i]) ;

i f (((i + 1) % 4) == 0) p r i n t f (”\n”) ;

}

// Def ine and i n i t v e c t o r DELTA

vector<f loat , a l i g n ed a l l o c a t o r <int> > s ou r c e d e l t a (NEURONS W SIZE, 0) ;

// Def ine and i n i t v e c t o r PI

vector<f loat , a l i g n ed a l l o c a t o r <int> > source p ne (NEURONS W SIZE, 0) ;

// Def ine an i n i t v e c t o r S

vector<f loat , a l i g n ed a l l o c a t o r <int> > s ou r c e s (COOR SIZE , 0) ;

// Def ine v e c t o r to ho l d minimum

vector<int , a l i g n ed a l l o c a t o r <int> > source s min (COOR SIZE , 0) ;

// Create Gamma c Matrix to ho l d Neigborhood matr ix

vector<f loat , a l i g n ed a l l o c a t o r <int> > ne i v e c t o r (COOR SIZE , 0) ;

// Create a P v e c t o r to ho l d c oo r d i na t e P matr ix

vector<f loat , a l i g n ed a l l o c a t o r <int> > source p (COOR SIZE ∗ 2 , 0) ;

// Create a C v e c t o r to ho l d c oo r d i na t e C matr ix

vector<f loat , a l i g n ed a l l o c a t o r <int> > s ou r c e c (COOR SIZE ∗ 2 , 0) ;

// Create a D v e c t o r to ho l d c oo r d i na t e De l ta matr ix

vector<f loat , a l i g n ed a l l o c a t o r <int> > source de (COOR SIZE ∗ 2 , 0) ;

// Create a PI v e c t o r to ho l d c oo r d i na t e PI matr ix

vector<f loat , a l i g n ed a l l o c a t o r <int> > s ou r c e p i (COOR SIZE ∗ 2 , 0) ;

// Create a d v e c t o r to ho l d c oo r d i na t e d i s t a n c e matr ix

vector<f loat , a l i g n ed a l l o c a t o r <int> > s o u r c e d i s (COOR SIZE , 0) ;

// Create a hood v e c t o r to ho l d c oo r d i na t e hood matr ix

vector<f loat , a l i g n ed a l l o c a t o r <int> > source hood (NEURONS W SIZE, 0) ;

108

// Create a ne i g v e t o r to hod l gamma f un c t i o n ne i matr ix

vector<f loat , a l i g n ed a l l o c a t o r <int> > s ou r c e n e i (COOR SIZE , 0) ;

// The g e t x i l d e v i c e s w i l l r e t u rn v e c t o r o f X i l i n x Dev ice s

auto dev i c e s = xc l : : g e t x i l d e v i c e s () ;

// r e a d b i n a r y f i l e () i s a u t i l i t y API which w i l l l o ad t h e b i n a r yF i l e

// and w i l l r e t u rn th e p o i n t e r to f i l e b u f f e r .

auto f i l e Bu f = xc l : : r e a d b i n a r y f i l e (b ina ryF i l e) ;

c l : : Program : : B ina r i e s b ins {{ f i l e Bu f . data () , f i l e Bu f . s i z e ()}} ;

bool va l i d d e v i c e = fa l se ;

for (unsigned int i = 0 ; i < dev i c e s . s i z e () ; i++) {

auto dev i ce = dev i c e s [i] ;

// Crea t ing Contex t and Command Queue f o r s e l e c t e d Device

OCL CHECK(err , context = c l : : Context (device , nu l lp t r , nu l lp t r , nu l lp t r , &e r r)) ;

OCL CHECK(err , q = c l : : CommandQueue(context , device , CL QUEUE PROFILING ENABLE, &e r r)) ;

std : : cout << ”Trying to program dev ice [” << i << ”] : ”

<< dev i ce . ge t In fo<CL DEVICE NAME>() << std : : endl ;

c l : : Program program (context , { dev i ce } , bins , nu l lp t r , &e r r) ;

i f (e r r != CL SUCCESS) {

std : : cout << ” Fa i l ed to program dev ice [” << i << ”] with xc lb in f i l e !\n” ;

} else {

std : : cout << ”Device [” << i << ”] : program su c c e s s f u l !\n” ;

// This c a l l w i l l e x t r a c t a k e r n e l out o f t h e program we loaded in t h e

// p r e v i o u s l i n e . A k e r n e l i s an OpenCL f un c t i o n t h a t i s e x e cu t ed on the

// FPGA. This f u n c t i o n i s d e f i n e d in t h e s r c / vsom k . c l f i l e .

OCL CHECK(err , krnl vsom = c l : : Kernel (program , ”vsom ko” , &e r r)) ;

v a l i d d e v i c e = true ;

break ; // we break because we found a v a l i d d e v i c e

}

}

i f (! v a l i d d e v i c e) {

std : : cout << ” Fa i l ed to program any dev i ce found , e x i t !\n” ;

e x i t (EXIT FAILURE) ;

}

// These commands w i l l a l l o c a t e memory on the FPGA. The c l : : Bu f f e r o b j e c t s can

// be used to r e f e r e n c e t h e memory l o c a t i o n s on the d e v i c e . The c l : : Bu f f e r

// o b j e c t cannot be r e f e r e n c e d d i r e c t l y and must be passed to o t h e r OpenCL

// f u n c t i o n s .

OCL CHECK(err , c l : : Buf f e r bu f f e r d s (context , CL MEM USE HOST PTR |

CL MEM READ WRITE, s i z e i n b y t e s d s , s ou r c e d s . data () ,

&e r r)) ;

OCL CHECK(err , c l : : Buf f e r bu f f e r x k (context , CL MEM USE HOST PTR |

CL MEM READ WRITE, s i z e i n by t e s d s r ow , sou r c e x k . data () ,

&e r r)) ;

OCL CHECK(err , c l : : Buf f e r buf fer m (context , CL MEM USE HOST PTR |

CL MEM READ WRITE, s i z e i n by t e s n eu r , source m . data () ,

&e r r)) ;

OCL CHECK(err , c l : : Buf f e r b u f f e r i t e r s (context , CL MEM USE HOST PTR |

109

CL MEM READ WRITE , s izeof (c l i n t) ∗ 10 , s o u r c e i t e r s . data () , &e r r)) ;

// s e t t h e k e r n e l Arguments

int narg = 0 ;

OCL CHECK(err , e r r = krnl vsom . setArg (narg++, bu f f e r d s)) ;

OCL CHECK(err , e r r = krnl vsom . setArg (narg++, bu f f e r x k)) ;

OCL CHECK(err , e r r = krnl vsom . setArg (narg++, buf fer m)) ;

OCL CHECK(err , e r r = krnl vsom . setArg (narg++, b u f f e r i t e r s)) ;

OCL CHECK(err , e r r = krnl vsom . setArg (narg++, NEURONS W SIZE)) ;

// These commands w i l l l o ad t h e source v e c t o r s from the ho s t

// a p p l i c a t i o n and i n t o t h e b u f f e r a and b u f f e r b c l : : Bu f f e r o b j e c t s . The data

// w i l l be be t r a n s f e r r e d from system memory over PCIe to t h e FPGA on−board

// DDR memory .

OCL CHECK(err , e r r = q . enqueueMigrateMemObjects ({ bu f f e r d s , bu f f e r x k , buffer m ,

b u f f e r i t e r s } , 0 /∗ 0 means from ho s t ∗/)) ;

using namespace std : : chrono ;

//Timming k e r n e l

auto s t a r t = h i g h r e s o l u t i o n c l o c k : : now () ;

// Launch the Kerne l

OCL CHECK(err , e r r = q . enqueueTask (krnl vsom)) ;

// The r e s u l t o f t h e p r e v i o u s k e r n e l e x e c u t i on w i l l need to be r e t r i e v e d in

// order to v iew the r e s u l t s . This c a l l w i l l w r i t e t h e data from the

// b u f f e r r e s u l t cl mem o b j e c t to t h e s o u r c e r e s u l t s v e c t o r

OCL CHECK(err , e r r = q . enqueueMigrateMemObjects ({ buf fer m } , CL MIGRATE MEM OBJECT HOST)) ;

q . f i n i s h () ;

auto stop = h i g h r e s o l u t i o n c l o c k : : now () ;

// q . f i n i s h () ;

int match = 0 ;

p r i n t f (”\n New M Matrix : \n \n”) ;

for (int i =0; i<NEURONS W SIZE ; i++)

{

i f (n e u r o n s f i l e . i s open ())

{

p r i n t f (”%4.8 f ” , source m [i]) ;

110

std : : cout << std : : s e t p r e c i s i o n (1 0) ;

n e u r o n s f i l e <<” ”<< std : : s e t p r e c i s i o n (10) << source m [i] ;

i f (((i + 1) % DIMS SIZE) == 0)

{ p r i n t f (”\n”) ;

n e u r o n s f i l e << ”\n” ;

}

}

}

auto durat ion = durat i on cas t<microseconds >(stop − s t a r t) ;

// To g e t t h e v a l u e o f du ra t i on use t h e count ()

// member f un c t i o n on the du ra t i on o b j e c t

std : : cout << ”\n The durat ion in microseconds was : ”<< durat ion . count () << std : : endl ;

std : : cout << ”TEST ” << (match ? ”FAILED” : ”PASSED”) << std : : endl ;

return (match ? EXIT FAILURE : EXIT SUCCESS) ;

}

111

The HLS-VSOM Openl Code Kernel (FPGA)

// i r i s −k e r n e l . c l /

// v e r s i o n 1 .0

// Author (s) :Omar X. Rivera Morales

//

// This f i l e c o n s t i t u t e s a s e t o f r o u t i n e s which are u s e f u l in c o n s t r u c t i n g

// and e v a l u a t i n g s e l f −o r g an i z i n g maps (SOMs) in a FPGA environment .

// Usage : The a p p l i c a t i o n g en e r a t e s t h e FPGA ke r n e l

//Note : Requ i re s Make f i l e t o run and V i t i s comp i l e r

// This f u n c t i o n r e p r e s e n t s an OpenCL k e r n e l . The k e r n e l w i l l be c a l l from

// ho s t a p p l i c a t i o n us ing t h e x c l r u n k e r n e l s c a l l . The p o i n t e r s in k e r n e l

// parameters w i th t h e g l o b a l keyword r e p r e s e n t s cl mem o b j e c t s on the FPGA

// HBM memory .

//

#define DIM SIZE 4

#define DS ROWS 150

#define DS SIZE (DS ROWS ∗ DIM SIZE)

#define NEURONS X DIM 15

#define NEURONS Y DIM 10

#define NEURONS W SIZE (NEURONS X DIM ∗ NEURONS Y DIM)

#define MAX ITERS 100000

//For s y s t o l i c

// Maximum Array S i z e

#define MAX SIZE 150

#define MAX SIZE 2 1

// TRIPCOUNT i n d e n t i f i e r

// c o n s t a n t u i n t c s i z e = BUFFER SIZE ;

ke rne l a t t r i b u t e ((r eqd work group s i z e (1 , 1 , 1)))

a t t r i b u t e ((x c l da ta f l ow))

void vsom ko (g l oba l f loat ∗ ds , g l oba l int ∗ x k , g l oba l f loat ∗ m,

g l oba l int ∗ i t e r s , const int n elements) {

// Loca l memory i s implemented as BRAM memory b l o c k s

// Loca l BRAM Memory

int temp min index = 0 ;

f loat temp min val = 0 . 0 ;

f loat eta = 0 . 7 ;

// i n t count = 0 ;

int n i t e r s = i t e r s [0] ;

// ///

int max val = max(NEURONS X DIM,NEURONS Y DIM) ;

// Fix t h e n e i s i z e

f loat n e i s i z e = max val + 1 ;

112

f loat temp val = (f loat) n i t e r s / n e i s i z e ;

int counter = 0 ;

int n e i s t e p = c e i l ((f loat) temp val) ;

int ne i c ount e r = 0 ;

i f (n e i s t e p == 0)

{

n e i s t e p = 1 ;

}

// i n i t d s l o c a l (Datase t)//

f loat d s l o c a l [DS ROWS] [DIM SIZE] ; // a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ;

// Burst r eads on inpu t ma t r i c e s from g l o b a l Memory to l o c a l memory f o r c ompe t i t i v e s t e p

// Burst read f o r matr ix ds c on t a i n s t h e data s e t

read ds :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i t r = 0 , i = 0 , j = 0 ; i t r < (DS ROWS ∗ DIM SIZE) ; i t r ++, j++)

{

i f (j == DIM SIZE) {

j = 0 ;

i++;

}

d s l o c a l [i] [j] = ds [i t r] ;

}

// i n i t M loca l (Randow neurons we i g h t s)//

f loat m loca l [NEURONS W SIZE] [DIM SIZE] a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ;

// Burst r eads on inpu t ma t r i c e s from g l o b a l Memory

// Burst read f o r matr ix m (Randomw Weights)

read m :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i t r = 0 , i = 0 , j = 0 ; i t r < (NEURONS W SIZE ∗ DIM SIZE) ; i t r ++, j++)

{

i f (j == DIM SIZE) {

j = 0 ;

i++;

}

m loca l [i] [j] = m[i t r] ;

}

// i n i t x l o c a l

f loat x l o c a l [NEURONS W SIZE] [DIM SIZE] a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ;

// i n i t x k l o c a l

int x k l o c a l [MAX ITERS] ; //Holds a l l t h e randomw s e l e c t i o n i nd e x e s

// Burst r eads on inpu t ma t r i c e s from g l o b a l Memory

// Burst read f o r matr ix x

113

read x k :

// a t t r i b u t e ((o p e n c l u n r o l l h i n t (2)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i t r = 0 ; i t r < n i t e r s ; i t r++)

{

x k l o c a l [i t r] = x k [i t r] ;

}

// i n i t d l o c a l (De l t a matr ix)

f loat d e l t a l o c a l [NEURONS W SIZE] [DIM SIZE]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ;

f loat d e l t a l o c a l c o p y [NEURONS W SIZE] [DIM SIZE]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ;

// i n i t p i l o c a l (p i matr ix)

l o c a l f loat p i l o c a l c o p y [NEURONS W SIZE] [DIM SIZE]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 0))) ;

l o c a l f loat p i l o c a l [NEURONS W SIZE] [DIM SIZE]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 0))) ;

// i n i t s l o c a l (s v e c t o r)

l o c a l f loat s l o c a l [NEURONS W SIZE]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 1))) ;

l o c a l f loat s l o c a l t emp [NEURONS W SIZE]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 1))) ;

// i n i t p c l o c a l (p i matr i x)

f loat p c l o c a l [NEURONS W SIZE] [2]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ;

//Caching Arrays

// This array w i l l have t h e f l a g i n d i c a t i n g i f t h e ne i g i s cached or not

int mask vec d [NEURONS W SIZE] a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 1))) ;

// f l o a t [NEURONS W SIZE ∗ NEURONS W SIZE] ;

// e . g 150 neruons w i l l need 150 neurom measurmeent (a l l i n s t a n c e s)

int ne i cache [NEURONS W SIZE] [NEURONS W SIZE]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ;

read Pc :

// a t t r i b u t e ((o p e n c l u n r o l l h i n t (2)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

for (int j = 0 ; j < 2 ; j++)

{

i f (j == 0)

{

p c l o c a l [i] [j] = i / NEURONS X DIM ;

}

114

i f (j == 1)

{

p c l o c a l [i] [j] = i % NEURONS X DIM ;

}

}

}

f loat c c o o r l o c a l [NEURONS W SIZE] [2]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ; //Winner c o o r d i n a t e s

f loat d e l t a c o o r l o c a l [NEURONS W SIZE] [2]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ; // De l ta coor l o c a l

f loat p i c o o r l o c a l [NEURONS W SIZE] [2]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ; // p i coor l o c a l

f loat d i s c o o r l o c a l [NEURONS W SIZE]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 1))) ; // Dis tance to winner

int hood l o ca l [NEURONS W SIZE]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 1))) ; // ne i ghborhood l o c a l f o r Gamma f un c t i o n

int gamma local [NEURONS W SIZE] [DIM SIZE]

a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ; // Holds ne i ghborhood f o r M update

int temp i ;

// S y s t o l i c Magic ///

int a row = 150 ;

int a c o l = 4 ;

int b co l = 1 ;

int b row = a co l ;

int c row = a row ;

int c c o l = b co l ;

// Loca l memory to s t o r e i npu t and ou tpu t ma t r i c e s

f loat l oca lA [1 5 0] [4] a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 1))) ;

f loat l oca lB [1 5 0] [1] a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 2))) ;

f loat l oca lC [1 5 0] [1] a t t r i b u t e ((x c l a r r a y p a r t i t i o n (complete , 0))) ;

f loat a [NEURONS W SIZE∗DIM SIZE] ;

/Cant do array pa r t i t i on , Max complete p a r t i t i o n s i z e i s 1024

// I n i t l o c a lB wi th ones f o r s y s t o l i c sum reduct iom

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i t r = 0 , i = 0 , j = 0 ; i t r < (DS ROWS ∗ DIM SIZE) ; i t r ++, j++)

{

i f (j == DIM SIZE) {

j = 0 ;

i++;

}

l oca lB [i] [j] = 1 ;

}

115

//Main VSOM loop

vsom loop :

for (int epoc = 0 ; epoc < n i t e r s ; epoc++)

{

temp i = x k l o c a l [epoc] ;

// upda t e ne i b o rhood s i z e r ad i u s

ne i c ount e r = ne i coun t e r + 1 ;

i f (n e i c ount e r == ne i s t e p)

{

ne i c ount e r = 0 ;

n e i s i z e = n e i s i z e − 1 ;

// c l e a r t h e masking cache array (f l a g f o r ne i ghborhood a v a i l a b l e s)

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

mask vec d [i] = 0 ;

}

}

//∗∗∗ Updat ing X Matrix ∗∗∗///

i r i s x :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

for (int j = 0 ; j < DIM SIZE ; j++)

{

x l o c a l [i] [j] = d s l o c a l [temp i] [j] ; // here i s t h e t r a i n i n g data po i n t

}

}

//∗∗∗ Finding t h e winning neuron ∗∗∗//

//∗∗∗ Finding t h e winning neuron ∗∗∗//

i r i s d e l t a 1 :

// f o r l o c a l

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

for (int j = 0 ; j < DIM SIZE ; j++)

{

116

d e l t a l o c a l [i] [j] = m loca l [i] [j] − x l o c a l [i] [j] ;

}

}

i r i s d e l t a 2 :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

for (int j = 0 ; j < DIM SIZE ; j++)

{

d e l t a l o c a l c o p y [i] [j] = d e l t a l o c a l [i] [j] ;

}

}

i r i s d e l t a 3 :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

for (int j = 0 ; j < DIM SIZE ; j++)

{

f loat d e l t a v a l 1 = d e l t a l o c a l c o p y [i] [j] ;

f loat d e l t a v a l 2 = d e l t a l o c a l [i] [j] ;

p i l o c a l c o p y [i] [j] = d e l t a v a l 1 ∗ d e l t a v a l 2 ;

}

}

i r i s d e l t a 4 :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

for (int j = 0 ; j < DIM SIZE ; j++)

{

p i l o c a l [i] [j] = p i l o c a l c o p y [i] [j] ;

}

}

c l e a r s v e c t o r :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

117

s l o c a l [i] = 0 ;

}

a t t r i b u t e ((x c l p i p e l i n e l o o p (1))) s y s t o l i c 1 : for (int k = 0 ; k < a c o l ; k++) {

s y s t o l i c 2 : for (int i = 0 ; i < MAX SIZE ; i++) {

s y s t o l i c 3 : for (int j = 0 ; j < MAX SIZE 2 ; j++) {

// Get p r e v i o u s sum

f loat l a s t = (k == 0) ? 0 : loca lC [i] [j] ;

// Update cu r r en t sum

// Handle boundary c on d i t i o n s

f loat a va l = (i < a row && k < a c o l) ? p i l o c a l [i] [k] : 0 ;

f loat b va l = (k < b row && j < b co l) ? loca lB [k] [j] : 0 ;

f loat r e s u l t = l a s t + a va l ∗ b va l ;

// Write back r e s u l t s

l oca lC [i] [j] = r e s u l t ;

}

}

}

update s vec to r :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

s l o c a l [i] = loca lC [i] [0] ;

}

i r i s s m i n :

temp min val = s l o c a l [0] ;

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int j = 0 ; j < NEURONS W SIZE; j++)

{

i f (s l o c a l [j] < temp min val)

{

temp min index = j ;

temp min val = s l o c a l [j] ;

}

}

// ///

i f (mask vec d [temp min index] == 1)

{ check cache ne i :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

118

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

for (int j = 0 ; j < DIM SIZE ; j++)

{

gamma local [i] [j] = ne i cache [temp min index] [i] ;

}

}

counter = 0 ;

}

// e l s e /// en t e r c r e a t e r ne i

else {

mask vec d [temp min index] = 1 ;

i r i s p c o o r :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i =0; i < NEURONS W SIZE; i++) {

// Loca l Mode

c c o o r l o c a l [i] [0] = p c l o c a l [temp min index] [0] ;

c c o o r l o c a l [i] [1] = p c l o c a l [temp min index] [1] ;

}

i r i s c o o r d e l t a p i d i s t a n c e 1 : // De l ta , PI and d coo r d i na t e c a l c u l a t i o n s

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++) {

d e l t a c o o r l o c a l [i] [0] = p c l o c a l [i] [0] − c c o o r l o c a l [i] [0] ;

}

i r i s c o o r d e l t a p i d i s t a n c e 2 : // De l ta , PI and d coo r d i na t e c a l c u l a t i o n s

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++) {

d e l t a c o o r l o c a l [i] [1] = p c l o c a l [i] [1] − c c o o r l o c a l [i] [1] ;

}

i r i s c o o r d e l t a p i d i s t a n c e 3 : // De l ta , PI and d coo r d i na t e c a l c u l a t i o n s

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++) {

119

p i c o o r l o c a l [i] [0] = d e l t a c o o r l o c a l [i] [0] ∗ d e l t a c o o r l o c a l [i] [0] ;

}

i r i s c o o r d e l t a p i d i s t a n c e 4 : // De l ta , PI and d coo r d i na t e c a l c u l a t i o n s

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++) {

p i c o o r l o c a l [i] [1] = d e l t a c o o r l o c a l [i] [1] ∗ d e l t a c o o r l o c a l [i] [1] ;

}

i r i s c o o r d e l t a p i d i s t a n c e 5 : // De l ta , PI and d coo r d i na t e c a l c u l a t i o n s

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++) {

d i s c o o r l o c a l [i] = p i c o o r l o c a l [i] [0] + p i c o o r l o c a l [i] [1] ;

}

i r i s h o o d :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

i f (sq r t (d i s c o o r l o c a l [i]) < n e i s i z e ∗ 1 . 5)

{

hood l o ca l [i] = 1 ;

}

else

{

hood l o ca l [i] = 0 ;

}

}

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

for (int j = 0 ; j < DIM SIZE ; j++)

{

gamma local [i] [j] = hood l o ca l [i] ;

}

}

copy cache ne i :

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

ne i cache [temp min index] [i] = hood l o ca l [i] ;

}

120

}// end o f ne i c a t c h i n g i f−e l s e

gamma vec :

// ///

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i = 0 ; i < NEURONS W SIZE; i++)

{

for (int j = 0 ; j < DIM SIZE ; j++)

{

m loca l [i] [j] = m loca l [i] [j] − eta ∗ d e l t a l o c a l [i] [j] ∗ gamma local [i] [j] ;

}

}

} // end o f t r a i n i n g l oop

// check w r i t e b a c k

wr i t e ba ck g l oba l 4 : //Write back Matr ix G loba l M

a t t r i b u t e ((o p en c l u n r o l l h i n t (6 4)))

a t t r i b u t e ((x c l p i p e l i n e l o o p (1)))

for (int i t r = 0 , i = 0 , j = 0 ; i t r < (NEURONS W SIZE ∗ DIM SIZE) ; i t r ++, j++) {

i f (j == 4) {

j = 0 ;

i++;

}

m[i t r] = m loca l [i] [j] ;

}

}

// /////////////////////////////////////End o f Kerne l

List of References

[1] U. Seiffert and B. Michaelis, “Multi-dimensional self-organizing maps on mas-
sively parallel hardware,” in Advances in Self-Organising Maps. Springer,
2001, pp. 160–166.

[2] L. Hamel, “Som quality measures: An efficient statistical approach,” in Ad-
vances in Self-Organizing Maps and Learning Vector Quantization. Springer,
2016, pp. 49–59.

[3] R. A. Fisher, “The use of multiple measurements in taxonomic problems,”
Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

121

[4] P. F. Thall and S. C. Vail, “Some covariance models for longitudinal count
data with overdispersion,” Biometrics, pp. 657–671, 1990.

[5] W. N. Street, W. H. Wolberg, and O. L. Mangasarian, “Nuclear feature ex-
traction for breast tumor diagnosis,” in IS&T/SPIE’s Symposium on Electronic
Imaging: Science and Technology. International Society for Optics and Pho-
tonics, 1993, pp. 861–870.

122

APPENDIX C

Conclusion

This research aimed to identify and generate superior speed-up and perfor-

mance strategies for parallel self-organizing maps. Based on a quantitative and

qualitative analysis of parallel SOMs experimentation in GPUs and FPGAs hard-

ware accelerators, it can be concluded that our vectorized GPU and FPGA im-

plementations of the SOMs do provide a superior alternative for parallel SOMs.

The results indicate the current hardware accelerators are a good alternative for

implementing the parallelization of the vectorized SOMs. Furthermore, our find-

ings demonstrate that the vectorized SOM in GPUs and FPGAs offers superior

performance and speed-up gains than the other available parallel implementation

and can generate the same quality of maps as SOMs in the CPUs environment.

The GPU implementation (Par-VSOM) obtained substantial performance in-

creases over Kohonen’s iterative SOM algorithm (up to 67 times faster), the CPU

based vectorized VSOM (up to 4 times faster), the GPU Xpysom (up to 6.1 times)

and Quicksom’s GPU (up to 20 times) in large maps environments. The results

obtained by increasing the dimensionality and map sizes demonstrated that the

Par-VSOM provides scalable speed-up performance when the neuronal map size

increases.

The HLS-VSOM was developed for an FPGA architecture for our second

hardware accelerator environment.The HLS-VSOM is a high-level synthesis parallel

version of the vectorized and matrix-based implementation of stochastic training

for self-organizing maps. The HLS variant also offers significant performance gains

over Kohonen’s iterative SOM algorithm (up to 30.4X times faster) and the CPU-

based vectorized VSOM (up to 6.3x times faster). Our comparisons with the GPU

123

variants also demonstrate that the optimized FPGA VSOM surpasses the GPU

Par-VSOM and XPySom GPUs version by two or three orders of performance in

various datasets using regulars size maps environment.The results obtained with

the HLS-VSOM demonstrated it is the best performance parallel SOM currently

available.

This research clearly illustrates the superior speed-up gains achievable with

parallel vectorized SOMs. However, it also raises the question of how can we make

the GPU variant work efficiently with smaller maps. In contrast, the HLS-VSOM

offers a great superior performance gains alternative with regular size maps, but

it does have limitations with larger maps due to increasing memory access, logic

resource limitation, and highly complex routing schemes.

Based on our results, the Par-VSOM and the HLS-VSOM can be viewed as an

alternative to parallel SOMs and a new alternative for other parallel algorithms for

clustering. To better understand the implications of these results, future studies

could research the implementation of the VSOM using the Tensor-cores available in

newer NVIDIA GPU chip architectures. Another alternative will be using Google’s

Tensor Processing Unit (TPU) AI accelerator application-specific integrated circuit

(ASIC). Both of these architectures can provide additional performance gains and

novel research discoveries using Tensor cores technologies for the SOMs.

	ABSTRACT
	ACKNOWLEDGMENTS
	PREFACE
	TABLE OF CONTENTS
	Par-VSOM: Parallel and Stochastic Self-Organizing Map Training Algorithm
	Abstract
	Introduction
	The SOM and VSOM Algorithms
	The SOM and VSOM Competitive Step
	The SOM and VSOM Update Step

	Related Work
	SOM Parallel Hybrid Methods
	SOM Vectorization
	SOM in Multiple Parallel Architectures

	Par-VSOM: Parallel Vectorized SOM
	Hardware For Parallel Vectorization
	Par-VSOM Algorithm
	Limitations

	Experiments
	Hardware setup
	Par-VSOM setup and Hyper-Parameters
	Results

	Conclusions
	List of References

	High-Level Synthesis Parallelization and Optimization of Vectorized Self-Organizing Map
	Abstract
	Introduction
	High Level Synthesis
	Vectorization of Self-Organizing Maps
	The SOM and VSOM Competitive Step
	The SOM and VSOM Update Step

	High-Level Synthesis VSOM
	HLS VSOM Algorithm
	Pipelining and Dataflow
	HLS VSOM Horizontal Unrolling (Vectorization)
	HLS Par-VOM Memory Transformations
	HLS Matrix Reduction with Systolic Arrays

	Related Work
	Stochastic SOM with FPGA SoC
	A Scalable SOM based on a Sequential Systolic NoC
	High Level Synthesis (HLS) for K-means algorithm
	High-Performance Computing Applications via High-Level Synthesis
	SOMs in GPUs

	Experiments
	Hardware setup
	HLS-VSOM setup and Hyper-Parameters
	Results

	Conclusions
	List of References

	Introduction and review of the problem
	Introduction
	Review of the Problem
	The SOM and VSOM Algorithm
	Parallel SOM
	Hardware Architectures for Parallel SOMs
	Parallel Vectorized SOM
	High Level Synthesis for Parallel SOMs
	Systolic Array with HLS

	List of References

	Methodology and Source code
	Methodology
	Research Design
	Data Sets

	Readme File
	Source Code
	Par-VSOM Cuda Kernel
	HLS-VSOM

	List of References

	Conclusion

