
VOTING NEAREST NEIGHBORS: SVM CONSTRAINTS SELECTION

ALGORITHM BASED ON K-NEAREST NEIGHBORS

BY

LEANDRO MOREIRA DA COSTA

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2019



DOCTOR OF PHILOSOPHY DISSERTATION

OF

LEANDRO MOREIRA DA COSTA

APPROVED:

Dissertation Committee:

Major Professor Lutz Hamel

Noah Daniels

Jonathan Allan Chávez Casillas
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ABSTRACT

Ninety percent of the world data today was generated over the last two years,

boosted by the great speed in which information is created over the Internet and

the low prices for storage and sensors. This new paradigm is what we call Big

Data.

One of the biggest challenges in the field of Machine Learning today is how

established algorithms perform on Big Data. The sheer size of these datasets

can make it infeasible to use know algorithms to create a decision surfaces in a

reasonable time.

Support Vector Machines is one of the algorithms that experience a steep

increase in runtime when creating a decision surface for Big Data. This fact led to

the decline of its use for classification on these types of datasets.

This dissertation introduces Voting Nearest Neighbors, a new preprocessing

algorithm that assists Support Vector Machines on dealing with Big Data by creat-

ing a voting system based on k-nearest neighbors. The algorithm will select points

close to the border between classes that have a higher chance of being used by a

Support Vector Machine as Support Vectors, while removing outliers that would

negatively impact the margin created. These points will be the only ones used

in the training of the Support Vector Machine, allowing it to create the a deci-

sion surface in a reasonable time. In order to guarantee a good performance in a

reasonable time, the algorithm is implemented in parallel using CUDA on GPU.

The technique was successfully tested against 5 datasets that cover a broad

range of sizes, from the Iris containing just 150 points to the Air Pressure system

Failure and Operational Data for Scania Trucks Dataset which has 60,000 points,

with an encouraging diminish in runtime for Big Data datasets and a impressive

performance when used to classify imbalanced datasets.
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CHAPTER 1

Introduction

1.1 Statement of the problem

To classify data Support Vector Machine algorithms[1] have to do a vast search

over all data points to find special points called support vectors. These points are

used to create a decision surface that defines a classifier.

While the current set of algorithms for Support Vector Machines such as

SMO [2] are accepted as a good way of finding decision surfaces, they are usually

infeasible when working on big datasets as the time it takes to train a classifier

grows with its size. But Big datasets are becoming a intrinsic part of machine

learning, with Data being created at speeds never seen before, generating bigger

and bigger datasets. When those datasets need to be classified, Support Vector

Machines end up being put aside for other techniques better suited to deal with

Big Data.

The goal of this project is to create a preprocess algorithm that will generate

a much smaller subset of the original dataset, containing points with a higher

chance of being support vectors and at the same time trying to eliminate potential

outliers. This new subset will be used to train a Support Vector Machine instead

of the full dataset, creating the decision surface faster while getting a accuracy

comparable to a Support Vector Machine trained using the full dataset.

1.2 Significance of the Study

Support Vector Machine (SVM ) is a powerful machine learning technique, but

can be very compute-intensive, especially when working with big datasets. This

happens because the most used algorithm used by SVM s, the Sequential Minimal

Optimization (SMO) has to break the SVM problem into smaller sub-problems
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and, the bigger the dataset the more sub-problems the algorithm has to take into

consideration causing the run time to go up significantly.

To avoid this escalation many SVM s try to create different algorithms to find

the border. Some do small localized SVM s whenever a new query is received [3],

others will enclose each class in a polytope and try to find the support vectors by

looking into the points in the border of each polytope [4, 5].

But instead of creating new algorithms it is possible to increase the speed

of the SMO (and of the SVM ) by preprocessing the training data, trying to find

data points in the border between classes and using just this subset as the SVM

training data [6, 7, 8, 9]. These techniques are more interesting because they allow

us to use establish and optimized SVM s already in existence independently of the

size of the datasets.

1.3 Purpose of the Study

This project tries to improve on the techniques that increase the speed of

SVM s by finding the points in the border between classes, more specifically the

KNN-SVM [7] and KNN-ISVM [8] techniques. Both of them are successful prepro-

cessing algorithms that look at a dataset and find a smaller subset for a faster

SVM training based on its k-Nearest Neighbors (kNN ). These techniques will be

explained in full in Section 2.2, but in layman terms they work as follows.

To find the points in the border between classes, the KNN-SVM divides the

data by classes and make each point find the k-Nearest Neighbors from a different

class. All the k-Nearest Neighbors found are selected to create a new smaller subset

that will be used in the training of an SVM.

The hypothesis is that the information generated by the k-Nearest Neighbors

is being underutilized by the algorithms. Figure 1a has an example run of KNN-

SVM where the algorithm selects the 3-Nearest Neighbors, in that example most
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(a) Border selected with KNN-SVM
k=3

(b) Number of votes of each element se-
lected by KNN-SVM

(c) New Border for VNN-SVM with k=3
when selecting points with 4 votes or
more

Figure 1: Extending the KNN-SVM algorithm with a voting system

of the points were selected to be used by the SVM. This happens because the

algorithm treats all points added to the new subset as being of equal importance,

when they are not.

What if, instead of adding every point to the subset, the algorithm kept a

score of how many times a point is one of the k-Nearest Neighbors to a point of

the other class. The result would look like the example found in figure 1b, in that

image we can see that points near the border got a higher number of votes than

the ones further back, with the exception of the red outlier that received as many

votes as the points of the real border between classes.

Now, instead of using all points that received a vote for the border, the algo-

rithm can select the minimum and maximum number of votes needed for a point

to be selected for the new border, giving the user more control over the border
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to be selected. In figure 1c we see the new set selected to be processed by the

SVM generated by voting for the 3 Nearest Neighbors and selecting points with a

minimum of 4 votes and no maximum number of votes.

This is an example of the Voting Nearest Neighbors (VNN-SVM ), the al-

gorithm proposed on this dissertation. The hypothesis being that, by using the

k-Nearest Neighbors to cast votes, instead of immediately selecting the points, the

algorithm will be able to select fewer and better points for our possible border.

This is expected as the points right in the border between classes should be the

ones receiving the majority of the votes.

The number of votes received by each point could also be used to further

improve the selection of the possible Support Vectors. In [10] and [11], the authors

show that pruning a significant portion of Support Vectors of an SVM can be

done without a significant loss of accuracy, sometimes even achieving a greater

generalization of the decision surface. If the votes can be used in this way to find

outliers they could be removed from the selection to create a more generalized

decision surface.

1.4 Goals

To be considered successful the algorithm will need to achieve the following

goals:

• Select a smaller set of points for SVM training: The algorithm has to be

able to select a subset of the full data that can be used to successfully train

an SVM.

• Remove points far from the margin between classes: As the number of votes

grows more points far from the margin between classes will start to receive

votes. These points will have fewer votes than the ones close to the border
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and may not be as important for the SVM so can be safely removed from

the subset selected. The algorithm should be able to remove those points

based on the number of votes they received.

• Remove outliers based on how many votes they received: Outliers are points

that are far from members of its class and most of the time end closer to

members of classes different than theirs, making them very hard to clas-

sify. When applying the proposed algorithm the outliers will receive a great

amount of votes so the algorithm should be able to remove those points based

on the number of votes they received.

• Be able to achieve a better generalization of the SVM decision surface by

changing which points are selected: By selecting fewer points for training

and removing outliers the algorithm should select a subset that should be

less susceptible to overfitting when training the SVM. The decision surfaces

created that way may have a better generalization by selecting fewer points

as support vectors.

• Run in a reasonable time: The algorithm was created to save time on Big

data datasets, so it should run fast and its time plus the of the subsequent

SVM should take less time than the time taken to run the SVM using the

complete dataset.

1.5 Organization

This thesis is structured as follows:

Chapter 2 Background : This chapter contains all definitions and background

needed to understand the problem, it also highlights the algorithms that were

used as a base for the creation of the Voting Nearest Neighbors.
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Chapter 3 Proposed Algorithm : This chapter describes the implementation

of the proposed Voting Nearest Neighbors algorithm.

Chapter 4 Results : This chapter presents the datasets to be analyzed, the met-

rics used on the analyses and the results.

Chapter 5 Conclusion : This chapter will review the performance of the al-

gorithm given the goals described in section 1.4 as well discussing possible

future work derived from this work.
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CHAPTER 2

Background

2.1 Definitions
2.1.1 Support Vector Machines

Support Vector Machine (SVM )[1] is a machine learning technique that cre-

ates the greatest margin classifier between classes. That means it will find the

region in feature space where the distance between the classes is the greatest and

use it to create a margin with a decision boundary that will be placed in the middle

of it. Classifying every point one side of the decision boundary as one class and

all points on the other side as another class. Support Vector Machines find this

region in feature space by finding the points on each class that are located in the

border of the margin, this points are called Support Vectors.

In figure 2 we can see an example of a margin created by an SVM, the three

highlighted points are being used as support vectors (2 red and 1 blue). They

are the only points needed to define the margin, the maximum distance between

classes (represented by the green parallel lines in the figure).

In the middle of the margin and parallel to it is the decision surface, the

Figure 2: A SVM Example
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yellow line in figure 2. This is the graphical representation of the SVM solution, it

is equidistant to all support vectors of either class and it can be written as w ·x = b.

The SVM will find this decision surface based on only the support vectors.

In our example when new points are classified, if the point is over the decision

surface, it will be classified as red, if it is below the decision surface, it will be

classified as blue. The only uncertainty is when the point is on the decision surface

meaning it could be of either class, to solve that problem the different implemen-

tations of SVM s will usually hardcode that any points in this situation will always

be classified as one of those classes.

In an SVM the Support Vector are found as a result of the dual maximum

margin optimization equation (1), where the algorithm will find the best values

for the Lagrange Multipliers (α) for every point of the training set, subject to the

constraints in (2), where:

• φ is Maximum Margin Lagrangian dual that will maximize the border;

• α is the set Lagrange multipliers. Each point ith of the dataset has its own

Lagrange multiplier αi, this variables are the ones being modified by the

optimization in order to find the support vectors;

• yi is the label of the class of the ith element of the training data, in SVM s

the labels are either 1 or -1;

• κ is the kernel function, this is one of a set of functions used by the SVM s

that can calculate the distance between points on the dataset. On figure 2

the function used is the dot product, the reason we have a set of functions

for this part will be explained later this section;

• xi is the vector that represents the ith point of the dataset with all its values;
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• l is the number of elements in the training data.

max
α

φ(α) = max

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjκ(xi, xj) (1)

l∑
i=1

αiyi = 0,

αi ≥ 0

(2)

When maximizing the equation based on these constraints we find that the

points that make the margin will have αi > 0, while points outside the margin will

need αi = 0. Those points with αi > 0 are the support vectors and with them we

can finally create the decision surface. As said before the decision surface can be

written as w ·x = b and using κ, α, y and x (where xsv+ is the value of one support

vector from the set of available support vectors) we can use equations (3) and (4)

to find w and b respectively.

w =

l∑
i=1

α∗i yixi (3)

b =

l∑
i=1

α∗i yiκ(xi, xsv+)− 1 (4)

Now to classify a new point the SVM will need to find where that point is

in relation to the decision surface, this is done using equation (5), substituting w

and b on (5) we get the equation (6) that will give us the classification based on

our support vectors.
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f̂(x̄) = sign (w · x− b) (5)

f̂(x̄) = sign

(
l∑

i=1

α∗i yiκ(xi, x)−
l∑

i=1

α∗i yiκ(xi, xsv+)

)
(6)

As mentioned before, all points one side of the decision surface will be classified

as one class and all points on the other side will be classified as the other. This is

represented by the sign function in equation 6, where all positive numbers will be

classified as of the positive class and all negative points as of the negative class.

In equations (1), (4) and (6), κ refers to a kernel function. In a simple linear

classifier the kernel function is nothing more than the dot product, calculating the

distance between x̄i and x̄j. However, with kernel function we can use an algorithm

originally designed to find linear classifiers on non-linear problems, using what is

commonly referenced as the kernel trick.

Figure 3: The kernel trick [2]

The kernel trick consists in changing the dimension of the data before calcu-

lating the dot product and creating the decision surface. In Figure 3 the first plot

has the original dataset in 2 dimensions, there is no way to divide the data as it

is with a simple line. But, in the second plot, a 3rd dimension was added based
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Figure 4: The kernel trick decision surface [2]

on the 2 original dimensions (in this case: zi = x2
i + y2

i ). Now, the inner circle

has lower z values than the outer circle, making it easy to create a plane that will

classify correctly all data, as seen in the 3 dimension plot of figure 4.

The trick part of the kernel trick is that we don’t need to save the database

with a new dimension or even calculate what that dimension would be. The kernel

functions implicitly calculates the dot product in this higher dimension given just

the original points. In our example instead of creating a new dataset with the z

dimension we just use the kernel (7):

κexample(i, j) = ix × jx + iy × jy + (i2x + i2y)× (j2
x + j2

y) (7)

The decision surface created by the algorithm is still an hyperplane that defines

a linear classifier but in kernel space, for the user it will look and behave like a

non-linear classifier in feature space, as shown in the second plot of figure 4 with

the decision surface being the green circle dividing the classes.

Kernels like (7) are of limited use in real life as it is restricted to two dimension

databases, but there exists more generalized kernels, like Polynomial, Gaussian and

Sigmoid kernels, being used in everyday applications. The study and creation of
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new kernels is an area of research by itself.

The way the SVM was described until now will work only when the data is

perfectly divisible, as a maximum margin classifier wouldn’t be able to create a

margin if points of different classes are mixed together, because there wouldn’t be

a way to separate the classes. To deal with this problem the SVM changes and

uses a soft margin classifier show in equation (8), this change allows the SVM to

accept missclassified points and points inside the margin in order to produce the

greatest margin possible under the new parameters.

max
α

φ(α) = max
l∑

i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjκ(xi, xj)

Subject to the constraints:

l∑
i=1

αiyi = 0,

C ≥ αi ≥ 0

(8)

In equation (8) there is no change to the Maximum Margin Lagrangian, but

to the constraints, where the variable C (Cost) is added. The Cost allows the

addition slack variables (points miss-classified or inside the margin) to the SVM

and keeps track of how much error is being introduced, the relationship between

C and the margin is as such:

• Large C creates an SVM with a small margin (more closely related to the

original SVM );

• Small C creates an SVM with a larger margin that will accept more slack

variables in it.

Now points on the decision surface will have α = C, points miss-classified or

inside of the margin will have C > α > 0 and points far from the decision surface
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will keep α = 0. So by manipulating the value of C the SVM can admit more slack

variables and may creating a more generalized decision surface.

2.1.2 The k-Nearest Neighbors Algorithm

k-Nearest Neighbors (kNN )[3] is a machine learning technique that classifies

a point based on its k-nearest known data points in the training data. It is a type

of instance-based learning, where all computation is deferred until classification.

The algorithm is very simple and can be described as follows:

1. Training Phase: Store all known points of the training data and their

respective labels.

2. Classification phase: To classify a new entry e:

(a) Calculate the distance between e and every point in the training data

using the distance function D.

(b) Find the k closest points in the training data.

(c) Classify the new point e as the most frequent class between all the k

points.

In Figure 5, we show a simple example of kNN. The algorithm will classify

the small black circle in the middle of the concentric rings as a blue square if k=3.

However, this classification would be changed to a red diamond if k=5.

The distance function D can be specified by the user when creating the classi-

fier. The most common distance functions used are the Euclidean distance, when

working with continuous variables, and Hamming distance, when working with

discrete values.
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Figure 5: A K-Nearest Neighbors Example

2.1.3 Big Data

With the advance of storage space, sensors and the Internet, data is being gen-

erated in an incredible amount every day, and collecting them became something

anyone can do. It’s more common to find some of these new datasets containing

dozens of Gigabytes or Terabytes of data.

This area of massive datasets is now part of what we call Big Data. Because

of the speed in which data is being generated and storage capacity is increasing so

the definition of Big Data changed a lot since its conception. For this study I will

use Doug Laney’s 3 V’s definition for big data [4]. In his paper he used 3 keywords

to describe Big data:

Volume The quantity of data. Big Data will have big databases. The size of which

it can be considered Big Data depends where the problem is being worked,

what is Big Data for a personal computer might not be for a company server.

Variety The nature of the data. How diverse is the data. Companies like Facebook

and Youtube deals with large amounts of text, images and videos. The way
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to work and organize each has to be well decided.

Velocity The speed in which data is generated. How fast the database is growing.

Small studies could grow in batches when data is collected back from the

field, social networks can have tens of thousands of new entries every second.

When working with Big Data some of the most common algorithms and tech-

niques can become impractical due to the computation time required or memory

used. For that reason new algorithms have to be created.

2.1.4 CUDA

CUDA is a parallel programing platform and programming model created by

NVIDIA in 2006 that uses the Graphics Processing Unit (GPU ). The goal of the

platform is to enable use of the computational power of the thousands of specialized

computing cores for generic problems. Because of the specific architecture behind

GPU s the programs written in CUDA have to take different precautions from

normal parallel programming to achieve maximum speed up.

The CUDA programming toolkit released by NVIDIA is a free solution for

CUDA programming with a built in Visual Studio integration and a diverse number

of already compiled libraries that uses the GPU to it’s fullest.

When programming in CUDA you are writing code for both the CPU and

GPU, usually the CPU code is for memory management and I/O while the GPU

code is where most of the work takes place. The GPU code written by the user

(not from a library) is referenced as a CUDA kernel.

2.2 Previous Work

The proposed algorithm will modify and improve on the following previous

works.
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2.2.1 A fast training algorithm for support vector machines based on
K nearest neighbors (KNN-SVM )

The KNN-SVM algorithm[5] focuses on preprocessing data to find the border

vector. The border vector refers to the data points on the boundary between

classes. This will be achieved by adding to a subset all data points of a class that

are the kNN to any data point of the other class. The algorithm goes as follows:

Step 1: Divide the training set A into positive set A+ = {x+
1 , x

+
2 , x

+
3 , ..., x

+
n1
} and

negative set A− = {x−1 , x−2 , x−3 , ..., x+
n2
}, n1, n2 are the number of positive

and negative examples of the training data respectively. Select parameter

k and kernel function κ.

Step 2: Calculate distance matrix D = (dij)n1×n2 from each data point of A+ to

all data points of A−. Arrange all the elements of each row D from small

to large and extract the first k columns to get a new matrix D1. Then find

the corresponding column sign j of each element of D1 in matrix D and

obtain corresponding elements in A−, which form border vector S− of A−.

Step 3: Calculate distance matrix D′ = (dij)n2×n1 from each data point of A− to

all data points of A+. Arrange all the elements of each row D′ from small

to large and extract the first k columns to get a new matrix D′1. Then find

the corresponding column sign j of each element of D′1 in matrix D′ and

obtain corresponding elements in A+, which form border vector S+ of A+.

Step 4: Final border vector set of two class samples: A′ = S+ ∪ S−

Step 5: Train the SVM by substituting the training set A for the border set A′,

obtain the support vector set then construct an optimal separating hyper-

plane.
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Figure 6: KNN-SVM artificial datasets test

Steps 1 through 4 are the preprocessing of the data to find the border vector,

with step 5 being the use of any SVM classifier. The ability to correctly create

an optimal hyperplane will depend on the choice of k based on the complexity of

the data to be analyzed. A small k on a complex dataset can miss important data

points on the border vector, while a big k on an easy dataset can incur in a border

vector full of irrelevant points.

The original paper didn’t discuss how to support multi-class datasets so for

tests that needed it the one-vs-one method was used. That means the algorithm

was run once for each pair of classes, this will guarantee that the border vector

will select the most relevant points.

To analyze the ability of the KNN-SVM to select the border vector without

changing the shape of the data the algorithm was tested on artificial datasets with

well defined shapes as shown in Figure 6.

The tests showed that the KNN-SVM was successful in selecting the border

vector without compromising the shape of the border between classes and any

SVM used to create a decision hyperplane would have similar performance using

either the original training data or the border vector.
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The algorithm was then tested in 3 real data sets, two of them from the UCI

database, the last from the epil R library. All tests were run in RStudio using the

SVM contained in the library e1071. The algorithms will be compared based on

SVM training size, number of support vectors and accuracy over the full data set.

Iris dataset The iris dataset contains 150 entries divided in 3 classes, each with 4

numerical dimensions. Both SVM s run linear kernel with cost 1 and gamma

0.25.

Breast Cancer Wisconsin dataset The Breast Cancer Wisconsin dataset con-

tains 699 entries (683 after removing entries with missing values) divided in 2

classes, each sample with 10 numerical dimensions. Both SVM s run a linear

kernel with cost 1 and gamma 0.11111.

Seizure Counts for Epileptics dataset Seizure Counts for Epileptics dataset

contains 236 entries divided in 2 classes, each sample with 9 numerical di-

mensions. Both SVM s run a linear kernel with cost 1 and gamma 0.125.

Table 1: KNN-SVM results

Dataset Algorithm
SVM training

size
Number of

support vector
Accuracy

Iris SVM 150 29 96.66%
KNN-SVM(k=3) 43 22 97.33%

Breast Cancer SVM 683 60 97.07%
KNN-SVM(k=12) 189 58 96.92%

Epileptics SVM 236 33 98.30%
KNN-SVM(k=5) 86 20 98.72%

The results in Table 1 show that the average size of the border vector was 30%

of the original dataset, and the SVMs trained used in average 70% of the original

support vectors. All of that without any significant loss of performance.
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2.2.2 SVM Constraint Discovery using kNN applied to the Identifica-
tion of Cyberbullying (KNNFilter)

Before finding the KNN-SVM I implemented my own version of a kNN method

of border selection. Differently from KNN-SVM, the algorithm would look for all

neighbors independent from class and would decide if the point analyzed is a good

candidate depending on them. The KNNFilter algorithm works as follows:

Step 1: Create an empty list SV C that will hold the Support Vectors Candidates.

Repeat steps 2 through 6 for every point i in the dataset.

Step 2: Create a vector (DistVector) to hold the distance between i and every

other point in the training data calculated using the distance function D.

Step 3: Append a new row with the indexes of the other data points creating a

new matrix DistMatrix.

Step 4: Sort DistMatrix based on the distance row. Now it holds in one row

distances from i to all other points of the dataset, in increasing order, and

the corresponding index of said point in the original dataset.

Step 5: Select the k -nearest neighbors of i by using the first k elements of the

index row.

Step 6: Compare the class of those k neighbors to the class of data point i. If any

neighbor has a different class than i, then i is added to SVC.

Step 7: Train the SVM by substituting the training set A for the border set SV C,

obtain the support vector set then construct an optimal separating hyper-

plane.

The main difference between KNNFilter and KNN-SVM is the value of k

needed to find similar borders. Because KNN-SVM looks at the other class for
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Figure 7: KNNFilter artificial datasets test

points, so small values of k are enough to create a good border independent of how

the classes are distributed. For KNNFilter the k value will always be higher than

KNN-SVM. Also, they are more dependent on how the classes are distributed,

classes with big overlap need small k, while when working with well defined classes

the k can get so big that most of the points were selected for training.

KNNFilter had similar success on the same tests that were applied to KNN-

SVM. The artificial dataset tests shown in figure 7 demonstrate the KNNFilter

capability in maintaining the border shape (the last two datasets needed a k so

big that almost no pruning happened and were omitted).

KNNFilter was also tested with the same datasets as KNN-SVM for very

similar outcome. Its results are shown in table 2.

2.2.3 A Fast Incremental Learning Algorithm for SVM Based on K
Nearest Neighbors (KNN-ISVM )

The KNN-ISVM algorithm [6] introduces the concept of incremental training,

now the training data can be divided in several incremental steps, each step will

function like the previous algorithm but it will add new points to the previous
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Table 2: KNNFilter results

Dataset Algorithm
SVM training

size
nbr of

support vector
Accuracy

Iris SVM 150 29 96.66%
KNNFilter(k=15) 34 18 98.00%

Breast Cancer SVM 683 60 97.07%
KNNFilter(k=68) 201 58 97.21%

Epileptics SVM 236 33 98.30%
KNNFilter(k=23) 95 22 98.72%

border vector in each new incremental step. The algorithm goes as follows:

Suppose there is a training dataset A and an incremental training dataset B,

and assume that they satisfy A ∩B = ∅.

Step 1 through 5 This are identical as the KNN-SVM algorithm.

Step 6 Add the incremental training sample set B, let A = A′ ∪ B, then return to

step 1.

Repeat steps 1-6 for each batch of incremental samples.

One important change between the KNN-SVM and KNN-ISVM is how they

calculate the distance matrix. In the previous paper the distance was measured in

the original feature space, while in the latter all distances were calculated in kernel

feature space using the equation (9):

dΦ(x1, x2) =‖ Φ(x1)− Φ(x2) ‖2,

=
√
κ(x1, x1)− 2κ(x1, x2) + κ(x2, x2)

(9)

Where κ(x1, x2) is the kernel function of high dimension feature space and

Φ(x) is a non-linear map of vector x.

This change guarantees that the KNN pruning will work in the same feature

space as the SVM that takes place in step 5 but more tests are needed to see how
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the change in feature space impacts the selected border vectors. This algorithm

is the only one not tested but is expected to have an accuracy comparable with

KNN-SVM.
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CHAPTER 3

Proposed Algorithm

3.1 Voting Nearest Neighbors (VNN-SVM )

The Voting Nearest Neighbors algorithm (VNN-SVM ) improves on the KNN-

SVM technique by adding a voting system, now, instead of just adding any possible

data selected via KNN to the subset, each selection will increment the number of

votes for a specific data point. After all votes are cast the algorithm will select

the best candidates for possible margin members using the number of votes cast

on each data point. The hypothesis is that the extreme low voted data points

aren’t relevant points to the border and extreme high voted data points might

be a possible outcome of outliers and don’t need to be added to the subset. The

algorithm applied is the following:

Step 1: Divide the training set A into positive set A+ = {x+
1 , x

+
2 , x

+
3 , ..., x

+
n1
} and

negative set A− = {x−1 , x−2 , x−3 , ..., x+
n2
}, n1, n2 are the number of positive

and negative examples of the training data respectively. Select parameters

k that represents the number of votes each point will cast, kernel to be

used by the SVM , lowerBound and upperBound, this two will be used

to find the minimum and maximum number of votes a point will need to

be used in the new border;

Step 2: Calculate the Total number of Votes, TV , cast on each set, with TV − =

n1 ∗ k and TV + = n2 ∗ k;

Step 3: Calculate the lower bound cut lbc∗ with, lbc∗ = TV ∗ ∗ lowerBound/100

and upper bound cut ubc∗ with, ubc∗ = TV ∗ ∗ upperBound/100, for both

positive and negative sets;
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Step 4: Create two extra Vectors V otes+ and V otes− of length n1 and n2 and

initialize all elements of the vector to 0, these will hold the votes received

by sets A+ and A− respectively;

Step 5: Calculate distance matrix D = (dij)n1×n2 from each data point of A+ to

all data points of A−;

Step 6: Copy and transpose the matrix D into matrix D′, this matrix will store

the distance from each data point of A− to all data points of A+;

Step 7: Sort each row of D while keeping track of the original column index of each

distance. These indexes will correspond to which point in the negative set

will the votes be cast;

Step 8: Sort each row of D′ while keeping track of the original column index of each

distance. These indexes will correspond to which point in the negative set

will the votes be cast;

Step 9: Use the indexes of the first k distances of each row in D to cast the votes.

This is done by adding 1 to the V otes−[index] = 1 + V otes−[index];

Step 10: Use the indexes of the first k distances of each row in D′ to cast the votes.

This is done by adding 1 to the V otes+[index] = 1 + V otes+[index];

Step 11: Sort all votes while keeping track of its indexes and create a new running

sum array RS∗ for both V otes∗ arrays;

Step 12: Find the minimum number of votes for both vectors by looking at the

running sum vectors, and if RS∗[x − 1] < lbc∗ and RS∗[x] > lbc∗, then

minV otes∗ = V ∗[x];
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Step 13: Find the minimum number of votes for both vectors by looking at the

running sum vectors, and if RS∗[x − 1] < ubc∗ and RS∗[x] > ubc∗, then

maxV otes∗ = V ∗[x]

Step 14: Select all points in the positive set that have received between minV otes+

and maxV otes+ and add it to the new training set A′;

Step 15: Select all points in the negative set that have received between minV otes−

and maxV otes− and add it to the new training set A′.

This algorithm can be also modified to implement the incremental aspect of

KNN-ISVM, when the data is coming in batches or when the data is too large to

be analyzed in one pass.

The goal of the voting system is to remove low voted points that are probably

near outliers or not really close to the border and to remove the high voted points

that may be possible outliers inside the others class influence. The removal of

these outliers may make the hyperplane created by the SVM better generalized as

it won’t have to take in consideration the “pull“ created by these points on the

soft margin.

Figure 8 has a small scale example of the voting algorithm. The highlighted

areas contain outliers, they represent the highest voted data points. Next to them

we find the lowest voted data points, these are the points selected by the outliers,

each outlier will vote in k low relevance data points. All of those would be selected

by previous algorithms but the proposed algorithm should be able to skip those

points.

Apart from the special case of outliers the voting system will also help in

minimizing the size of the training data. In figure 9 we have another example of

the voting system (stopping just after step 10 of the algorithm) applied to an XOR
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Figure 8: Voting algorithm: Outliers example

dataset. We can observe that the points near the border have around 70 votes and

as it goes further inside the class the values decrease to two different groups, points

that have around 30 votes and around 10 votes. The removal of these two lower

voted groups can probably be done without affecting the final decision surface.

3.2 Implementation

Neither the KNN-SVM [1] or KNN-ISVM [2] papers were specific about how

their algorithms were implemented, something to be expected when working with

the short scope of a paper. When testing those algorithms I implemented them

in R for fast prototyping and better visualization of the results. On those tests

when dealing with a high amount of data the kNN would sometimes take more

time than the SVM using the full dataset, which partially defeats the purpose of

pruning points for a faster classification.
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Figure 9: Voting algorithm: border example

This result doesn’t invalidate the work found in those papers, as R is not

a language known for it’s high performance and it is probably not the one used

on their results. But this made clear that computation time is an important

aspect for any proposed algorithm. Luckily the computation of KNN can be easily

parallelized making it ideal to use the graphics card for computation with CUDA.

The discussion on the implementation will be broken up in the different sec-

tions that make the algorithm, Distance Matrix Calculation, KNN, Interval calcu-

lation and Support vector candidates selection.

3.2.1 Distance Matrix

One of the first decisions when calculating the distance is that there is no

need to use the normal euclidean distance as show in equation 10, instead it is

as effective to calculate the square of the distance and compare those . This way

28



there is no need to calculate a the square root on all distances, and this shouldn’t

impact the algorithm because if x < y then
√
x <
√
y, keeping the relationship

between points the same.

The distance matrix calculation is one of the more computationally intensive

elements of VNN-SVM. But the challenge of calculating the distance matrix on

GPU was already studied by [3, 4].

On CPU to calculate the distance between points x = (x1, x2, ..., xn) and

y = (y1, y2, ..., yn) you would use equation 10. And if you needed to calculate the

distance from every element of a group of points X to every element of a group of

point Y we would iterate over all elements of X and Y saving each result in an

entry of the distance matrix.

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (10)

Although using equation 10 would be a perfectly normal way to compute the

distances it is not well suited for GPU programming, even if you had each core

doing the sum for a singular element the constant memory accesses would minimize

the speed gain from it. So I changed how to calculate distance to use just matrix

operations instead of calculating each of the elements individually. This is done

with the following equation:

d2(x, y) = (x− y)>(x− y)

d2(x, y) =‖ x ‖2 + ‖ y ‖2 −2x>y

(11)

Where ‖ . ‖ is the Euclidean norm, x> is the transpose of x and x>y is the

dot product between x and y. These Euclidean norm can be calculated easily with

very simple CUDA kernels or using specific libraries like Thrust. I have written
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both codes but the one using the Thrust library outperforms the normal CUDA

kernels and was used for all results.

The dot product is more interesting as it is by far the most computationally

expensive point of the calculation. VNN-SVM will have to calculate the distances

between 2 matrices containing the positive cases and negative cases, matrix A+

and A− respectively. The dot product of point xi and yj can be found simply by

doing the matrix multiplication M = A+>A− and selecting the element Mij.

Writing specific kernels in CUDA for matrix multiplication is a hard task if

you are trying to maximize the GPU use, for that reason the VNN-SVM uses

CUBLAS for matrix multiplication. CUBLAS is a implementation of the Basic

Linear Algebra Subprograms library (BLAS ) for CUDA. This library, originally

created for FORTRAN, implements well known linear algebra algorithms that will

make use of the full processing power of the system they are designed for.

The VNN-SVM distance matrix computation on GPU follows these steps:

Step 1: Divide the training set A into positive set A+ = {x+
1 , x

+
2 , x

+
3 , ..., x

+
n1
} and

negative set A− = {x−1 , x−2 , x−3 , ..., x+
n2
}, n1, n2 are the number of positive

and negative examples of the training data respectively.

Step 2: Calculate the vectors S+ and S−, where S∗i is the squared euclidean norm

of A∗i

Step 3: Create the matrix C(n1×n2), where Cij = S+
i + S−j

Step 4: Use CUBLAS to calculate M = −2 ∗ A−>A+ + C

On step 4 the order of A− and A+ are inverted because CUBLAS uses column

major input order so the change was made to get the resulting distance matrix in

the correct row major order received as input.
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3.2.2 K-Nearest Neighbors - KNN

The distance matrix M contains the distance between all points of A+ to A−,

with Mij corresponding to the distance between A+
i and A−j . The KNN s can be

found if the distance matrix elements (Mij) are used as keys and the matrix indexes

(ij) as values in a key-value sort function.

If M is sorted row wise the kNN to each point in A+ is found by looking at

the first k elements of each sorted row. Likewise with if M is sorted column wise

each of the k elements of each columns are the kNN to each point of A−.

Instead of writing one function to sort the rows and one function to sort the

columns my algorithm makes a copy of the transpose distance matrix MT , that

opens up the possibility to use the same row-wise sorting for both A+ and A−.

This is not done only by convenience of reusing the same code, but to use CUDA

to its fullest as the speedup gained from CUDA comes from coalescing memory

reading.

The Thrust library has a implementation of sort by key that will be used by

the algorithm. Thrust is tuned to work with CUDA vectors not matrices so I had

to apply its sorting algorithm for every individual row. The sort by key algorithm

will sort each row of M and MT at the same time changing the order of a second

vector that has values 1 to j for A+ and 1 to i for A−. Those second vectors are

going to form new matrices Index+ and Index− containing the indexes of the kNN

to the elements of A+ and A− respectively.

With Index+ and Index− created the last step of the kNN is casting the

votes. The votes will be saved in 2 different vectors V + and V − of sizes i and j

respectively, both initialized with zeros. To tally the votes a small CUDA kernel

was written, each thread of the kernel will look at an index value iv in the Index∗

vector and add 1 to V ∗[iv].
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To assure the correct result I used atomic operators on the kernel, this way if

multiple threads are adding to the same element then they will have to wait in a

queue. This is the only part of the code outside the libraries that has any thread

concurrency. But the max concurrency possible can be estimated looking at by k

and the j, the number of elements in the other class, when all elements vote for

the same k points the kernel will have k queues of j threads.

On the original KNN-SVM algorithm this would be the last step. All points

with votes would be selected as Support Vectors Candidates, with no need to sum

the votes, just find which points got any number of them.

3.2.3 Interval Calculation

Now with the votes vectors V + and V − filled, the algorithm will calculate the

minimum and maximum amount of votes a point needs to be selected as an SVC.

Four new vectors are created, two Index vectors I+ and I− used to hold the

indexes of each point of V + and V −. And two running sum vectors RS+ and RS−

that will be used to find the interval.

The Thrust library sort by key algorithm will be used again to sort V + and

V − while also sorting two new Index vectors, so V + and V − will be in ordered

from least voted to most voted points and I+ and I− will contain the corresponding

indexes of the points in the original dataset.

After that the algorithm will use the inclusive scan method of the Thrust

library to calculate the running sum of each of the votes vectors V + and V − and

save in RS+ and RS− respectively. The last element of each RS∗ vector will

contain the total number of votes cast by its respective V ∗ vector.

Two more variables are needed to calculate the interval, lbd (lower bound)

and ubd (upper bound), these variables are integers between 0 and 100 with 0 ≤

lbd < hbd ≤ 100. They represent a percentage of the total number of votes that
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will be used when selecting the Support Vector Candidates.

With all vectors populated and lb and ub selected the algorithm can now find

the minimum (minV otes) and maximum (maxV otes) number of votes needed for

a point to be a possible SVC for both positive and negative sets. For each element

x of the RS vector we will do the following in parallel:

Step 1: Get the total number of votes by selecting the last element of RS∗ and

save in TV ∗.

Step 2: Calculate the lower bound cut lbc∗ with, lbc∗ = TV ∗ ∗ lbd/100.

Step 3: Calculate the upper bound cut ubc∗ with, ubc∗ = TV ∗ ∗ ubd/100.

Step 4: Find minV otes∗ by checking where RS∗[x− 1] < lbc∗ and RS∗[x] > lbc∗,

then minV otes∗ = V ∗[x]

Step 5: Find maxV otes∗ by checking where RS∗[x−1] < ubc∗ and RS∗[x] > ubc∗,

then maxV otes∗ = V ∗[x]

3.2.4 Support Vector Candidates Selection

With minV otes and maxV otes for each set found then the last step is the

final selection of Support Vector Candidates. To do that in one parallel two more

boolean vectors are created SV C+ and SV C− with all values previously set to false.

Now for each element x of the V ∗ vector do the following, if V ∗[x] >= minV otes∗

and V ∗[x] <= maxV otes∗, then SV C∗[x] = true.

After this is done to all classes the algorithm can write a new dataset A′ by

copying all information from every element where SV C∗[x] == true. This new

dataset can be then used by the SVM to find the separating hyperplane.
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3.3 Computation Overview

This section will go through a example computation of VNN-SVM on the

Iris dataset showing partial results on important steps of the algorithm for better

understanding.

Because Iris has 3 different classes the algorithm will have to be applied

to all the possible pairs. All pairs containing Setosa are always perfectly divis-

ible and therefore uninteresting, we will overview the computation of the Vir-

ginica/Versicolor pair as it is more interesting. More information about the dataset

is found on 4.2.1 but for the purposes of this section we need to know that both

Virginica and Versicolor have 50 entries with 4 attributes each and that it isn’t

linear divisible with outliers in both classes.

I will not count as part of this algorithm the breaking of the original dataset

into its smaller subsets containing only one class as this can be done at the same

time as the usual data preparation (cleaning, normalization, etc).

So first the user needs to select a k, lowerBound (lbd) and upperBound (ubd).

In this example we will use k = 10 , lbd = 20 and ubd = 80, aiming to cast enough

votes to find a border while removing some of the lower and higher voted points.

Before any calculations are made the first transfers of data from CPU to GPU

will take place, that is when all points of both classes are copied to GPU memory.

This has to occur because the GPU and CPU don’t share the same memory

and therefore all information used by the GPU needs be copied there first. Data

created by the GPU don’t need to be copied but its space needs to be allocated

by the algorithm before using it. These memory copies were omitted from the

implementation of the algorithm for brevity but all take computational time and

will affect the runtime of the algorithm and are being taken in consideration in

section 4.5.
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After copying the data to GPU it can finally start by calculating the Distance

Matrix as shown in 3.2.1. To do that the algorithm will allocate the needed memory

space for the distance matrix and other variables used in equation 11 and calculate

the matrix M .

In our case this distance matrix M calculated has size 50 × 50. By looking

into a row of M you find the distance of between that element of Versicolor to all

elements of Virginica. The algorithm will then make a copy of M and transpose

it calling it MT , so the rows of MT will reflect the distance from an element of

Virginica to all elements of Versicolor.

The reason we have to transpose one of the matrices is to get the best perfor-

mance possible on the next step, where the algorithm will sort those rows to find

the nearest neighbor of each element.

This performance gain is done by using functions from established parallel

libraries, in this case Thrust. These libraries contain basic functions, all of them

highly optimized for GPU use, but they are very specific on how they work. To

accommodate the restrictions some library functions have, the algorithm may add

intermediate steps, like the transpose of M , so it can save time on more complex

operations down the line, or it may create extra matrices/vectors, like the extra

vectors created on the distance matrix equation 11.

Now both M and MT will be sorted row-wise while at the same time chang-

ing the position of the elements of an index vector to reflect which element each

distance corresponds to, fortunately Thrust contain a function sort-by-key that

can be used for these specific cases.

A small example of this step can be found in figure 10, the first row corresponds

to the distance between one point of one class and the first 8 points of a different

class. Figure 11 shows the results of the sort-by-key algorithm, with the distance
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Figure 10: Arrays before sorting

Figure 11: Arrays after Thrust sort-by-key

row all sorted and the second row of corresponding index still accompanying them.

The individual index vectors created for each row are combined into two new

index matrices and, by looking at the first k columns of each index matrix the

algorithm can find the k-Nearest Neighbors (kNN) of each element.

With this the algorithm is ready to cast the votes. They will be saved in 2

new Votes vectors of size 50, initialized with zeros, the index of the vector will be

used to correlate to the index of a point in the original datasets. Now for each

kNN the algorithm will increase the number of votes of the respective index by 1.

After all votes are cast both votes vectors are sorted-by-key from smallest to

highest while keeping the index of each point in the same manner as done when

sorting MT . We can see the results of this voting in figure 12. From a first glance

it is easy to see an empty space on the left of each graph, they correspond with

points that didn’t receive any votes, 21 for Iris-Versicolor and 30 for Iris-Virginica.

On the original kNN-SVM algorithm that would be the last step and those points

with no votes would be removed.

But the VNN-SVM will take one step further by removing points with very

few or too many votes. To do this the algorithm will use the lowerBound and

upperBound variables (20 and 80 respectively) selected at the beginning of the
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(a) Votes Versicolor (b) Votes Virginica

Figure 12: Votes cast for k=10

computation.

Before continuing the algorithm will calculate the running sum of the sorted

votes vectors. The last point in the running sum will be the total number of

votes cast, in this example each dataset voted 500 times (50 points voting on

10NN). The lower and upper bound are tied to the total number of votes cast,

where lower bound will be 500 ∗ 20/100 = 100 Votes and the upper bound will be

500 ∗ 80/100 = 400 Votes. With the values figured out the algorithm will select all

points where running sum are between lowerBound and upperBound. Figure 13

shows graphically the selection for both Iris-Versicolor and Iris-Virginica.

On a normal run of the kNN-SVM with k = 10 the algorithm selected 29 points

from Iris-Versicolor and 20 points from Iris-Virginica. By running the VNN-SVM

the algorithm would select only 8 points from Iris-Versicolor and 8 points from

Iris-Virginica.

When taking into consideration the 3 classes the number of points selected by

kNN-SVM would be 81 points in total (19 setosa, 42 versicolor and 20 virginica)
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(a) Versicolor with Bounds (b) Virginica with Bounds

Figure 13: Running Sum and points selection example

and those points would create a SVM with a accuracy of 96.66%. The VNN-SVM

would select 39 points in total (10 setosa, 17 versicolor and 12 virginica) and the

SVM created have a accuracy of 97.33%.

3.4 Voting Nearest Neighbors 2 Pass(VNN-SVM 2 Pass)

The lowerBound and upperBound variables added to the Support Vector

Candidate selection on VNN-SVM gives the user the ability to be greedy on

their candidates selection, for example, when using the lowerBound = 75 and

upperBound = 100 pair the algorithm will pick just a small number of very high

voted points. But most of the greedy approaches selected SVC s that created ap-

palling borders. When analyzing those results we find out that the select points

were composed of mostly outliers and elements inside the margin had the SVM

used the full data.

This result meant running a greedy selection won’t always work for selecting

useful SVC, but was very useful to find outliers or elements that are hard to classify

and could lead to overfitting if used on the SVM. I decided to use this to implement
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a new version of the VNN that could try to be more greedy on how many points

it selects for the SVC by running it twice.

The first pass will be used to remove those points hard to classify. This way

the algorithm can do a second pass that can be more greedy than normal while

still having a good chance of getting a acceptable margin. I called this algorithm

Voting Nearest Neighbors 2 Pass(VNN-SVM 2 Pass). And a run of this 2 pass

version will be like this:

Step 1: Select a k1, lbd1 and ubd1, the bound selection should aim to be very greedy

so it will select the elements very close to the border.

Step 2: Run a version of VNN like the one described in 3.1 on dataset A and find

the subset SV C1.

Step 3: Instead of creating A′ by selecting all elements of SV C1, create A′ by

selecting all elements of A except the ones appearing in SV C1, in mathe-

matical terms A′ = A \ SV C1.

Step 4: Select a k2, lbd2 and ubd2.

Step 5: Run of VNN exactly like the one described in 3.1 on dataset A′ and find

the subset SV C2.

Step 6: Creating A′′ by selecting all elements of SV C2 as your possible support

vector candidates.

Step 7: Find the separating hyperplane using SVM over A′′.

3.5 Time complexity

One of the main goals of the VNN-SVM is to speedup the training of SVM s

when working with Big Data. To do so, it is imperative that the time it takes to
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run the VNN-SVM is as fast as possible, that the algorithm was implemented in

parallel using CUDA.

There are two types of code used on this implementation, one the user created

kernels, these codes were written just for this algorithm and are specific to this

implementation, this are the CUDA kernels. The other type of code used is the

use of libraries, in specific CUBLAS and Thrust, these are generic built code

distributed with CUDA and are highly optimized to maximize GPU use.

When analyzing the code we have a perfect knowledge of the time complexity

of the CUDA kernels created for this project but are dependent on the libraries

documentations for CUBLAS [5] and Thrust [6] functions.

The analysis will be divided in the same way the implementation was dis-

cussed.

3.5.1 Distance Matrix

As seen in section 3.2.1 the distance matrix is the result of the equation (12).

d2(x, y) =‖ x ‖2 + ‖ y ‖2 −2x>y (12)

This is done in 3 steps, calculating the Euclidean Norm squared, creating the

matrix C and finally using CUBLAS to calculate M = −2 ∗ A−>A+ + C.

The first two steps were done using CUDA kernels and they have a complex-

ity of O(n) and O(n2). The matrix multiplication and addition were done using

CUBLAS, based on the documentation the algorithm used for this operation is

specific to the system it is being implemented in, but is always based on the Gen-

eral Matrix Multiply (GEMM ) [7], this algorithm has a complexity of O(n3) but

is optimized to minimize memory access.
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3.5.2 K-Nearest Neighbors

The steps of the kNN calculation are the transpose of the distance matrix,

the sorting of the distances and the casting of the votes on the k neighbors.

The transpose is using a CUBLAS function but it is straightforward with a

complexity of O(n). The sort is being done using sort by key from the Thrust

library, the algorithm implemented by that library is the Radix Sort with a com-

plexity of O(b ∗ n), where b is the number of bits required to represent the largest

element of the array. But the sorting will need to be applied to all points in the

dataset, raising the complexity to O(b ∗ n2). The voting uses a very simple kernel

with a complexity of O(n).

3.5.3 Interval Calculation

The steps that make the Interval calculation are the sorting and running sum

of the votes and the finding the interval.

As stated before sorting has a complexity of O(b ∗ n) and this time it will

be done just once, keeping the complexity as it is. The running sum is also us-

ing the Thrust library, more specifically the inclusive scan function, this is also

a straightforward implementation that has a complexity of O(n). Finding the

Interval doesn’t use any libraries and its kernel has a complexity of O(n).

3.5.4 Support Vector Candidates Selection

The last step of the VNN-SVM consists of doing the final selection, this is

also done with a simple kernel that has a complexity of O(n).

3.5.5 Parallelism

The time complexity analysis of a CUDA algorithm is different from a normal

algorithm because it is not only tied to algorithm being used, but to how paral-

lelizable can you make it and what hardware are you working on. If you have a
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Graphics Card
GTX
480

GTX
580

GTX
680

GTX
780

GTX
780 TI

GTX
980

GTX
980 TI

GTX
1080

GTX
1080 TI

RTX
2080

RTX
2080 TI

CUDA Cores 480 512 1536 2304 2880 2048 2816 2560 3584 2944 4352
Release date Mar-10 Nov-10 Mar-12 May-13 Nov-13 Oct-14 Jun-15 Jun-16 Jun-16 Sep-18 Sep-18

Table 3: Evolution of processor units on NVidia graphics cards

problem that is being solved with an O(n2) algorithm that can run fully in parallel,

then you can compute it at a speed comparable with an O(n) algorithm if you can

run it on n CUDA cores at the same time.

We can see the evolution of CUDA cores on table 3, in less than 10 years

the number of cores grew almost 10 times, with the architecture accompanying

them also improving the overall performance. Nevertheless, these numbers are not

enough when comparing with the size of Big data where 5000 points constitute a

small Big Data problem. So, for now, commercial grade hardware will not have

the same number of cores to change the time complexity from O(n2) to O(n). But

it can make your O(n2) algorithm more than a 1000 times faster by having it run

in as many cores as possible.

The VNN-SVM was programmed to do as much of the computation in parallel

as possible. The only part of the code with concurrency is the casting of the votes,

where, to compute the right number, it creates a queue any time more than one

core wants to cast a vote to the same point. This means that all time complexities

other than that one are being speed-up by a factor of c where c is the number of

cores available on the hardware being used. Taking that in consideration, we can

express the time complexity of the VNN-SVM implemented based on the input

size n and number of CUDA cores c as O(n3/c).
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CHAPTER 4

Analysis

4.1 Methodology

The VNN-SVM has 3 variables that will define a run of the algorithm, k

the number of votes each entry will cast on the other classes, lbd the percentage

of the total votes that indicates the minimum number of votes that have to be

cast before selecting possible SVC s and ubd the percentage of the total votes that

indicates the maximum number of votes that will be used to select possible SVC s.

When discussing the results it will be easier to reference the selected bounds as

a pair, because of that the notation lbd ubd will be used to denote a specific pair

henceforth.

A grid search will be done to analyze the impact of k, lbd and ubd and de-

termine their best values. I decided to handpick the lbd ubd pairs to cover the

most interesting cases. From very greedy bounds, ones that have a small range

and larger values like the pair 75 100, to more conservative bounds, ones with a

large range or that includes low voted points like the pair 0 75.

To study which values give the best results each test will be analyzed using

these 4 metrics:

1. Size of the border vector: The number of SVC s selected by the Voting Near-

est Neighbors. We want to train the SVM using as few points as possible to

make it fast;

2. Run-time: Time taken by the Voting Nearest Neighbors to create, select a

new border vector and run the SVM. I divided the total runtime of VNN-

SVM into these 2 different items.
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• VNNRuntime : The total time taken by the VNN-SVM excluding the

time it takes to train the SVM ;

• SVMRunTime : The time it takes to run the SVM on the SVC

dataset.

The TotalRuntime measured in testing is represented by adding VNNRun-

time and SVMRunTime and it will be compared to the time it takes to

run the SVM using the full training data, and to be considered successful it

should always be smaller than the original SVM. This runtime will be used

to calculate the speedup.

3. Accuracy: The final accuracy of the SVM trained. A small loss in accuracy

is acceptable but the main goal is an accuracy as good or better than the

original SVM. This accuracy will be calculated by testing the margin created

by the SVM created using the SVC selected over the original dataset and

Validation datasets when available. The accuracy will be calculated as such:

accuracy =
number of correct predictions

total number of predictions

4. Number of support vectors: The number of support vectors selected by the

trained SVM. The more general decision surface should have fewer support

vectors as outliers should be removed before creating the SVM.

A normal SVM will be trained with full datasets, these will be used as the

control to which the VNN-SVM will be compared.

All tests done with VNN-SVM will also be performed on the original algorithm

KNN-SVM by running VNN-SVM with the 0 100 pair. Because it’s using the same

algorithm I don’t expect to see a big difference in runtime between the original

KNN-SVM and VNN-SVM but it will be interesting to see how much the bound

variables can change the SVC selection.
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To prove that the selection of the SVC s are indeed helping to create the best

SVM possible I will compare its results versus a random test. This test consist of

training an SVM s using the same number of points as the number of the SVC s

of that particular run, but these points will be sampled randomly. I will collect

the average accuracy of these tests as well as best and worst individual accuracy

of the random SVM s.

4.2 Datasets

The VNN-SVM algorithm was built generic enough to be used by any type of

datasets being able to find adequate subsets that could be used to find margins as

good as if running all data, but the added computation in smaller datasets might

make it irrelevant. For that reason I chose 5 different datasets from very small to

very large so the effect and performance of the algorithm could be studied on a

broad range of datasets. Here are the descriptions of the datasets used:

4.2.1 Iris Dataset

The Iris dataset is one of the most recognizable machine learning datasets

in existence being used to compare different techniques in performance. This is

a biology dataset that was first published in 1936 by Ronald Fisher in his paper

The use of multiple measurements in taxonomic problems and reproduced many

times over. The version used here was downloaded from the UCI machine learning

website [1].

The Iris dataset consists of 150 points equally divided in 3 to represent 3

different iris species, Iris-Setosa, Iris-Versicolor and Iris-Virginica. Each point has

4 different attributes: 2 refer to petal size and 2 to sepal size.

Although this dataset is not representative of the type of datasets the algo-

rithm was design for, it is nevertheless interesting to test how the algorithm will
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perform on a well known dataset.

Because this dataset is so small it is expected that running VNN-SVM might

take more time than just running an SVM with the full dataset. So this test will

focus more on the accuracy of the new pruned dataset versus the full dataset.

4.2.2 Wisconsin Breast Cancer Dataset

The Wisconsin Breast Cancer Dataset[2] is also well known in machine learn-

ing. It is another biology dataset that consists of 569 points divided into 2 classes,

357 benign tumors and 212 malignant tumors. Each point has 30 attributes, all of

them real values related to the cell nucleus.

As with the Iris dataset, the Wisconsin Breast Cancer dataset is not repre-

sentative of the type of data the VNN-SVM was designed to help, but it as a step

between the small Iris dataset and datasets approaching big data and will provide

a point to test the algorithm.

4.2.3 Gisette Dataset

This is the first of the datasets that I will treat as big data. The Gisette

dataset[3] is an example of the handwritten digit recognition problem. It contains

6000 points divided equally into 2 classes, 3000 points representing the digit ‘4′

and 3000 points representing the digit ‘9′. This dataset was selected because of an

interesting characteristic of having not only a large number of data points but also

having a large number of attributes, 5000 attributes to be precise.

This large number of attributes is not natural as this dataset was tailored to

be used in a feature selection challenge. Distractor features were added in a way

that didn’t give any predictive power, as well as sampling pixels at random from

the region containing the information necessary to disambiguate 4 from 9. Higher

order features were created as products of these pixels to plunge the problem in a
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higher dimensional feature space.

To test the performance of the VNN-SVM algorithm when dealing with high

dimensionality problems no feature selection was done to this dataset as I wanted

to test it as it is.

4.2.4 Kepler Exoplanet Dataset

The Kepler Exoplanet Dataset[4] was created by NASA and is operated by the

California Institute of Technology. This dataset is an online astronomical catalog

collating information on exoplanets and their host stars. There is information on

9564 exoplanets divided into 3 classes 2283 confirmed exoplanets, 2158 exoplanet

candidates and 4544 false positives. It contains over 150 attributes divided into 3

main types:

• Exoplanets attributes: such as orbital parameters and masses;

• Host star attributes: such as temperatures, positions and magnitudes;

• Discovery attributes: such as published radial velocity curves, photomet-

ric light curves, images, and spectra.

Of those attributes I selected 51 of them, 35 with information on the exoplanet,

16 with information on the host star. I removed all categorical attributes to keep

the SVM simple, for the numerical attributes I kept the ones that could be used

to describe the exoplanet or star in layman’s terms like mass, temperature, orbit,

distance, etc.

This will be a good example of how the algorithm will perform when the

datasets have more than 2 classes.
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4.2.5 Air Pressure system (APS) Failure and Operational Data for
Scania Trucks Dataset

The Air Pressure system Failure and Operational Data for Scania Trucks

Dataset[5] was created by the manufacturer Scania AB for the Industrial Challenge

2016 at The 15th International Symposium on Intelligent Data Analysis (IDA).

The dataset contains 60000 elements describing system failures, but more

interesting is that the dataset is very unbalanced with 1000 elements belonging

to the positive class when the error is related to a specific component of the APS

and 59000 elements belonging to the negative class when the error is not related

to the APS. Each element has 170 attributes but its names and descriptions were

anonymized for proprietary reasons before releasing the data to the challenge.

This is the biggest dataset tested and is where I expect the results of VNN-

SVM to be more expressive.

4.3 Data preprocessing and algorithm modification

The preparation of data before its use is an intrinsic part of the process of data

classification and its results can have profound impact on the classifier final results.

This is true for most machine learning algorithms and as such should be taken into

consideration when proposing any new technique. This section will overview the

effect and propose ways to deal with Missing Values, Data Normalization and

Unbalanced Data when working with VNN-SVM.

4.3.1 Missing Values

Missing values are a very common occurrence in data science and can be

defined when one or more variables have no value stored for an observation. This

problem can occur in any step of the data collection process and can have many

causes, faulty sensors, problems in transmission, no response from survey, ugly

handwriting, etc.
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Because of the intrinsic importance of the distance function explained in chap-

ter 3.2.1 on the VNN-SVM, any missing values can make this calculation impos-

sible. To deal with this problem there are 2 recommended ways Partial Deletion

and Imputation.

• Partial Deletion: Partial Deletion is the act of removing just the entries

that have missing data. The more common case of partial deletion is having

to remove just the specific entries that are missing one or more values, but

if the problem that generated the missing values were specific to a single

column on multiple entries then it is better to just remove the attribute

missing several values and keep all entries. The Breast Cancer dataset being

used is an already preprocessed version of a bigger dataset that originally

had 699 entries, but was reduced to 569 by removing points with missing

values.

• Imputation: Sometimes if you try to remove all points you might lose too

many points. The APS dataset is a example of this case, most of the points

on this dataset are missing at least one attribute value and these missing

values are well distributed between many different attributes so removing a

few of them will not help. For cases like this the only solution is to replace

the empty values with new values and this technique is called imputation.

The imputation solution selected for VNN-SVM is to add the mean of an

attribute to all points missing that value, this way no bias is created on the

specific attribute. This was the solution used on the APS dataset.

When using any of these techniques it is important to apply all changes to

points you need to classify in the future. To do so it is necessary to know which

columns to remove in case of a partial deletion and to keep a record of the mean

of every attribute used if an imputation is needed to any new point.
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4.3.2 Data Normalization

Any machine learning technique that uses distance between points to do the

classification, like kNN and linear SVM s, assumes that the range of the variables

are the same or at least close to each other. This is because if you have a variable

with a bigger range than the rest of the other variables, then that big range variable

will have a disproportional impact on the distance between points and consequently

it will also have a big impact on classification.

Data Normalization is the mechanism which changes the range of all variables

to be the same size. The naive way of doing that is to map the minimum and

maximum values of each attribute to −1 and 1 respectively and scale all values in

between to be in this new range. The problem with that solution is that if just one

of the values is skewed to a value very far from the normal range of the attribute

it will make the naive normalization have various points close to the range and

just the outlier value being maximum or minimum by itself with no points near it,

creating the problem of different ranges all over again.

For that reason I recommended that Soft Normalization should be used. With

this technique the majority of the points are arranged into a common range but

any outlier, while scaled, will continue to be an outlier. Soft normalization is done

as follows:

Step 1: Given the dataset A with n1 rows and n2 columns;

Step 2: For each column cj in A;

Step 3: Calculate mean (µj) of cj where, µj =

n1∑
i=1

xij

n1

;

Step 4: Calculate standard deviation (σj) of cj where, σj =

√√√√√ n1∑
i=1

xij − µj

n1 − 1
;
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Step 5: Substitute each point x of cj following this formula, xij =
xij − µj
2 ∗ σj

It is important to notice that the user will need to save the mean and standard

deviation of each column because this normalization needs to be done to all points

that need to be classified later using the original values and this is done by repeating

Step 5 on all new points.

Both APS and Kepler Exoplanet datasets had their variables normalized as

at least one of them contained literal astronomical numbers being used next to

smaller numbers like orbital period that is measured in only days.

4.3.3 Unbalanced data

Unbalanced data is a common occurrence in data classification and happens

when one of the classes has many more instances than another. With these datasets

it is very easy to build classifiers with good accuracy that in the end are just

classifying all incoming data as the one class, the one that has the majority of

entries. Because of that it is usual in these cases that the classification of the

minority class is more important than the overall classification.

In our tests the Breast Cancer Dataset, the Kepler exoplanet and the APS

dataset all had unbalanced class sizes but just the APS could be considered a truly

unbalanced dataset as the difference between the positive class and negative class

was 1/59 while in the other datasets the worst case was around 1/2.

Because of this extreme difference between majority and minority class I de-

cided to change the VNN-SVM for these types of datasets to guarantee that the

minority classes would be well represented in the selection of the SVC s.

To do so the algorithm was changed so that the votes for the minority class

will not take place and by default the full minority class will be selected as SVC s.

The algorithm will still cast votes for the majority class as usual for the selection

of the possible of SVC s that will be added to all points of the minority for the new
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dataset to be used to find the border.

With this change the margin to be created will be more favorable to fairly

represent the minority class as the user can select k, lbd and ubd to make the SVC

more balanced.

For the tests of APS dataset not only the overall accuracy will be tested but

the accuracy of minority and majority classes will be analyzed individually.

4.3.4 Multiclass data

The algorithm was implemented to handle classification of more than 2 classes

by utilizing the One-vs-One approach, meaning that the full algorithm will be

applied pairwise between all classes present in the dataset. This was done to

guarantee that elements of all classes would be selected for the SVC subset.

4.4 Resources Used

The VNN-SVM and all its auxiliary functions were written and compiled

using Microsoft Visual Studio 2017 under CUDA version 9.1. The SVM s were run

on RSTUDIO Version 1.1.423 (r Version 3.4.3), using the library e1071 [6].

All tests were performed in personal computer grade hardware with the fol-

lowing specifications:

• CPU: Intel - Core i7-7700K 4.2GHz Quad-Core Processor

• GPU: EVGA - GeForce GTX 1080 8GB FTW Hybrid Gaming Video Card

(Pascal Architecture)

• RAM: Corsair - Vengeance LPX 32GB (2 x 16GB) DDR4-3000 Memory

• Motherboard: Asus - ROG STRIX H270I GAMING Mini ITX LGA1151

Motherboard

• Storage: Samsung - 960 EVO 500GB M.2-2280 Solid State Drive
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4.5 Results

This section will go over the results of the VNN-SVM algorithm over the

datasets described in section 4.2. The results are show in tables that may contain

all or some of the following result columns as needed:

• VNNAcc: Accuracy of VNN-SVM ;

• RandAcc: Average accuracy of random SVM s created by sampling the

same number of points as number of the SVC s selected on this run.

• №SVC: Number of SVC selected by the VNN-SVM ;

• №SV VNN: Number of support vectors of the SVM created using the

SVC s;

• №SV Rand: Number of support vectors of the SVM created using the

SVC s;

• PositiveAcc: Accuracy of VNN-SVM on the positive class (minority class);

• NegativeAcc: Accuracy of VNN-SVM on the negative class (majority

class);

• PositiveAccRand: Average accuracy of the 20 random SVM s on the pos-

itive class (minority class);

• NegativeAccRand: Average accuracy of the 20 random SVM s on the neg-

ative class (majority class);

containing some of the following metrics depending on the dataset:

• VNN-SVM Accuracy: Accuracy of VNN-SVM on the full training data;
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• Rand Accuracy: Average accuracy of the random SVM s on the full train-

ing data;

• Min Rand Accuracy: Minimum accuracy achieved by the random SVM s;

• Max Rand Accuracy: Maximum accuracy achieved by the random SVM s;

• Validation Accuracy: Accuracy of VNN-SVM on the validation data;

• Rand Validation Accuracy: Average accuracy of the random SVM s on

the validation data;

• № SVC: Number of SVC selected by the VNN-SVM ;

• № SV VNN: Number of support vectors of the SVM created using the

SVC s;

• № SV Rand: Average number of support vectors of the random SVM s;

4.5.1 Iris Dataset

Results of an SVM created using the full Iris dataset are displayed in Table

4. The border was found using a linear kernel with cost = 0.1.

Accuracy
(%)

№
points

№
Suport Vectors

Runtime
(seconds)

Full Dataset 97.333 150 68 0.026

Table 4: Iris SVM Results

Of the 150 points that make the Iris dataset 68 are used as support vectors to

create a margin with 97.3% accuracy. Table 5 has the results of VNN-SVM when

k = 10 using a linear kernel with cost = 0.1.

The first thing to notice in these results is that the random tests have a big

range between minimum and maximum accuracy for almost all cases except when

the number of SVC is greater than 69. From that we gather that by sampling
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VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

№
SVC

№
SV VNN

№
SV Rand

kNN-SVM 96.667 95.707 91.333 97.333 81 50 45.56
0 25 96.000 92.933 84.000 96.667 49 34 31.04
0 50 98.000 95.067 90.667 96.667 69 45 40.00
0 75 98.000 95.360 90.000 96.667 78 49 43.96
10 50 96.667 87.573 66.667 96.000 36 31 25.04
10 75 96.000 91.547 80.667 96.667 46 36 29.68
10 90 96.000 93.067 84.000 96.000 47 37 31.20
10 100 90.000 91.493 85.333 95.333 49 37 30.24
20 80 97.333 88.933 66.667 97.333 39 31 26.40
20 95 89.333 89.467 66.667 97.333 41 32 26.68
25 75 95.333 89.600 70.000 96.000 35 28 24.44
25 100 80.000 90.347 84.000 95.333 38 29 26.32
30 85 94.000 88.427 67.333 96.000 35 28 23.48
30 95 84.000 89.467 73.333 96.667 36 29 24.92
30 100 80.000 89.573 83.333 94.667 37 29 25.24
50 95 74.667 84.507 66.000 96.000 30 23 20.44
50 100 68.000 87.467 67.333 94.667 31 24 21.60
66 100 66.000 80.693 66.667 95.333 24 19 18.16
75 100 92.667 78.213 66.000 90.667 21 17 15.92
80 100 92.667 84.507 66.667 93.333 21 17 16.60
90 100 91.333 82.667 66.667 94.000 20 17 15.84

Table 5: Iris Results VNN-SVM k = 10

around half of the dataset you have a good chance of getting accuracies above

90%. But even in these cases the border created by V NN − SVM achieved a

better accuracy than the average of all random cases.

The VNN-SVM was successful in selecting viable SVC s to train the SVM in

most cases having its best performance on the more conservative border selections

like the original kNN − SVM , 0 25, 10 50, 10 75, 10 90 and 10 100, but more

interesting are the results from 0 50 and 0 75 that, by removing the points with

most votes, increased the accuracy to 98%, better than the original SVM. This

means that VNN-SVM was able to create a more generic decision surface by using

fewer points than the full dataset.

In this run the very greedy bound pairs also did a good job to create the deci-

sion surface as seen with the results of 75 100, 80 100 and 90 100 with accuracies

all over 90% using just 20 and 21 points. But interesting enough the 50 100 and

66 100 bounds were where the algorithm performed the worst, with accuracies as
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low as the worst random accuracies. If we look at the number of SVC s selected we

see that the bound pair 66 100 and 50 100 added 3 and 10 more points than the

good cases that come after them respectively. With that we can infer that those

extra points were enough to shift the margin to that less desirable configuration.

This is reinforced when you look at the number of support vectors that rose from

17 in the good surfaces to 19 and 24 in the bad ones. But even with the success

of the greedy boundaries of this run with k = 10 the greedy algorithm is not re-

ally recommended as it had a non consistent performance with other ks tested as

shown in table 6. This happens because the algorithm is selecting so few SVC s

when using this boundaries that any 1 point added will have a significant impact

on the decision surface.

VNN-SVM
Accuracy(%)

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9
50 100 66.000 66.000 66.000 66.000 67.333 67.333 67.333 77.333
66 100 66.667 66.000 66.000 66.000 71.333 66.667 66.000 70.000
75 100 66.667 64.667 66.000 66.000 70.000 66.667 66.000 93.333
80 100 66.667 49.333 66.000 66.000 70.000 93.333 88.667 93.333
90 100 66.667 49.333 78.000 78.667 86.667 78.667 78.000 78.000

Table 6: Greedy bounds selection performance

The time it takes to run the SVM using just the SVC s went from 0.026 seconds

using the full dataset to just 0.0021 seconds using the subset of SVC s as seen in

Figure 14a, a speed up of 12x. But unfortunately, as expected, the TotalRuntime

of the VNN-SVM was much greater than just running the SVM with the full

dataset. In figure 14b we can see the comparison between runtimes with the VNN-

SVM taking 0.58 seconds to run by itself. This happens because CUDA adds a

big overhead to computation specially when transferring data between CPU and

GPU and vice-versa.
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(a) SVM Runtime (b) Total Runtime

Figure 14: Iris Runtime comparison using full dataset
(SVM), kNN-SVM and VNN-SVM

4.5.2 Wisconsin Breast Cancer Dataset

Results of an SVM created using the full Wisconsin Breast Cancer Dataset

are displayed in Table 7, the border was found using a linear kernel with cost = 0.1.

With these variables the decision surface created has an accuracy of 98.594% but

uses only 60 points as support vectors, a much smaller SupportV ectors
DatasetSize

ratio than

what we observe on the Iris dataset.

Accuracy
(%)

№
points

№
Suport Vectors

Runtime
(seconds)

Full Dataset 98.594 569 60 0.00898

Table 7: Wisconsin Breast Cancer SVM Results

Table 8 contains the results of VNN-SVM when k = 1 using a linear kernel

with cost = 0.1. The very conservative bound pairs did a good job selecting

around 60 SVC s while still getting an accuracy of over 96%, but by analyzing the

rest of the bounds and the random tests of each, a different picture appears. On

all subsequent border pairs the random tests did a much better job than the VNN-

SVM not only on the average accuracy but on the minimum accuracy, getting over

80% accuracy with just 10 random points.
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VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

№
SVC

№
SV VNN

№
SV Rand

kNN-SVM 96.134 96.112 93.849 98.243 64 29 15.20
0 25 97.188 95.663 93.497 97.364 55 24 13.76
0 50 96.837 95.775 92.970 97.540 60 25 14.32
0 75 96.134 96.007 92.619 97.891 62 29 13.92
10 50 72.232 93.308 85.940 97.715 21 7 8.00
10 75 36.380 93.251 88.225 96.837 23 12 7.92
10 90 36.380 93.251 85.237 96.837 23 12 8.28
10 100 41.828 93.469 87.522 97.540 25 12 8.96
20 80 21.617 89.490 82.425 95.606 10 4 5.00
20 95 21.617 90.482 83.480 96.661 10 4 4.88
25 75 15.993 88.225 69.772 94.728 7 6 4.08
25 100 16.169 87.944 68.014 93.673 9 6 4.92
30 85 16.344 86.278 66.784 92.091 6 5 3.68
30 95 16.344 83.522 53.076 95.958 6 5 3.84
30 100 15.817 88.886 75.747 96.309 8 5 4.84

Table 8: Wisconsin Breast Cancer Results VNN-SVM k = 1

These impressive results of the random SVM s led me to start analyzing why

this was happening. With its 569 points and 30 attributes it is not trivial to

find what the margin looks like by just plotting the dataset but we can probably

infer some facts about it. We know that the data is not perfectly divisible as not

even an SVM created using the full dataset has 100% accuracy. But the classes

“shape” must be well defined for most points because the SVM we can achieve a

good accuracy with an SVM created using just a few a random points for training.

These facts led to the developement of the VNN-SVM 2 pass, where by re-

moving the border in a greedy first pass and voting on the remaining points in the

second pass the algorithm could select few but good points that defines the shape

of the classes and find a smaller more generalized margin.

In table 9 we can see the results VNN-SVM 2 pass with the first pass using

the 90 100 bound pair with k = 5 and the second k = 10 and several pairs. Now

the accuracy of VNN-SVM on all bounds are above 90% and 5% to 10% better

than the average accuracy of its corresponding random test. They may not have

a better accuracy than the best random SVM s, but if you have to create just one

SVM then using the SVC s would be a better choice than just random sampling
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VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

№
SVC

№
SV VNN

№
SV Rand

kNN-SVM 95.782 91.227 84.534 96.661 15 6 5.96
0 25 92.794 87.550 76.274 95.606 7 6 4.16
0 50 95.606 90.868 79.613 96.134 12 5 5.80
0 75 95.606 90.411 81.722 96.837 13 5 5.68
10 50 96.309 88.155 79.789 94.552 7 4 4.12
10 75 96.309 87.417 79.789 94.376 8 4 4.68
10 90 97.188 90.657 82.074 96.134 10 5 5.08
10 100 97.188 90.320 79.965 95.255 10 5 4.76
20 80 97.188 90.228 82.074 96.485 10 5 4.76
20 95 97.188 87.459 72.583 95.431 10 5 4.68
25 75 92.091 85.673 65.554 94.376 6 3 4.12
25 100 94.552 88.837 73.989 96.837 8 3 4.44
30 85 94.552 88.991 76.626 94.552 8 3 4.40
30 95 94.552 86.355 63.269 94.552 8 3 4.60
30 100 94.552 88.844 62.390 95.782 8 3 4.64
50 95 94.728 85.610 65.026 94.728 7 3 4.04
50 100 94.728 87.937 62.039 95.079 7 3 4.24
66 100 94.728 85.244 68.014 94.025 6 3 3.56
75 100 94.728 84.640 37.083 95.782 6 3 4.00
80 100 94.728 85.251 65.905 94.903 6 3 4.00
90 100 94.728 87.733 79.438 94.903 6 3 3.52

Table 9: Wisconsin Breast Cancer Results VNN-SVM 2
pass k = 5 (first pass lbd ubd = 90 100 & k = 10)

the same number of points. As important as the accuracy is the fact that all of

that was achieved with as little as 6 SVC s, just 0.01% of the original dataset,

creating very fast SVM s with a very low number of Support Vectors.

Both VNN-SVM and VNN-SVM 2 pass were successful on diminishing the

time it takes to run the SVM s as show in Figure 15a, with the SVM created using

the VNN-SVM 2 pass SVC s taking 75% less time to find a decision surface than

when using the complete dataset. But unfortunately as with the Iris dataset the

VNN-SVM takes much more time as the SVM as shown in Figure 15b.

4.5.3 Gisette Dataset

Results of an SVM created using the full Gisette Dataset are displayed in

Table 10. The border was found using a linear kernel with cost = 0.1.

In Table 11 we find the results for VNN-SVM with k = 2, we can observe

that the best accuracies occurred when using conservative bounds, with over 97%
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(a) SVM Runtime (b) Total Runtime

Figure 15: Wisconsin Breast Cancer Runtime comparison
using full dataset (SVM), VNN-SVM and VNN-SVM 2

Pass

Training
Accuracy(%)

Validation Set
Accuracy(%)

№
Points

№
Support Vectors

Runtime
(seconds)

Full Dataset 100 97.6 6000 1084 92.62

Table 10: Gisette SVM Results

accuracy while using less than 2200 points for training.

When performing the grid search for best k another fact caught my attention,

the number of points selected on the conservative cases grew much faster with k

when compared with the 2 previous datasets. Table 12 contains the number of

SVC s for this cases, we can see that kNN-SVM selects over half of the dataset

with k = 4 and with k = 25 over 85% of the original dataset is being used. The

VNN-SVM conservative bounds do a little better but follow the same trend.

This happens because the total number of votes cast is a function of k and the

size of the dataset, meaning that in small datasets like Iris and Wisconsin Breast

Cancer the k has a bigger role on border selection, but when entering the realm of

big data each class will be casting many more votes based on size alone, so smaller

ks might be enough and a better solution if you want your SVC s subset to be as

61



VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

Validation
Accuracy (%)

Rand Validation
Accuracy (%)

№
SVC

№
SV VNN

№
SV Rand

kNN-SVM 99.000 97.630 97.450 97.833 96.6 96.58 2209 884 650.600
0 25 97.333 97.137 97.050 97.300 96.6 96.34 1634 622 552.600
0 50 98.383 97.533 97.433 97.750 96.9 96.66 2002 760 607.200
0 75 98.950 97.547 97.350 97.683 96.4 96.46 2153 847 640.000
10 50 97.300 96.637 96.383 96.800 96.3 96.08 1201 611 450.400
10 75 97.317 96.827 96.500 97.233 94.8 96.18 1352 699 486.000
10 90 97.467 96.943 96.667 97.433 95.2 95.98 1394 711 486.200
10 100 97.467 96.707 96.433 96.900 95.7 96.48 1408 728 505.600
20 80 94.517 96.023 95.467 96.283 92.5 95.68 904 571 384.000
20 95 94.300 96.413 96.250 96.617 91.6 95.94 936 590 390.400
25 75 91.533 95.353 94.933 95.600 90.1 95.54 661 454 310.800
25 100 90.833 95.730 95.317 96.133 89.4 95.32 717 494 332.200
30 85 87.217 95.083 94.767 95.300 86.2 94.88 515 379 265.200
30 95 85.617 95.260 94.900 95.750 84.8 95.28 533 397 276.200
30 100 85.450 95.330 94.917 95.700 84.6 95.08 540 398 283.200
50 95 75.850 93.607 93.167 93.967 74.9 93.62 229 207 155.600
50 100 75.033 93.793 93.383 94.433 74.6 93.70 236 211 164.000
66 100 54.950 90.943 89.967 92.533 54.8 90.48 98 92 83.400
75 100 49.500 87.693 82.683 90.067 49.5 87.16 58 57 52.400
80 100 45.150 85.427 82.100 89.050 46.5 84.34 39 39 37.200
90 100 40.667 69.180 56.617 76.200 42.2 69.40 14 14 13.800

Table 11: Gisette Results VNN-SVM k = 2

small as possible.

Number of SVC s
k=1 k=2 k=3 k=4 k=5 k=10 k=15 k=20 k=25

kNN-SVM 1596 2209 2663 3019 3293 4159 4617 4924 5126
0 25 1168 1634 2031 2300 2508 3217 3579 3831 3967
0 50 1424 2002 2423 2747 3004 3811 4225 4501 4679
0 75 1551 2153 2600 2947 3214 4058 4503 4802 4995

Table 12: Number of Support Vector candidates

As with the Wisconsin Breast Cancer dataset it is interesting to notice that

the random SVM s performed fairly well getting accuracies over 90% with only 200

points. Because of that I decided to test this dataset with the 2 pass algorithm.

As pointed out above even small ks can select more than half of the dataset

depending on the bounds, because of that I decided to keep k = 1 on the first

pass so it would not remove too much of the dataset. To control what would be

removed I decided to change the bounds, these were the bounds tested:

• 0 100: This test will try to remove enough of the margin that the second

pass would select from the general population of each class, this is the test

that would remove the most points.
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• 0 75: This test will try to remove enough of the margin that the second

pass would select from the general population of each class at the same time

leaving some of the most voted points there to see if the accuracy would

increase as these points are taken in consideration for the border;

• 30 85: This is a middle ground between the previous 2, leaving the least

and most voted points in place. This will be the test that removes the least

amount of points in the first pass.

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

№
SVC

№
SV VNN

№
SV Rand

kNN-SVM 96.033 96.346 96.067 96.667 974 437 407.750
0 25 95.283 95.079 94.850 95.367 594 308 294.750
0 50 95.700 96.008 95.833 96.267 837 380 378.000
0 75 96.150 96.154 95.933 96.383 926 425 392.500
10 50 94.783 95.696 95.017 96.117 676 318 324.500
10 75 95.050 95.796 95.450 96.150 765 353 337.000
10 90 95.150 95.679 95.500 95.933 800 365 346.250
10 100 95.150 95.883 95.650 96.150 813 373 355.750

Table 13: Gisette Results VNN-SVM 2 Pass 0 100 k = 1

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

№
SVC

№
SV VNN

№
SV Rand

kNN-SVM 96.217 96.304 95.917 96.667 1005 466 402.750
0 25 95.517 95.917 95.583 96.350 857 392 363.250
0 50 96.133 96.225 95.700 96.833 969 424 409.750
0 75 96.367 96.321 96.283 96.383 991 465 399.000
10 50 96.133 96.137 95.867 96.350 969 424 403.750
10 75 96.367 96.396 96.133 96.667 991 465 401.250
10 90 96.233 95.958 95.583 96.217 1000 456 406.500
10 100 96.217 96.217 95.883 96.450 1005 466 402.000

Table 14: Gisette Results VNN-SVM 2 Pass 0 75 k = 1

Samples of each test are found in Tables 13, 14 and 15, all of them were tested

with k = 1 on the second pass. For most of the bounds the VNN-SVM 2 Pass

Accuracy is within the range of the random tests. They are never better than

random by a large margin, however The 0 100 and 0 75 bounds did selected fewer

SVC s than the normal run of VNN-SVM but with diminished overall accuracy.
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VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

№
SVC

№
SV VNN

№
SV Rand

kNN-SVM 97.950 97.004 96.717 97.167 1612 676 524.750
0 25 96.817 96.408 96.100 96.750 1146 500 426.500
0 50 97.600 97.017 96.650 97.233 1486 610 512.000
0 75 97.783 97.088 96.883 97.250 1594 649 551.750
10 50 97.600 97.013 96.917 97.133 1486 610 504.000
10 75 97.783 97.125 97.000 97.200 1594 649 549.000
10 90 97.767 97.104 96.817 97.333 1606 677 528.000
10 100 97.950 97.204 97.067 97.367 1612 676 529.500

Table 15: Gisette Results VNN-SVM 2 Pass 30 85 k = 1

Gisette was used to test how the algorithm would behave under datasets

with a great number of attributes and it is the first test of how much time the

VNN-SVM algorithm can save. The original SVM needed 92.62 seconds to find

a 100% accuracy margin using the full dataset. The VNN-SVM with k = 02

and 0 75 had a TotalRuntime of 71.52 seconds, divided in VNNRuntime= 55.06

seconds and SVMRuntime= 15.44 seconds. The speedup obtained was of 1.30x

while maintaining an accuracy of 98.95%. The VNN-SVM 2 pass (using k =

1/0 100 and k = 1/0 75 on steps one and two respectively), had a TotalRuntime of

75.70 seconds, divided in VNNRuntime= 70.04 seconds and SVMRuntime= 5.66

seconds. The speedup obtained was of 1.22x while maintaining an accuracy of

96.150%.

4.5.4 Kepler Dataset

The kepler dataset is the first not to use a linear kernel, with the best SVM

created using a radial kernel with γ = 0.3 and cost = 4.1, the results of this SVM

are found in Table 16. One point that makes the Kepler dataset different than the

ones tested before is that the SVM uses 7029 points as support vectors, almost

80% of the dataset.

It is hard to expect that VNN-SVM will be able to remove as many points

as it has for the previous datasets but it should be able to select the best points
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(a) SVM Runtime (b) Total Runtime

Figure 16: Gisette Runtime comparison using full dataset
(SVM), VNN-SVM and VNN-SVM 2 Pass

Accuracy
(%)

№
points

№
Suport Vectors

Runtime
(seconds)

Full Dataset 95.592 8985 7029 33.96

Table 16: Kepler SVM Results

to create a hard surface. Table 17 has the results for VNN-SVM when k = 2, we

can see that the best results were again achieved by the more conservative bound

pairs, with most of them accomplishing an accuracy over 90%.

The bound 0 50 achieved an accuracy of 92.454% just 3.138% less than SVM

running with the complete dataset, all the while using only 61.4% of the original

points and reducing the number of support vectors by almost the same amount.

The kNN − SVM also performed well, but to get an accuracy 1.5% better it

needed a extra 400 points in both SVC s and Support vectors.

When testing this dataset another fact got my attention. As we grow k we

select more and more points, but for k ≥ 4 both the kNN − SVM and V NN −

SVM with 0 75 were able to get accuracies better than the original, this results

can be seen in Table 18. In datasets as hard to classify as this one, it might be

worth to increase training time by testing different ks if that means getting a better

accuracy for it.
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VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

№
SVC

№
SV VNN

№
SV Rand

kNN-SVM 93.923 88.806 88.492 89.082 5931 5194 4815.6
0 25 88.881 85.583 84.930 85.854 4820 4117 3986.6
0 50 92.454 87.831 87.435 88.214 5516 4777 4519.0
0 75 93.600 88.329 88.203 88.492 5817 5081 4738.6
10 50 89.249 85.954 85.799 86.210 4931 4264 4055.8
10 75 90.918 87.061 86.878 87.190 5325 4667 4356.6
10 90 91.308 87.352 86.800 87.535 5443 4802 4438.0
10 100 91.419 87.346 87.067 87.702 5482 4849 4463.2
20 80 83.517 83.553 83.228 83.951 4093 3735 3426.2
20 95 83.172 84.045 83.773 84.374 4194 3831 3507.4
25 75 77.496 80.198 79.633 80.512 3029 2834 2595.8
25 100 75.659 80.683 80.267 81.157 3219 2991 2731.2
30 85 75.081 79.789 79.098 80.378 2844 2642 2450.4
30 95 74.602 80.031 79.889 80.301 2901 2700 2494.4
30 100 74.402 79.726 79.354 80.590 2924 2721 2507.0
50 95 58.642 73.854 73.389 74.279 1389 1312 1247.2
50 100 58.453 74.259 73.667 75.270 1412 1324 1279.4
66 100 30.451 69.596 69.349 69.894 679 657 639.4
75 100 26.778 66.967 65.843 68.692 395 383 385.4
80 100 51.753 65.478 62.137 66.778 268 265 265.2
90 100 23.773 58.762 56.694 61.213 84 84 84.0

Table 17: Kepler Results VNN-SVM k = 2

VNN-SVM Accuracy(%)
k=04 k=05 k=10 k=15 k=20 k=25 k=50 k=100 k=150 k=200 k=250

kNN-SVM 96.194 96.327 96.661 96.594 96.572 96.583 96.539 96.539 96.539 96.539 96.539
0 75 95.737 95.915 96.227 96.238 96.138 96.127 96.071 96.093 96.071 96.016 95.849

Table 18: VNN-SVM points with better accuracies than original SVM

To reduce the number of points to just 62% while keeping a good accuracy is a

impressive feat but it didn’t do enough to save time on the SVM. On Figure 17a, we

see the comparison of the SVMRuntime on the full dataset, kNN-SVM and VNN-

SVM, and while we a see a significant diminish on computation time for the SVM,

on Figure 17b we can see it is overshadowed be the runtime of the VNN-SVM. The

TotalRuntime was 173.18 seconds, divided in SVMRuntime= 10.37 seconds and

VNNRuntime= 162.81 seconds.

The disparity between this results and the ones for the Gisette dataset is

staggering, but can be explained. First when comparing SVM s we see that Gisette

took 3 times longer to find the margin. This happened because Gisette is the bigger
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(a) SVM Runtime (b) Total Runtime

Figure 17: Kepler Runtime comparison using full dataset
(SVM), kNN-SVM and VNN-SVM

dataset even though it has less points, when we compare dataset sizes the number of

attributes also have a role in runtime, by looking at the NoPoints×NoAttributes

of each dataset we find out that Gisette is one order of magnitude bigger than the

Kepler dataset. But that does not explain the difference VNNRuntimes, the kepler

dataset took almost 3 times longer to complete the VNN-SVM, and the fact that

was 3 times longer is the key to understand this runtime.

While the Gisette dataset just needed to be classified points as either ’4’s

or ’9’s, the Kepler dataset has to do a multiclass classification over its 3 classes

’False Positive’, ’Candidate’ and ’Confirmed’. As stated in chapter 4.3.4 multiclass

classification was done pairwise, that means that for the 3 classes of the Kepler

dataset the algorithm is actually running 3 different VNN-SVM s. To do a better

comparison with Gisette I timed just one of this iterations and got a runtime of

63.8 seconds much closer to the 55 seconds taken by the Gisette.

Because of that I decided to change the test a little. The dataset was divided

into 2 classes, one containing the original 4544 entries from the ”False Positive”

class and the other containing 4441 entries from both ”Confirmed” and ”Candi-
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date” classes. Now the dataset results look a little different, on Table 19 we see

that the new SVM doesn’t use as many points datasets while achieving a better

accuracy.

Accuracy
(%)

№
points

№
Suport Vectors

Runtime
(seconds)

Full Dataset 97.78 8985 5787 35.05

Table 19: Kepler (2 classes) SVM Results

The VNN-SVM was successful on selecting useful SVC s as show on Table 20.

We can see that the conservative bounds achieved an accuracy of over 90%, with

the exception of the 0 25 bound, by selecting between 4000 and 4500 points as

possible SVC.

When analyzing the new runtime it looks better but it wasn’t enough to save

time. On Figure 18a we see that the SVM with the 2 classes dataset takes about

the same time as the 3 classes dataset, and the SVMRuntime of kNN-SVM was 5.9

seconds, a little more than half of the time achieved when using the SVC s selected

for 3 classes. The VNNRuntime was 83.37 seconds about half of the VNNRuntime

needed when using the 3 classes dataset.

4.5.5 APS Failure and Operational Data for Scania Trucks Dataset

Results of an SVM created using the full APS dataset are displayed in Table

21. The border was found using a radial kernel with γ = 0.5 and cost = 1.2. It is

impressive to see how well SVM can handle unbalanced data, with the classification

getting not only an excellent overall accuracy of 99.967% but also 98% accuracy

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

№
SVC

№
SV VNN

№
SV Rand

kNN-SVM 93.267 90.061 89.750 90.362 4501 3742 3124.4
0 25 88.614 87.350 87.045 87.735 3195 2408 2295.0
0 50 92.721 89.209 88.993 89.560 4033 3206 2859.0
0 75 93.567 89.888 89.560 90.039 4368 3595 3049.4

Table 20: Kepler (2 classes) Results VNN-SVM k = 2
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(a) SVM Runtime (b) Total Runtime

Figure 18: Kepler (2classes) Runtime comparison using full
dataset (SVM), kNN-SVM and VNN-SVM

on the positive (minority) class.

But this accuracy came with a high cost in runtime with one run of the SVM

taking almost 15 minutes, also notice that to create such a decision surface the

algorithm selected 8170 support vectors, meaning that approximately 13% of the

points are necessary to represent the border. In a dataset as big as the APS this

means that it will take a substantial amount of space in memory and time to

classify new points using the SVM created.

Accuracy
(%)

Positive
Accuracy (%)

Negative
Accuracy (%)

№
points

№
Suport Vectors

Runtime
(minutes)

Full Dataset 99.967 98 100 60000 8170 13.98

Table 21: APS SVM Results

The APS dataset represents a interesting case to study because of its unbal-

anced data. By changing the algorithm to automatically select all elements from

the minority class as SVC s the VNN-SVM is actually being used to try to select

the right points of the majority that best represent the border. Because of this

difference I decided to extend the k search range up to 250 nearest neighbors. The

VNN-SVM used the same kernel and variables as the SVM on all tests.

The tests of VNN-SVM generated interesting results, on table 22 we have a
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sample of the results when k = 04. As with the previous datasets the VNN-SVM

got its best results when using more conservative bound pairs that encompass most

of the votes with results similar to the original kNN-SVM algorithm.

Although missing from table 22 the accuracy of the random SVM s can be

found on Appendix A.5. The same decision of including all points of the minority

class and sampling the majority was applied to the random SVM s created this way,

but they created borders with accuracies around 86%, meaning the VNN-SVM had

a real impact selecting good points for training.

VNN-SVM
Accuracy (%)

Positive
Accuracy(%)

Negative
Accuracy(%)

№
SVC

№
Support Vectors

kNN-SVM 99.977 98.7 99.998 2501 2389
0 25 90.117 98.8 89.969 2023 1926
0 50 99.975 98.8 99.995 2271 2167
0 75 99.977 98.7 99.998 2438 2331
10 50 99.975 98.8 99.995 2271 2167
10 75 99.977 98.7 99.998 2438 2331
10 90 99.977 98.7 99.998 2480 2365
10 100 99.977 98.7 99.998 2501 2389

Table 22: APS Results VNN-SVM k = 04

When trying a more greedy selection of bounds the algorithm had its worst

performance yet but that was expected as the more greedy approaches inverted

the unbalance of the dataset in favor of the minority having in some cases less

than a hundred negative points for the thousand points of the positive class. So

the SVM s created with those points were extremely good on classifying almost

everything as positive.

But the best outcome of these tests were without a doubt the runtime. On

Figure 19 we can see that the TotalRuntime of 14 minutes was cut to around 3.5

minutes a speedup of 4.3 times. With the VNNRuntime taken by the VNN-SVM

a almost negligible 19 seconds.

This 19 seconds TotalRuntime was obtained using a modified version of the
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Figure 19: Runtime APS

VNN-SVM that just calculated the votes cast by the minority class and selected

the points from the majority class. When comparing the VNNRuntimes of the

Gisette and Kepler Datasets with theAPS dataset the difference is astonishing,

how can a dataset containing 60.000 points run the algorithm faster than when

running on datasets 15% their size.

But the small changes on the unbalanced algorithm explain this difference.

The way VNN-SVM was implemented has just one bottleneck, a mutex responsible

for the summation of the Votes. Because the unbalanced algorithm selects all

points of the minority class, the votes of 59.000 points of the majority didn’t

needed to be casted and passed by that bottleneck. So the VNNRuntime of the

unbalanced algorithm should be comparable to times from the datasets as big as

the minority class.

I run and measured the VNNRuntime of the unmodified VNN-SVM on this

dataset and was amazed to see that the runtime had increased to 158 seconds a

impressive 8 times longer. While this increase would not change significantly the
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time saved by the SVM it is interesting to compare the effect that the casting of

the votes by the majority class had on the runtime.
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CHAPTER 5

Conclusion

The objective of this dissertation has been the development and study of a

data preprocessing method that will select a subset of points in the dataset with

the best chance of being used as Support Vectors by a Support Vector Machine.

While at the same time removing any possible outliers in a way that this new

subset can be used to create an SVM faster than when using the whole data.

That culminated in the creation of the Voting Nearest Neighbors algorithm

(VNN-SVM), an algorithm that uses each point of every class of a dataset to cast

a vote on the members of a different class as possible Support Vector Candidates

and uses these votes to determine which points should be selected for this new

subset.

5.1 Goals Revisited

On this section the five goals listed in section 1.4 will be analyzed based on

the results from the previous chapter.

5.1.1 First Goal

“Select a smaller set of the points for SVM training”

For all accounts the algorithm was successful in doing so. In our tests the

subset of support vector candidates selected by the VNN-SVM algorithm used

between 5% and 65% of the original points depending on the dataset tested, pro-

moting significant speedups for the SVM training.

5.1.2 Second Goal

“Remove points far from the margin between classes”

The VNN-SVM algorithm was designed to be an improvement over the KNN-
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SVM, where all points with one or more votes were selected for training. So this

goal was created to test one of these improvements, the capacity of VNN-SVM

would have to further prune the subset selected by removing points with very few

votes.

While the algorithm proposed does have the ability to remove those points the

tests proved that those points are needed more than expected to correctly classify

the data, the decision surfaces created with sets where the lower bounds were equal

or bigger than 20 usually resulted in SVM s with significantly lower accuracies if

not completely missing what the “shape” of each class was supposed to be.

As seen in section 4.5.3 when performing the tests on the Gisette dataset if we

compare the accuracies of the decision surfaces created using the VNN-SVM with

the SVM s created by random sampling it showed that Support Vector Machines

are really good at finding acceptable decision surfaces even when they are not given

the full information of each class, sometimes having a better accuracy than one

created with VNN-SVM. Those low voted points are what gives the VNN-SVM

the information needed to store the “shape” of the class being voted on.

For that reason even though it is possible to remove the least voted points using

VNN-SVM it seems that the better accuracy achieved on the margins created when

using those points overcomes any gain we could have in performance by running

the SVM s faster when removing them.

The VNN-SVM 2 pass algorithm was somewhat able to remove low voted

points in its second pass while maintaining a good accuracy because the first pass

would make it so the algorithm was selecting just the points inside the class that

represents its “shape”. But that algorithm was not able to do so for all datasets

tested just on the linearly divisible datasets like the Wisconsin Breast Cancer and

Gisette datasets.
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5.1.3 Third Goal

“Remove outliers based on how many votes they received”

The pruning of outliers and high voted points was much more successful that

the remove of low voted points. When selecting an upper bound of 50 or higher

while keeping a lower bound of 0, the VNN-SVM algorithm was successful in

selecting SVC with hundreds fewer points than the ones selected by kNN-SVM

while having little to no drop in accuracy. In some cases by removing those points

the decision surface achieved had a better accuracy than the original.

The lower number of SVC s were propagated to a smaller number of Support

Vectors used to create the SVM s decision surfaces, meaning faster times to evaluate

new points and a smaller space taken in memory to hold the SVM s created.

5.1.4 Fourth Goal

“Be able to achieve a better generalization of the SVM decision surface by

changing which points are selected”

This one goal I knew would be hard to achieve and very dependent on the

datasets selected. When testing the kNN-SVM, some of the decision surfaces cre-

ated were able to increase the overall accuracy very slightly, so one of the goals of

the VNN-SVM was to see if the same could be replicated or improved when using

the voting method.

The tests performed on the Iris dataset showed an accuracy increase on the

0 50 and 0 75 pairs going from 97.333% achieved by the full dataset to 98%, but

I knew that these cases were more likely to occur on the small datasets as each

point selected has more impact on the decision surface.

I was pleased to see that there is a chance of the same happening even when

working with larger datasets. In section 4.5.4 discussing the results of the Kepler

dataset, we can see results from both the kNN-SVM and VNN-SVM being able
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to find better decision surfaces as shown in Table 18 and the same can be seen on

the APS dataset. Although the difference between the accuracies are very small

it shows that the algorithm is capable of creating more generalized margins in

specific cases.

5.1.5 Fifth Goal

“Run in a reasonable time”

This goal is the one that really defines the usefulness of the VNN-SVM when

compared to just running the SVM and the reason why it was crucial to implement

the algorithm in parallel for maximum speed.

When we look at the results of the 5 datasets studied it is easy to see why

this preprocess should be aimed at large datasets. The overhead added by the

VNN-SVM to small datasets made the total runtime almost 140 times longer on

the Wisconsin Breast Cancer and 20 times longer on the Iris dataset. So if our

goal is only speedup training this will not work for datasets this size.

As datasets get larger this picture starts to change, when comparing the times

of Kepler, Gisette and APS, we see the first still taking more time when running

VNN-SVM and the last 2 having speedups of 1.3 times and 4.3 times respectively

by finding the SVC and calculating the decision surface using only that subset.

Somewhere between the size and complexity of the Kepler and Gisette datasets is

the line where the VNN-SVM starts to save more time than it uses to create the

SVC subset.

But the biggest time save is without doubt when the method is used on unbal-

anced datasets as shown with the APS case. Because the way the algorithm was

modified the runtime of the VNN-SVM will be closer to the runtime of datasets

that have the same size as the minority class, saving the maximum amount of time.
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5.2 Future Work

There were some ideas that I wanted to test in this thesis but had to be cut

off because of time. Future work could investigate some of the following ideas:

• Test the voting method with the SVM kernels instead of the nor-

mal Euclidean distance : One of the first ideas I had when thinking about

the VNN-SVM was that it should look for the nearest neighbors not only in

feature space but in kernel space as well. So we would be able to analyze how

that would change the SVC s selected. This wasn’t implemented because it

meant having to write and optimize a parallel version of all kernels intended

to be tested, that being a thesis in itself.

• Weighted Votes: One of the reasons that removing low voted points was

not successful is the fact that, on the low end of the vote spectrum all points

have the same importance. How can the algorithm tell the difference between

two points with 1 vote each? On larger datasets a difference between a lower

bound 0 and lower bound 10 can be thousands of points all of them varying

very little in number of votes. Maybe changing the way votes are cast by

adding some type of weights might be enough to make those points distinct

from each other and make it so the VNN-SVM can actually remove some of

those points from the SVC subset.

• Supercomputer implementation : The algorithm created here is opti-

mized for user end hardware and all tests were done on this type of machine,

it would be interesting to see the changes needed to optimize the algorithm

for super computers containing multiple CPU s and GPU s like the Tsubame

3.0 from the Tokyo Institute of Technology [1].

• Change Multiclass approach : When developing the algorithm it made
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sense to approach the multiclass problem with the one-vs-one technique as it

guarantees that the border between all classes would be covered by Support

Vector Candidates, but after the tests seeing how much impact that has on

performance that technique might not be the correct one to use. One of the

most common AI classification problems is handwriting recognition and I can

see the problem that having to classify 26 characters by running 26∗(26−1)
2

=

325 instances of VNN-SVM can bring to the total runtime. Maybe the effects

on SVC selection of the one-vs-rest approach should be studied.

• More tests : When testing Machine Learning techniques some datasets like

the Iris and Wisconsin Breast Cancer are considered cornerstone tests that

all new algorithms have to be subject to. We still lack this kind of established

datasets for Big Data. As Big Data papers tend to test techniques on different

datasets, mainly because the algorithms are usually built to solve the very

specific problems they are trying to classify. I would like to see a paper that

would establish this cornerstone of datasets to test algorithms for Big Data

and see how VNN-SVM would fare against them.

5.3 Final Verdict

Overall the VNN-SVM algorithm performed as expected, being able to select

a subset of points based on the number of votes and that could be used to create

decision surfaces with Support Vector Machines.

One of the more interesting outcomes of the tests was how dependent the

VNN-SVM was on its low voted points to achieve high accuracies. When starting

the project this was one of the cases I was sure would be easy to remove from the

SVC subset and as more tests were done I started to realize how much it influenced

the achievement of the best accuracy possible. That said the tests discussed in

section 4.5 focused on results with accuracy as close to the original as possible,
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but if the user is willing to forgo more accuracy for speed it can definitely achieve

smaller SVC subsets by raising the lbd of the run, Appendix A has more tests

were we can see the effect of k and lbd on the subset selection. The VNN-SVM 2

pass variant presented in this paper also produced interesting results being able to

prune a lot more points than the normal algorithm but not achieving a consistent

accuracy gain on all datasets tested.

And although the VNN-SVM could not save time on small datasets I don’t

think it should be written off as a possible preprocessing method to be applied

to them. As seen with the Iris dataset by running the VNN-SVM and removing

certain high voted points, it did achieve a better accuracy than the original dataset.

For the Wisconsin Breast Cancer dataset results, if we look at Table A.14 and can

find that for a VNN-SVM with k = 10 and bound 0 75 the accuracy achieved was

better than when using the complete original dataset.

Because both the SVM and VNN-SVM run so fast on those datasets it could

be worthwhile to experiment with VNN-SVM by varying k, lbd and ubd to see

if you can get a better decision surface using the same data. It is interesting to

notice that because this decision surface is not using more but fewer points than

the original it represents a more generalized answer to the problem being classified.

It is clear that the size and complexity of the dataset play a great part on

the question of speed up, but the datasets tested here were on the smaller size of

big data with 2 of them between 5 and 10 thousand points. So when applied to

the great majority of Big Data problems the performance should be closer to the

results found for the APS dataset.

The future also looks promising for GPU parallel programs as both CUDA

SDK and GPU architectures are improving at impressive speeds, both having a

new generations released every year since this study began back in 2016. This is
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encouraging as the performance of GPU programs are expected to rise in every

generation as well as the hardware becoming more optimized. So solutions like

this could be running even better for much bigger datasets.
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APPENDIX A

Results Tables

Each row of a table holds the results a run of VNN-SVM with the first column

representing the lower bound, upper bound pair as such lbd ubd, the kNN−SVM

row represents a run of VNN-SVM with the pair 0 100. The tables may contain

all or some of the following result columns as needed:

• VNNAcc: Accuracy of VNN-SVM ;

• RandAcc: Average accuracy of random SVM s created by sampling the

same number of points as number of the SVC s selected on this run.

On a unbalanced dataset the same rule was applied as the VNN-SVM, se-

lecting all elements of the minority and sampling the rest to create the SVM ;

• nSVC: Number of SVC selected by the VNN-SVM ;

• nSV VNN: Number of support vectors of the SVM created using the SVC s;

• nSV Rand: Number of support vectors of the SVM created using the SVC s;

• PositiveAcc: Accuracy of VNN-SVM on the positive class (minority class);

• NegativeAcc: Accuracy of VNN-SVM on the negative class (majority

class);

• PositiveAccRand: Average accuracy of the 20 random SVM s on the pos-

itive class (minority class);

• NegativeAccRand: Average accuracy of the 20 random SVM s on the neg-

ative class (majority class);
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A.1 Iris Results tables

Table A.1: Iris dataset VNN-SVM results k=02

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.000 87.413 68.000 94.000 29 27 21.00
0 25 82.667 80.800 66.667 92.000 20 18 15.76
0 50 86.000 83.947 66.667 95.333 24 23 18.52
0 75 96.000 85.840 66.667 95.333 26 24 19.28
10 50 66.667 74.293 66.667 88.000 13 13 10.60
10 75 66.667 72.053 66.667 86.667 15 14 11.68
10 90 66.667 76.880 66.667 88.667 16 14 12.28
10 100 96.667 73.973 66.000 92.000 18 17 13.44
20 80 66.667 71.520 66.667 87.333 13 12 10.20
20 95 66.667 73.173 66.000 93.333 13 12 9.88
25 75 66.667 71.253 66.000 88.000 10 9 8.04
25 100 66.000 74.267 66.000 88.667 14 13 10.96
30 85 66.667 74.107 64.667 88.667 11 9 9.48
30 95 66.667 70.293 66.667 90.000 11 9 9.32
30 100 66.000 74.213 58.667 93.333 14 13 11.00
50 95 66.667 65.627 42.667 88.667 7 7 6.36
50 100 66.000 70.640 61.333 90.667 10 10 8.36
66 100 66.667 62.773 35.333 90.667 7 7 5.76
75 100 66.667 65.013 41.333 88.000 7 7 6.04
80 100 66.667 65.440 40.000 82.667 7 7 6.24
90 100 66.667 65.040 33.333 84.000 7 7 5.96
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Table A.2: Iris dataset VNN-SVM results k=03

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 88.000 92.213 86.667 96.667 44 36 29.80
0 25 80.667 86.880 66.667 98.000 29 25 21.16
0 50 90.000 85.280 66.667 94.667 36 33 23.96
0 75 94.000 89.360 70.667 96.000 40 34 26.40
10 50 66.667 79.867 66.667 95.333 18 16 14.16
10 75 68.667 83.467 66.667 90.667 22 20 16.96
10 90 67.333 81.653 66.000 96.667 23 20 16.96
10 100 66.667 84.880 68.667 95.333 26 21 19.48
20 80 84.000 79.280 66.667 94.667 18 17 14.48
20 95 84.000 79.413 66.667 92.000 18 17 14.04
25 75 68.667 78.080 66.667 96.000 15 14 12.04
25 100 66.000 80.560 66.667 92.667 19 17 14.80
30 85 66.000 73.520 66.667 88.667 14 14 11.76
30 95 66.000 72.533 61.333 91.333 14 14 10.88
30 100 66.000 76.827 66.000 90.667 17 15 13.40
50 95 90.667 72.347 59.333 86.667 8 8 6.88
50 100 66.000 69.520 65.333 88.000 11 11 8.80
66 100 66.000 70.560 66.000 84.000 10 10 8.52
75 100 64.667 63.733 33.333 90.000 7 7 5.80
80 100 49.333 59.013 34.000 70.000 5 5 4.24
90 100 49.333 61.280 33.333 93.333 5 5 4.36

Table A.3: Iris dataset VNN-SVM results k=04

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 91.333 92.827 84.667 96.000 52 41 33.08
0 25 93.333 87.867 66.667 96.000 34 30 23.64
0 50 97.333 90.187 71.333 96.000 42 36 28.24
0 75 97.333 91.173 70.000 97.333 49 39 31.20
10 50 96.000 78.053 66.667 90.000 21 20 16.04
10 75 88.000 84.480 66.667 96.000 28 25 20.00
10 90 78.000 86.427 69.333 94.667 30 26 21.60
10 100 69.333 87.733 66.667 94.667 31 26 21.76
20 80 68.000 83.093 66.667 92.667 25 21 18.24
20 95 66.667 84.880 66.667 96.000 26 22 19.24
25 75 96.000 82.160 66.667 91.333 22 20 16.80
25 100 66.000 85.013 66.667 92.667 25 22 18.24
30 85 66.000 83.307 66.667 94.667 22 19 17.08
30 95 66.000 80.613 66.667 94.667 22 19 16.44
30 100 66.000 81.493 66.667 96.667 23 19 17.48
50 95 66.000 74.480 66.667 96.667 14 13 11.40
50 100 66.000 74.267 66.667 91.333 15 13 12.24
66 100 66.000 72.773 66.000 88.000 11 11 9.00
75 100 66.000 69.067 53.333 87.333 10 10 8.68
80 100 66.000 70.613 43.333 89.333 9 9 8.16
90 100 78.000 67.067 54.667 86.667 8 8 6.80
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Table A.4: Iris dataset VNN-SVM results k=05

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 91.333 93.440 87.333 96.667 58 44 35.96
0 25 96.667 88.720 72.000 96.000 38 33 25.72
0 50 95.333 93.013 84.667 96.000 49 40 31.64
0 75 96.667 93.387 90.000 96.000 54 44 33.96
10 50 66.667 81.760 66.667 94.000 22 20 16.92
10 75 68.667 86.667 72.667 94.667 28 25 20.36
10 90 68.000 88.453 69.333 94.667 31 25 22.72
10 100 67.333 87.067 66.667 96.000 32 25 22.88
20 80 66.667 84.987 66.667 90.667 25 21 18.76
20 95 66.667 84.080 66.667 94.667 26 21 19.36
25 75 68.667 80.320 66.667 92.667 21 19 15.88
25 100 66.000 84.480 66.667 96.667 25 21 19.20
30 85 66.667 81.653 66.667 94.667 22 20 16.28
30 95 66.667 82.027 66.667 92.000 22 20 16.96
30 100 66.000 82.667 66.667 94.000 23 20 17.04
50 95 84.667 75.387 65.333 90.667 15 14 12.00
50 100 66.000 75.787 66.667 89.333 16 16 13.08
66 100 66.000 71.227 66.000 88.000 13 12 10.40
75 100 66.000 72.773 66.000 94.000 11 11 8.96
80 100 66.000 72.960 64.000 88.000 11 11 8.96
90 100 78.667 70.320 57.333 86.000 10 9 8.24

Table A.5: Iris dataset VNN-SVM results k=06

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.667 95.493 91.333 97.333 65 48 39.28
0 25 95.333 87.600 66.667 96.000 41 33 26.96
0 50 96.667 93.547 88.000 97.333 57 45 35.60
0 75 98.000 94.107 88.667 97.333 62 47 37.72
10 50 90.000 87.147 67.333 94.000 29 26 21.44
10 75 82.667 89.573 68.667 95.333 34 28 23.76
10 90 80.000 88.987 76.667 96.000 36 30 24.64
10 100 78.000 89.707 66.667 96.000 37 30 25.88
20 80 86.667 83.920 66.667 96.000 26 23 19.20
20 95 72.000 87.280 67.333 95.333 28 24 20.80
25 75 68.667 82.187 66.667 96.000 24 22 18.04
25 100 66.667 86.107 66.000 96.667 27 23 19.52
30 85 68.667 82.347 66.667 92.667 25 22 18.88
30 95 68.000 85.013 66.667 95.333 26 23 19.40
30 100 66.667 85.707 66.667 90.667 27 23 20.56
50 95 96.000 77.173 66.667 91.333 20 18 14.44
50 100 67.333 84.187 66.667 95.333 21 19 16.72
66 100 71.333 74.160 66.000 93.333 16 14 11.96
75 100 70.000 76.187 66.667 88.667 14 12 11.44
80 100 70.000 76.640 66.667 89.333 14 12 11.44
90 100 86.667 73.840 66.000 88.667 11 10 9.56
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Table A.6: Iris dataset VNN-SVM results k=07

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.667 94.027 89.333 96.667 68 48 39.16
0 25 95.333 90.640 84.667 96.667 42 33 28.32
0 50 98.000 93.573 87.333 97.333 60 46 36.60
0 75 98.000 94.267 87.333 96.667 64 46 38.32
10 50 96.000 88.560 66.667 96.000 33 30 23.04
10 75 97.333 88.160 66.667 95.333 38 33 25.68
10 90 89.333 88.933 66.667 97.333 41 34 26.68
10 100 88.000 90.560 84.667 96.000 42 34 27.20
20 80 77.333 84.933 68.667 94.000 29 24 20.64
20 95 72.000 87.707 70.000 94.667 31 24 22.12
25 75 74.667 81.013 66.667 90.667 27 22 19.32
25 100 66.667 86.480 66.667 95.333 31 23 21.56
30 85 69.333 82.053 66.667 94.000 26 22 18.52
30 95 68.000 84.320 67.333 95.333 28 23 20.08
30 100 66.667 86.080 68.667 94.667 29 23 20.76
50 95 87.333 81.227 66.667 94.667 22 20 16.84
50 100 67.333 85.973 68.000 96.000 23 20 18.08
66 100 66.667 78.933 66.000 89.333 20 15 15.08
75 100 66.667 79.280 66.667 90.667 17 15 13.64
80 100 93.333 80.720 66.667 90.667 16 15 12.84
90 100 78.667 75.760 66.667 88.667 15 14 12.12

Table A.7: Iris dataset VNN-SVM results k=08

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.667 95.253 89.333 97.333 73 50 42.48
0 25 94.000 88.587 66.667 96.000 44 32 28.08
0 50 98.000 94.133 89.333 96.667 63 43 37.60
0 75 97.333 95.013 90.667 97.333 70 49 39.96
10 50 96.667 87.173 74.000 94.000 33 29 23.64
10 75 96.000 90.747 79.333 96.000 41 33 27.56
10 90 90.667 90.747 84.667 95.333 43 34 27.92
10 100 88.667 91.840 87.333 96.667 44 34 29.64
20 80 80.000 88.880 70.667 96.667 34 27 24.28
20 95 80.000 90.240 68.000 96.667 35 28 24.88
25 75 87.333 84.987 66.667 94.000 29 25 20.76
25 100 70.000 89.467 66.667 94.667 32 26 23.12
30 85 68.667 86.133 66.667 92.667 27 23 19.68
30 95 68.000 85.147 66.667 94.000 28 23 20.16
30 100 66.667 83.333 66.667 92.667 29 23 20.92
50 95 70.667 78.907 66.667 92.000 24 20 16.72
50 100 67.333 85.547 66.000 93.333 25 20 18.76
66 100 66.000 81.547 66.667 94.000 22 16 17.08
75 100 66.000 78.107 66.667 94.000 19 16 14.40
80 100 88.667 77.333 66.667 91.333 17 15 13.56
90 100 78.000 76.693 66.667 91.333 16 14 12.28
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Table A.8: Iris dataset VNN-SVM results k=09

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.667 94.933 90.667 97.333 76 50 43.48
0 25 96.667 92.027 72.000 96.667 47 35 31.00
0 50 96.667 94.720 91.333 97.333 65 43 39.56
0 75 98.667 95.413 90.000 98.000 73 48 42.56
10 50 97.333 89.573 70.667 96.000 35 28 24.64
10 75 93.333 90.480 67.333 96.667 44 34 29.04
10 90 91.333 90.587 74.667 96.667 46 34 29.12
10 100 86.000 90.293 66.667 96.000 47 34 30.32
20 80 96.000 89.600 66.667 96.000 36 29 24.44
20 95 84.667 89.067 66.667 96.000 38 29 26.64
25 75 79.333 86.213 70.667 95.333 33 27 22.68
25 100 72.667 89.680 79.333 94.667 36 28 25.00
30 85 79.333 89.067 74.667 96.000 32 27 23.24
30 95 79.333 87.040 66.667 96.000 33 27 23.56
30 100 76.000 89.173 81.333 96.000 34 27 23.76
50 95 88.667 80.507 66.667 90.667 24 21 17.20
50 100 77.333 86.480 66.667 94.000 25 22 18.48
66 100 70.000 81.680 66.667 93.333 21 17 15.68
75 100 93.333 79.467 66.667 91.333 20 17 15.76
80 100 93.333 78.853 66.000 93.333 20 17 14.60
90 100 78.000 79.813 66.000 96.000 18 16 14.24
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A.2 Wisconsin Breast Cancer Results tables

Table A.9: Wisconsin Breast Cancer dataset VNN-SVM results k=1

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN–SVM 96.134 96.112 93.849 98.243 64 29 15.20
0 25 97.188 95.663 93.497 97.364 55 24 13.76
0 50 96.837 95.775 92.970 97.540 60 25 14.32
0 75 96.134 96.007 92.619 97.891 62 29 13.92
10 50 72.232 93.308 85.940 97.715 21 7 8.00
10 75 36.380 93.251 88.225 96.837 23 12 7.92
10 90 36.380 93.251 85.237 96.837 23 12 8.28
10 100 41.828 93.469 87.522 97.540 25 12 8.96
20 80 21.617 89.490 82.425 95.606 10 4 5.00
20 95 21.617 90.482 83.480 96.661 10 4 4.88
25 75 15.993 88.225 69.772 94.728 7 6 4.08
25 100 16.169 87.944 68.014 93.673 9 6 4.92
30 85 16.344 86.278 66.784 92.091 6 5 3.68
30 95 16.344 83.522 53.076 95.958 6 5 3.84
30 100 15.817 88.886 75.747 96.309 8 5 4.84
50 95 17.575 90.313 78.735 95.255 13 6 5.92
50 100 18.629 91.951 85.413 96.485 15 6 6.08
66 100 18.102 89.040 75.923 95.079 10 5 5.20
75 100 17.750 88.443 69.420 94.200 8 4 4.72
80 100 16.872 84.907 70.650 94.728 6 4 3.76
90 100 16.872 78.840 14.763 93.849 4 3 2.88
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Table A.10: Wisconsin Breast Cancer dataset VNN-SVM results k=2

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 97.364 96.527 94.552 97.891 93 39 18.20
0 25 97.891 96.527 93.849 97.715 82 28 17.28
0 50 97.188 96.534 94.903 98.067 88 35 18.12
0 75 97.188 96.295 93.497 97.540 90 35 17.40
10 50 31.810 94.060 90.158 97.188 27 11 8.68
10 75 35.149 94.039 86.819 97.364 29 12 9.36
10 90 34.271 94.362 89.982 97.188 30 12 8.68
10 100 33.919 94.292 90.861 96.485 32 11 9.32
20 80 24.956 91.402 84.359 94.552 14 6 6.20
20 95 24.956 91.163 82.425 96.837 14 6 6.04
25 75 18.981 88.169 75.044 93.322 8 5 4.60
25 100 19.156 88.766 79.438 94.903 11 5 5.52
30 85 14.411 87.979 79.262 94.903 7 5 4.08
30 95 14.411 85.729 64.851 94.552 7 5 4.32
30 100 13.884 90.278 83.831 95.431 9 6 4.64
50 95 17.575 90.313 78.735 95.255 13 6 5.92
50 100 18.629 91.951 85.413 96.485 15 6 6.08
66 100 18.102 89.040 75.923 95.079 10 5 5.20
75 100 17.750 88.443 69.420 94.200 8 4 4.72
80 100 16.872 84.907 70.650 94.728 6 4 3.76
90 100 16.872 78.840 14.763 93.849 4 3 2.88

Table A.11: Wisconsin Breast Cancer dataset VNN-SVM results k=3

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 97.012 96.949 94.025 97.891 112 40 21.56
0 25 98.067 96.394 93.673 97.891 99 32 19.04
0 50 97.540 96.935 94.903 98.243 105 32 21.92
0 75 97.540 97.033 96.309 98.243 108 38 19.64
10 50 51.142 93.940 88.576 97.012 29 11 9.68
10 75 41.652 94.910 91.564 97.012 32 13 9.84
10 90 41.476 93.961 87.170 97.012 34 13 10.00
10 100 43.761 94.960 92.267 97.188 36 13 10.36
20 80 30.228 90.896 83.304 95.782 15 6 6.72
20 95 30.053 90.629 83.128 96.661 16 6 6.80
25 75 26.011 88.893 75.044 95.958 9 6 5.04
25 100 19.332 90.763 82.425 95.958 13 5 5.44
30 85 20.211 87.086 59.930 94.376 8 5 4.60
30 95 19.156 88.598 79.262 96.134 9 5 4.72
30 100 16.169 90.046 80.668 96.485 11 6 5.52
50 95 17.575 90.313 78.735 95.255 13 6 5.92
50 100 18.629 91.951 85.413 96.485 15 6 6.08
66 100 18.102 89.040 75.923 95.079 10 5 5.20
75 100 17.750 88.443 69.420 94.200 8 4 4.72
80 100 16.872 84.907 70.650 94.728 6 4 3.76
90 100 16.872 78.840 14.763 93.849 4 3 2.88
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Table A.12: Wisconsin Breast Cancer dataset VNN-SVM results k=4

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 98.067 97.054 95.606 97.891 134 44 23.52
0 25 97.891 96.808 95.255 97.715 119 33 22.76
0 50 97.891 96.949 95.431 97.891 127 38 23.32
0 75 97.715 96.794 95.606 97.715 130 40 22.40
10 50 48.330 94.320 90.685 97.188 32 15 9.60
10 75 48.155 94.404 90.685 96.837 35 15 10.64
10 90 48.858 93.793 89.982 97.012 37 15 9.80
10 100 40.773 95.107 91.564 97.364 39 16 11.08
20 80 24.253 92.661 86.116 95.079 20 7 7.96
20 95 24.253 92.942 85.764 97.364 22 6 8.52
25 75 21.090 90.341 79.262 96.485 11 6 5.52
25 100 18.805 91.782 84.007 96.134 15 5 6.04
30 85 17.575 90.004 78.207 95.431 10 5 4.76
30 95 17.575 87.698 76.626 95.958 10 5 4.92
30 100 16.344 89.694 80.141 96.309 12 6 5.16
50 95 17.575 90.313 78.735 95.255 13 6 5.92
50 100 18.629 91.951 85.413 96.485 15 6 6.08
66 100 18.102 89.040 75.923 95.079 10 5 5.20
75 100 17.750 88.443 69.420 94.200 8 4 4.72
80 100 16.872 84.907 70.650 94.728 6 4 3.76
90 100 16.872 78.840 14.763 93.849 4 3 2.88

Table A.13: Wisconsin Breast Cancer dataset VNN-SVM results k=5

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 97.715 97.244 95.606 98.243 148 44 24.72
0 25 97.715 97.146 95.782 98.067 131 36 23.04
0 50 97.891 97.090 96.134 97.891 140 38 24.44
0 75 97.891 96.879 95.431 97.715 144 38 24.44
10 50 51.494 94.517 88.576 97.188 35 14 10.32
10 75 54.130 94.643 91.564 96.661 39 15 10.56
10 90 48.155 94.868 92.619 96.837 41 17 10.92
10 100 49.385 94.798 89.807 98.243 43 17 11.12
20 80 22.671 93.005 86.116 97.012 19 6 7.68
20 95 21.090 93.223 87.522 97.540 21 8 7.40
25 75 27.592 91.747 81.019 96.837 13 5 5.96
25 100 24.780 92.134 83.831 95.958 17 7 7.04
30 85 18.453 88.211 78.383 94.200 9 4 4.92
30 95 16.696 90.636 82.777 96.309 11 6 5.48
30 100 16.696 90.039 83.656 96.134 13 6 5.80
50 95 17.575 90.313 78.735 95.255 13 6 5.92
50 100 18.629 91.951 85.413 96.485 15 6 6.08
66 100 18.102 89.040 75.923 95.079 10 5 5.20
75 100 17.750 88.443 69.420 94.200 8 4 4.72
80 100 16.872 84.907 70.650 94.728 6 4 3.76
90 100 16.872 78.840 14.763 93.849 4 3 2.88
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Table A.14: Wisconsin Breast Cancer dataset VNN-SVM results k=10

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 98.946 97.582 96.661 98.418 198 53 30.36
0 25 97.540 97.251 96.309 98.243 176 38 27.76
0 50 98.243 97.230 95.431 98.243 185 42 28.16
0 75 98.770 97.462 95.958 98.594 190 51 29.44
10 50 43.937 94.650 88.576 97.715 40 12 11.28
10 75 41.476 95.346 92.970 97.715 45 14 12.84
10 90 42.355 95.163 90.685 96.837 49 14 12.96
10 100 34.798 95.501 91.740 97.364 53 14 12.84
20 80 19.156 93.898 89.104 96.661 22 8 8.72
20 95 17.575 93.533 88.752 96.485 26 8 8.24
25 75 38.664 90.910 80.492 95.606 14 6 6.28
25 100 20.562 92.527 86.819 97.012 22 7 7.04
30 85 35.677 91.592 85.940 96.485 16 5 6.64
30 95 20.035 91.529 84.007 96.837 18 5 7.16
30 100 20.035 92.408 85.940 96.309 20 6 7.68
50 95 17.575 90.313 78.735 95.255 13 6 5.92
50 100 18.629 91.951 85.413 96.485 15 6 6.08
66 100 18.102 89.040 75.923 95.079 10 5 5.20
75 100 17.750 88.443 69.420 94.200 8 4 4.72
80 100 16.872 84.907 70.650 94.728 6 4 3.76
90 100 16.872 78.840 14.763 93.849 4 3 2.88
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A.2.1 Wisconsin Breast Cancer VNN-SVM 2 pass Results tables

Table A.15: Wisconsin Breast Cancer dataset VNN-SVM 2 pass with 1st pass
90 100 and k = 10 results k=4

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 95.782 91.747 84.183 95.958 12 6 5.68
0 25 94.728 85.772 64.148 94.200 5 5 3.24
0 50 95.782 89.497 79.262 95.958 10 5 5.08
0 75 95.782 89.947 82.777 96.309 11 5 5.48
10 50 95.958 87.346 72.232 94.200 7 4 4.12
10 75 95.606 87.149 65.554 93.849 8 4 5.00
10 90 95.606 88.647 73.989 93.673 8 4 4.76
10 100 96.485 89.132 76.274 96.485 9 5 4.80
20 80 94.376 87.065 72.935 93.497 7 3 4.16
20 95 94.376 86.137 68.893 94.903 7 3 4.00
25 75 94.376 85.947 63.796 95.606 7 3 4.60
25 100 94.552 89.968 80.141 96.309 8 3 4.36
30 85 94.552 87.438 78.207 95.606 6 3 3.60
30 95 94.552 87.065 65.378 95.606 6 3 4.04
30 100 94.903 88.443 76.450 95.431 7 3 4.08
50 95 94.552 88.344 75.923 94.025 6 3 3.88
50 100 94.903 86.460 64.675 96.134 7 3 4.16
66 100 94.025 82.981 58.524 95.079 5 3 3.32
75 100 94.025 86.749 64.323 93.497 5 3 3.16
80 100 72.583 83.360 44.991 92.091 4 3 2.96
90 100 72.583 81.322 40.773 95.255 4 3 2.80
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Table A.16: Wisconsin Breast Cancer dataset VNN-SVM 2 pass with 1st pass
90 100 and k = 10 results k=5

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 95.782 91.227 84.534 96.661 15 6 5.96
0 25 92.794 87.550 76.274 95.606 7 6 4.16
0 50 95.606 90.868 79.613 96.134 12 5 5.80
0 75 95.606 90.411 81.722 96.837 13 5 5.68
10 50 96.309 88.155 79.789 94.552 7 4 4.12
10 75 96.309 87.417 79.789 94.376 8 4 4.68
10 90 97.188 90.657 82.074 96.134 10 5 5.08
10 100 97.188 90.320 79.965 95.255 10 5 4.76
20 80 97.188 90.228 82.074 96.485 10 5 4.76
20 95 97.188 87.459 72.583 95.431 10 5 4.68
25 75 92.091 85.673 65.554 94.376 6 3 4.12
25 100 94.552 88.837 73.989 96.837 8 3 4.44
30 85 94.552 88.991 76.626 94.552 8 3 4.40
30 95 94.552 86.355 63.269 94.552 8 3 4.60
30 100 94.552 88.844 62.390 95.782 8 3 4.64
50 95 94.728 85.610 65.026 94.728 7 3 4.04
50 100 94.728 87.937 62.039 95.079 7 3 4.24
66 100 94.728 85.244 68.014 94.025 6 3 3.56
75 100 94.728 84.640 37.083 95.782 6 3 4.00
80 100 94.728 85.251 65.905 94.903 6 3 4.00
90 100 94.728 87.733 79.438 94.903 6 3 3.52

Table A.17: Wisconsin Breast Cancer dataset VNN-SVM 2 pass with 1st pass
90 100 and k = 10 results k=10

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 95.782 93.153 85.237 97.188 25 7 7.96
0 25 94.903 92.513 87.346 97.364 17 7 6.56
0 50 94.728 93.076 86.995 96.309 20 7 7.64
0 75 95.782 93.596 88.401 96.485 25 7 8.80
10 50 94.903 91.817 86.643 97.012 15 6 6.68
10 75 95.958 92.302 86.467 96.134 20 7 7.12
10 90 95.958 93.265 88.576 97.364 20 7 7.72
10 100 95.958 93.146 88.752 96.485 20 7 7.68
20 80 95.606 92.422 85.237 96.661 19 6 7.36
20 95 95.606 93.153 88.928 95.431 19 6 7.32
25 75 95.606 91.979 84.183 97.540 18 6 7.04
25 100 95.606 91.459 85.413 96.134 18 6 6.96
30 85 95.606 91.712 83.128 95.782 18 6 6.56
30 95 95.606 92.970 88.576 97.012 18 6 7.20
30 100 95.606 92.302 84.183 97.012 18 6 6.88
50 95 95.606 92.555 87.346 96.661 17 6 6.76
50 100 95.606 92.612 83.480 96.309 17 6 7.00
66 100 95.606 91.649 84.007 96.309 15 6 6.64
75 100 95.606 90.798 82.953 95.958 15 6 5.68
80 100 95.606 91.044 83.128 95.782 15 6 6.40
90 100 95.606 92.021 83.656 96.661 15 6 6.16
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Table A.18: Wisconsin Breast Cancer dataset VNN-SVM 2 pass with 1st pass
90 100 and k = 10 results k=15

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 95.958 94.496 90.334 97.364 33 7 9.88
0 25 94.376 93.315 84.710 96.661 21 6 7.64
0 50 95.958 94.489 90.510 97.188 33 7 10.20
0 75 95.958 94.615 91.740 97.715 33 7 10.12
10 50 95.782 93.729 89.104 96.837 29 7 9.76
10 75 95.782 93.673 90.334 96.309 29 7 9.48
10 90 95.782 94.362 87.522 97.012 29 7 10.04
10 100 95.782 93.582 86.467 97.012 29 7 9.32
20 80 95.782 93.547 90.158 97.364 28 7 8.60
20 95 95.782 92.998 86.995 96.661 28 7 8.88
25 75 95.782 94.095 91.037 96.837 27 7 9.16
25 100 95.782 93.975 88.225 96.134 27 7 9.04
30 85 95.782 93.849 89.631 96.661 27 7 8.64
30 95 95.782 93.863 88.576 97.188 27 7 9.04
30 100 95.782 94.334 91.213 96.485 27 7 9.12
50 95 95.782 94.193 88.576 96.837 27 7 8.56
50 100 95.782 93.483 89.631 96.837 27 7 9.08
66 100 95.782 93.842 88.928 96.661 27 7 8.80
75 100 95.782 93.181 89.104 97.012 27 7 8.92
80 100 95.782 94.460 91.037 95.958 27 7 8.76
90 100 95.782 93.596 88.752 96.661 27 7 9.16
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A.3 Gisette Results tables

Table A.19: Gisette dataset VNN-SVM results k=1

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 98.067 96.940 96.533 97.283 95.7 95.98 1596 769 525.000
0 25 96.833 96.587 96.183 96.800 96.3 96.46 1168 564 435.800
0 50 97.833 96.953 96.733 97.150 96.0 96.66 1424 679 492.400
0 75 97.933 96.970 96.850 97.050 95.4 96.44 1551 740 519.800
10 50 97.833 97.077 96.650 97.333 96.0 96.68 1424 679 498.200
10 75 97.933 97.073 96.800 97.250 95.4 96.62 1551 740 520.600
10 90 98.033 97.157 96.933 97.317 95.5 96.42 1585 751 525.200
10 100 98.067 97.127 96.683 97.467 95.7 96.16 1596 769 543.200
20 80 93.333 95.567 95.250 96.150 91.4 95.78 699 469 327.600
20 95 92.567 95.630 95.450 95.833 90.7 95.78 725 508 331.800
25 75 92.200 95.117 94.750 95.617 89.9 95.04 524 411 274.400
25 100 90.683 95.290 95.100 95.533 87.9 95.24 569 443 283.400
30 85 88.267 94.740 93.817 95.267 87.2 94.34 479 373 260.200
30 95 87.033 95.040 94.150 95.533 86.2 94.90 494 387 262.600
30 100 86.817 95.067 94.500 95.417 85.4 95.10 499 384 269.600
50 95 71.883 92.890 91.917 93.483 69.6 92.66 196 180 146.200
50 100 71.583 92.917 92.117 93.683 69.3 92.88 201 181 141.800
66 100 61.117 90.583 89.233 92.217 59.9 89.70 88 85 77.200
75 100 47.133 89.413 88.967 90.417 46.9 88.44 57 55 52.800
80 100 40.650 84.630 73.400 89.217 42.3 84.44 33 33 32.200
90 100 43.367 69.963 59.467 80.233 45.6 70.48 13 13 13.00
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Table A.20: Gisette dataset VNN-SVM results k=2

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 99.000 97.630 97.450 97.833 96.6 96.58 2209 884 650.600
0 25 97.333 97.137 97.050 97.300 96.6 96.34 1634 622 552.600
0 50 98.383 97.533 97.433 97.750 96.9 96.66 2002 760 607.200
0 75 98.950 97.547 97.350 97.683 96.4 96.46 2153 847 640.000
10 50 97.300 96.637 96.383 96.800 96.3 96.08 1201 611 450.400
10 75 97.317 96.827 96.500 97.233 94.8 96.18 1352 699 486.000
10 90 97.467 96.943 96.667 97.433 95.2 95.98 1394 711 486.200
10 100 97.467 96.707 96.433 96.900 95.7 96.48 1408 728 505.600
20 80 94.517 96.023 95.467 96.283 92.5 95.68 904 571 384.000
20 95 94.300 96.413 96.250 96.617 91.6 95.94 936 590 390.400
25 75 91.533 95.353 94.933 95.600 90.1 95.54 661 454 310.800
25 100 90.833 95.730 95.317 96.133 89.4 95.32 717 494 332.200
30 85 87.217 95.083 94.767 95.300 86.2 94.88 515 379 265.200
30 95 85.617 95.260 94.900 95.750 84.8 95.28 533 397 276.200
30 100 85.450 95.330 94.917 95.700 84.6 95.08 540 398 283.200
50 95 75.850 93.607 93.167 93.967 74.9 93.62 229 207 155.600
50 100 75.033 93.793 93.383 94.433 74.6 93.70 236 211 164.000
66 100 54.950 90.943 89.967 92.533 54.8 90.48 98 92 83.400
75 100 49.500 87.693 82.683 90.067 49.5 87.16 58 57 52.400
80 100 45.150 85.427 82.100 89.050 46.5 84.34 39 39 37.200
90 100 40.667 69.180 56.617 76.200 42.2 69.40 14 14 13.80

Table A.21: Gisette dataset VNN-SVM results k=3

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 99.333 98.127 97.933 98.300 97.3 96.920 2663 916 712.600
0 25 97.583 97.557 97.367 97.767 96.7 96.660 2031 694 620.200
0 50 98.500 97.893 97.750 98.017 96.7 96.560 2423 824 674.400
0 75 99.100 98.097 97.933 98.317 96.7 96.920 2600 858 704.400
10 50 97.100 96.823 96.650 97.100 96.6 96.000 1367 653 491.400
10 75 97.233 96.717 96.300 96.967 95.4 96.100 1544 700 522.400
10 90 97.117 97.080 96.850 97.667 95.1 96.480 1591 719 533.200
10 100 97.033 97.080 96.833 97.367 95.2 96.140 1607 744 531.400
20 80 92.733 95.997 95.600 96.450 91.0 95.520 830 512 346.400
20 95 92.067 96.067 95.750 96.383 90.1 96.067 867 543 368.333
25 75 91.667 95.572 95.367 95.717 90.1 95.433 684 458 317.000
25 100 90.783 96.028 95.583 96.300 89.2 95.767 747 492 350.667
30 85 88.400 95.244 94.983 95.583 87.8 95.300 578 409 285.333
30 95 87.517 95.861 95.650 96.033 86.2 95.067 599 425 308.000
30 100 87.350 95.444 95.367 95.567 85.7 95.500 607 431 300.333
50 95 76.833 93.572 92.967 94.067 77.1 93.000 264 229 171.000
50 100 76.233 93.483 93.233 93.883 76.6 92.933 272 234 177.667
66 100 59.900 91.183 89.683 93.000 58.7 90.867 116 111 91.000
75 100 51.067 89.667 87.917 91.583 51.3 89.167 71 70 64.667
80 100 47.150 85.767 83.983 88.933 47.6 84.600 47 47 44.667
90 100 43.650 73.628 66.600 78.067 44.8 72.667 18 18 18.00
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Table A.22: Gisette dataset VNN-SVM results k=4

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 99.450 98.261 98.217 98.350 97.5 96.867 3019 936 763.667
0 25 97.717 97.822 97.767 97.900 96.8 96.800 2300 713 664.000
0 50 98.583 98.111 98.000 98.217 96.5 96.600 2747 820 710.667
0 75 99.183 98.117 98.083 98.167 96.9 96.533 2947 888 748.333
10 50 97.267 96.933 96.533 97.267 96.4 96.567 1404 647 491.667
10 75 97.767 97.089 96.933 97.350 96.0 96.400 1604 722 552.333
10 90 97.800 97.006 96.833 97.317 95.8 96.167 1658 743 554.000
10 100 97.683 97.172 96.917 97.300 95.3 96.300 1676 777 563.000
20 80 94.483 95.939 95.450 96.217 92.6 95.833 925 562 384.333
20 95 94.033 96.172 96.117 96.250 92.2 96.433 968 582 384.667
25 75 91.650 95.694 95.600 95.867 90.5 95.867 745 492 351.333
25 100 91.233 96.128 95.800 96.433 89.9 96.000 817 531 360.333
30 85 89.033 95.328 94.783 95.633 88.6 94.467 643 429 304.000
30 95 88.117 95.661 95.567 95.817 86.5 95.433 668 442 319.333
30 100 87.900 95.811 95.583 96.200 86.1 95.967 676 449 321.667
50 95 77.033 94.400 94.017 95.133 77.8 94.633 290 244 184.333
50 100 76.450 94.078 93.550 94.367 77.2 94.100 298 249 188.667
66 100 62.567 91.694 90.667 92.767 60.7 91.900 128 119 104.000
75 100 52.933 88.450 86.033 89.683 53.1 88.167 79 75 70.667
80 100 48.100 89.339 88.100 90.633 47.7 88.900 54 54 50.000
90 100 45.400 83.300 81.233 87.183 47.0 83.567 20 20 20.00

Table A.23: Gisette dataset VNN-SVM results k=5

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 99.600 98.483 98.350 98.567 97.3 97.067 3293 986 793.000
0 25 97.700 97.878 97.683 98.033 96.9 96.600 2508 730 693.333
0 50 98.917 98.144 97.983 98.350 96.6 97.100 3004 834 765.000
0 75 99.300 98.550 98.467 98.667 97.5 97.100 3214 921 801.667
10 50 97.000 96.822 96.733 96.917 96.0 96.133 1298 626 481.000
10 75 97.800 96.839 96.467 97.033 95.4 96.133 1508 705 528.333
10 90 97.550 97.028 96.733 97.233 95.4 96.233 1567 726 514.000
10 100 97.483 97.006 96.950 97.117 95.6 96.533 1587 750 526.333
20 80 94.617 96.400 96.133 96.800 93.1 95.200 980 568 416.000
20 95 93.900 96.311 96.067 96.550 92.4 96.100 1026 601 402.667
25 75 92.500 95.694 95.250 95.983 91.3 95.667 798 488 344.000
25 100 91.833 96.083 95.850 96.267 90.5 95.867 877 544 380.000
30 85 89.700 95.506 95.267 95.783 89.3 95.500 675 449 318.000
30 95 88.833 95.444 95.133 95.933 88.5 95.033 702 465 317.000
30 100 89.000 95.817 95.733 95.983 88.2 96.033 711 469 338.000
50 95 78.567 93.972 93.717 94.267 79.5 93.767 300 252 191.667
50 100 78.250 94.261 93.900 94.550 79.3 93.833 309 260 185.333
66 100 63.883 92.483 91.717 93.450 61.9 92.000 138 126 107.000
75 100 55.950 88.856 87.683 90.000 55.2 88.167 82 81 68.333
80 100 50.117 87.156 83.400 91.267 49.7 87.467 61 59 56.333
90 100 46.067 79.778 75.133 82.617 46.5 80.433 20 20 20.000
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Table A.24: Gisette dataset VNN-SVM results k=10

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 99.883 99.100 98.983 99.167 97.2 96.767 4159 1036 900.333
0 25 97.950 98.400 98.367 98.417 97.4 96.933 3217 779 788.000
0 50 99.050 98.839 98.783 98.917 97.2 97.033 3811 873 856.667
0 75 99.467 98.939 98.900 99.000 97.6 97.300 4058 951 892.667
10 50 97.083 97.117 96.917 97.383 96.0 96.567 1556 650 521.333
10 75 97.317 97.300 96.950 97.517 95.3 96.433 1803 737 568.000
10 90 97.217 97.422 97.233 97.767 94.8 96.433 1878 771 571.000
10 100 97.233 97.222 97.167 97.283 94.9 96.333 1904 783 583.667
20 80 94.900 96.472 96.333 96.550 93.5 95.933 1121 578 442.333
20 95 94.533 96.289 96.150 96.567 93.0 96.367 1181 633 436.333
25 75 93.017 96.144 95.917 96.400 91.6 96.000 903 518 384.000
25 100 92.300 96.328 96.050 96.517 91.0 96.200 1004 574 418.333
30 85 90.833 96.256 96.167 96.400 89.9 95.667 762 466 362.000
30 95 90.217 95.789 95.217 96.100 89.3 94.767 796 485 353.000
30 100 90.250 95.750 95.550 95.883 89.0 95.933 807 495 354.000
50 95 81.150 94.828 94.733 94.950 80.1 94.533 362 279 218.667
50 100 81.100 94.761 94.500 95.083 80.4 94.400 373 295 211.667
66 100 69.050 91.822 91.267 92.483 67.9 91.167 175 158 124.000
75 100 59.517 91.394 90.283 92.167 57.2 90.433 101 94 83.667
80 100 54.967 88.983 86.917 91.350 54.7 89.500 71 70 63.667
90 100 48.650 80.050 75.700 82.833 49.2 80.100 26 26 26.00

Table A.25: Gisette dataset VNN-SVM results k=15

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 99.933 99.361 99.300 99.417 97.8 97.333 4617 1048 936.333
0 25 97.917 98.817 98.667 99.100 97.3 97.100 3579 772 841.667
0 50 98.950 99.044 99.033 99.067 96.9 96.967 4225 894 896.333
0 75 99.517 99.217 99.200 99.250 97.7 97.100 4503 963 923.333
10 50 97.333 97.222 97.083 97.317 96.0 96.467 1624 663 551.000
10 75 97.550 97.439 97.300 97.517 96.3 96.967 1902 755 596.333
10 90 97.383 97.511 97.317 97.633 95.9 96.400 1986 798 593.333
10 100 97.583 97.628 97.467 97.733 95.2 96.467 2016 821 615.333
20 80 94.633 96.817 96.500 97.000 93.3 96.367 1240 602 463.667
20 95 94.567 96.794 96.783 96.800 92.9 96.167 1308 646 476.667
25 75 94.150 96.261 96.133 96.450 92.6 95.567 968 530 406.667
25 100 93.833 96.383 96.300 96.550 92.2 95.833 1082 587 419.000
30 85 91.333 95.717 95.317 96.133 90.7 95.133 853 501 361.667
30 95 90.833 96.022 95.750 96.250 90.3 95.933 893 521 383.000
30 100 90.967 95.928 95.717 96.233 89.6 95.367 905 533 382.667
50 95 82.917 94.861 94.617 95.133 82.4 94.400 394 306 230.667
50 100 82.967 95.111 94.783 95.417 82.6 94.900 406 314 234.667
66 100 72.633 93.556 92.983 94.150 71.1 93.667 196 172 136.000
75 100 61.317 91.600 90.183 92.433 59.3 91.200 114 108 92.333
80 100 58.783 89.122 86.983 90.533 57.7 88.967 80 80 67.000
90 100 52.017 82.672 75.067 87.517 53.0 82.167 30 30 29.33
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Table A.26: Gisette dataset VNN-SVM results k=20

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 99.983 99.461 99.350 99.567 97.6 97.200 4924 1055 974.333
0 25 97.933 98.844 98.750 98.950 97.0 96.933 3831 763 855.000
0 50 99.033 99.250 99.167 99.333 97.2 97.233 4501 901 947.667
0 75 99.517 99.356 99.300 99.433 97.5 97.300 4802 976 972.333
10 50 97.050 97.317 97.067 97.483 96.0 96.067 1743 667 560.333
10 75 97.567 97.711 97.667 97.800 96.1 96.467 2044 773 622.000
10 90 97.400 97.706 97.583 97.800 95.6 96.400 2133 802 605.333
10 100 97.400 97.544 97.333 97.733 95.0 96.333 2166 827 626.667
20 80 95.417 96.600 96.500 96.683 94.2 96.267 1295 611 471.000
20 95 95.150 96.572 96.433 96.700 94.3 96.067 1369 656 485.667
25 75 93.533 96.111 95.983 96.183 92.9 96.300 1003 537 417.000
25 100 93.300 96.306 96.083 96.650 92.3 95.400 1125 603 439.667
30 85 91.550 96.117 95.783 96.300 90.6 95.900 883 505 370.667
30 95 91.100 96.006 95.750 96.317 89.5 95.833 926 541 401.000
30 100 91.217 96.200 95.967 96.500 89.7 95.833 940 560 380.333
50 95 83.133 94.744 94.383 94.967 82.8 94.600 419 320 231.667
50 100 82.950 94.761 94.433 94.983 82.7 94.933 433 325 243.667
66 100 71.850 93.194 93.067 93.417 70.5 92.700 211 187 152.000
75 100 64.767 92.067 91.283 92.850 64.8 91.767 127 121 104.667
80 100 59.583 89.600 86.650 92.133 58.5 89.367 88 88 75.333
90 100 53.567 84.011 83.533 84.867 53.0 83.700 33 32 31.333

Table A.27: Gisette dataset VNN-SVM results k=25

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 99.983 99.578 99.483 99.683 97.9 97.300 5126 1062 989.667
0 25 97.883 98.961 98.850 99.150 97.2 97.100 3967 756 878.667
0 50 98.983 99.317 99.233 99.433 97.5 97.333 4679 906 962.667
0 75 99.533 99.539 99.500 99.600 97.5 97.300 4995 996 979.667
10 50 97.150 97.606 97.400 97.717 96.1 96.767 1781 678 582.333
10 75 97.517 97.600 97.517 97.683 95.8 96.767 2097 770 634.667
10 90 97.367 97.544 97.433 97.700 95.3 96.800 2192 816 644.333
10 100 97.483 97.828 97.733 97.883 94.8 96.367 2228 835 667.000
20 80 95.283 96.861 96.767 96.967 93.9 96.333 1351 637 480.667
20 95 95.067 97.106 96.883 97.217 93.9 96.533 1431 656 514.333
25 75 94.067 96.483 96.283 96.717 93.1 95.967 1047 546 414.000
25 100 93.633 96.811 96.550 97.133 92.6 96.167 1178 611 443.333
30 85 91.883 95.789 95.783 95.800 90.8 95.333 914 519 369.333
30 95 91.633 96.250 96.083 96.417 89.9 96.133 961 538 399.000
30 100 91.700 96.394 96.267 96.467 90.7 95.900 975 556 406.333
50 95 84.200 94.722 94.583 94.800 84.4 94.367 445 337 252.000
50 100 84.283 95.089 94.617 95.467 84.1 94.933 459 346 259.000
66 100 73.650 93.189 93.100 93.333 73.3 93.133 227 201 155.667
75 100 66.967 91.900 90.983 92.817 65.6 91.100 136 126 110.333
80 100 62.533 90.978 90.517 91.267 60.6 90.533 94 90 80.000
90 100 56.567 86.478 84.117 87.667 56.0 85.400 36 36 34.00
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A.3.1 Gisette VNN-SVM 2 pass Results tables

Table A.28: Gisette VNN-SVM 2 pass with 1st pass 0 100 and k = 1 results k=1

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.033 96.346 96.067 96.667 96.2 95.675 974 437 407.750
0 25 95.283 95.079 94.850 95.367 94.9 95.300 594 308 294.750
0 50 95.700 96.008 95.833 96.267 95.5 95.875 837 380 378.000
0 75 96.150 96.154 95.933 96.383 96.0 95.425 926 425 392.500
10 50 94.783 95.696 95.017 96.117 93.6 95.525 676 318 324.500
10 75 95.050 95.796 95.450 96.150 94.1 95.475 765 353 337.000
10 90 95.150 95.679 95.500 95.933 94.3 95.450 800 365 346.250
10 100 95.150 95.883 95.650 96.150 94.6 95.200 813 373 355.750
20 80 93.133 95.508 95.333 95.600 92.3 95.475 694 317 323.750
20 95 93.150 95.667 95.117 95.983 92.9 95.450 716 331 337.000
25 75 91.500 95.592 95.417 95.883 89.7 95.725 636 286 312.500
25 100 91.800 95.612 95.233 96.200 90.9 95.875 684 303 316.000
30 85 92.933 94.237 93.633 94.750 92.2 94.425 356 232 210.250
30 95 93.100 94.404 94.017 94.750 92.5 94.425 374 242 216.750
30 100 93.150 94.717 94.633 94.767 92.7 94.650 380 241 219.500
50 95 90.200 92.854 92.083 94.017 89.5 92.525 198 152 136.500
50 100 90.283 93.067 92.467 93.533 89.5 93.000 204 154 147.250
66 100 82.967 91.400 90.500 92.917 81.8 91.300 125 107 97.750
75 100 63.767 90.613 88.667 91.417 62.7 90.575 74 66 65.250
80 100 62.683 87.462 84.683 89.567 60.9 86.975 43 42 42.000
90 100 50.733 73.692 67.383 76.450 50.7 74.375 21 20 20.750
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Table A.29: Gisette VNN-SVM 2 pass with 1st pass 0 100 and k = 1 results k=2

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.333 96.779 96.683 96.883 96.2 96.250 1350 481 468.500
0 25 95.350 96.117 95.800 96.283 95.4 96.050 920 380 377.250
0 50 96.017 96.804 96.300 97.000 96.0 96.175 1170 422 454.750
0 75 96.383 96.838 96.450 97.200 96.3 96.475 1291 464 472.500
10 50 94.367 95.838 95.550 96.133 93.2 95.700 920 346 379.250
10 75 94.733 96.413 96.217 96.683 93.8 96.025 1041 398 416.500
10 90 94.833 96.446 96.333 96.600 94.2 95.775 1085 397 437.250
10 100 94.767 96.658 96.450 96.867 94.2 96.100 1100 389 420.000
20 80 93.650 95.350 94.700 95.800 93.4 95.450 581 294 291.250
20 95 93.667 95.504 95.200 95.850 93.4 95.025 616 303 304.750
25 75 92.783 95.079 94.617 95.383 92.2 95.625 532 273 275.750
25 100 92.883 95.067 94.633 95.400 92.4 94.950 591 295 295.000
30 85 92.583 94.608 93.983 95.300 92.0 93.975 384 240 227.750
30 95 92.583 94.863 94.250 95.650 92.0 94.550 406 248 229.250
30 100 92.783 94.787 94.517 95.033 92.2 94.300 412 254 231.250
50 95 90.233 93.467 92.733 94.283 89.0 93.350 213 159 150.500
50 100 90.050 93.517 92.550 94.217 89.0 93.425 219 162 150.500
66 100 81.200 91.738 89.783 92.450 81.0 91.425 118 97 97.000
75 100 68.167 89.629 89.050 90.233 66.5 89.400 81 68 70.000
80 100 70.783 89.375 87.267 90.700 69.5 89.025 56 51 50.500
90 100 54.417 67.342 57.150 83.733 53.7 66.575 20 20 19.250

Table A.30: Gisette VNN-SVM 2 pass with 1st pass 0 100 and k = 1 results k=3

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.550 97.246 97.133 97.317 96.7 96.425 1625 508 535.000
0 25 95.583 96.404 96.283 96.633 95.5 95.975 1167 412 454.750
0 50 95.950 96.871 96.750 96.983 96.0 96.175 1404 451 494.500
0 75 96.433 97.179 97.100 97.250 96.4 96.450 1559 492 537.000
10 50 94.750 96.217 95.950 96.483 94.1 95.850 1075 361 427.000
10 75 94.983 96.633 96.533 96.700 94.0 95.850 1230 409 459.750
10 90 94.917 96.712 96.500 96.917 94.3 96.125 1278 418 472.750
10 100 95.050 96.725 96.500 96.967 94.3 96.050 1296 424 470.500
20 80 93.717 96.133 95.600 96.500 93.4 96.000 758 337 346.000
20 95 93.667 96.083 95.867 96.200 93.7 95.675 804 339 361.000
25 75 93.383 95.150 94.833 95.433 93.0 94.925 517 286 272.000
25 100 93.467 95.337 94.800 95.650 92.9 95.025 583 304 283.000
30 85 91.950 94.963 94.650 95.283 91.4 95.050 515 271 270.000
30 95 92.150 95.317 94.700 95.867 91.6 95.400 541 287 283.000
30 100 92.183 95.312 95.017 95.467 91.4 95.225 548 289 284.250
50 95 87.650 93.392 92.800 94.000 87.4 93.625 245 167 163.000
50 100 87.817 93.746 93.067 94.283 87.9 94.000 252 173 171.000
66 100 80.983 91.358 90.950 91.583 80.2 90.400 131 106 105.750
75 100 76.533 90.621 89.533 91.517 75.7 90.225 78 70 68.000
80 100 70.467 86.763 83.067 89.483 68.7 86.425 53 48 48.000
90 100 51.767 75.938 64.817 86.250 51.4 76.850 21 21 20.50
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Table A.31: Gisette VNN-SVM 2 pass with 1st pass 0 100 and k = 1 results k=4

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.567 97.346 97.317 97.383 96.7 96.775 1818 531 586.750
0 25 95.600 96.667 96.567 96.817 95.2 96.350 1339 433 469.750
0 50 96.017 97.100 97.000 97.250 96.1 96.325 1580 475 526.250
0 75 96.583 97.150 97.083 97.300 96.5 96.725 1745 519 567.250
10 50 94.933 96.196 95.833 96.617 94.3 96.150 827 340 377.000
10 75 95.233 96.263 95.917 96.517 94.4 95.850 992 386 398.000
10 90 95.067 96.496 96.433 96.617 94.7 95.850 1046 406 422.250
10 100 95.183 96.567 96.383 96.883 94.6 96.300 1065 413 422.750
20 80 93.683 95.463 95.167 95.867 93.5 95.275 681 321 310.750
20 95 93.533 95.879 95.667 96.033 93.4 95.600 727 335 334.750
25 75 93.167 94.971 94.433 95.417 92.8 94.900 499 267 273.250
25 100 93.400 95.300 95.017 95.483 92.9 95.125 572 295 296.500
30 85 92.983 94.979 94.483 95.250 92.3 94.625 522 275 272.750
30 95 93.000 95.042 94.950 95.233 92.5 94.625 550 288 278.000
30 100 92.983 95.312 95.000 95.767 92.6 95.200 557 290 286.750
50 95 88.350 94.046 93.350 94.800 86.8 93.725 281 178 182.750
50 100 88.583 94.046 93.650 94.383 86.9 94.000 288 183 185.750
66 100 83.450 91.913 91.433 92.467 83.6 91.275 126 104 101.000
75 100 79.033 90.558 89.000 91.583 78.5 89.625 79 73 69.250
80 100 71.150 89.304 86.850 91.833 70.6 88.925 62 57 56.250
90 100 51.583 80.417 75.600 86.700 51.6 80.175 21 21 21.00

Table A.32: Gisette VNN-SVM 2 pass with 1st pass 0 100 and k = 1 results k=5

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.583 97.525 97.300 97.733 96.8 96.650 1982 541 612.500
0 25 95.350 96.858 96.733 96.950 95.4 96.200 1418 452 493.500
0 50 96.117 97.421 96.983 97.667 96.0 96.875 1753 484 575.000
0 75 96.567 97.458 97.283 97.617 96.6 96.475 1904 525 581.750
10 50 94.900 96.204 95.850 96.367 94.3 95.725 942 364 388.750
10 75 95.083 96.221 95.800 96.533 94.2 96.025 1093 394 430.000
10 90 95.100 96.750 96.433 96.917 94.2 96.275 1150 415 437.250
10 100 95.083 96.662 96.150 97.017 94.2 96.175 1171 428 446.250
20 80 93.417 95.846 95.633 96.383 93.5 95.850 789 347 353.750
20 95 93.467 95.888 95.633 96.150 93.6 95.400 834 360 359.250
25 75 92.817 95.479 95.100 95.833 92.2 95.675 589 292 308.750
25 100 93.150 95.679 95.433 95.833 93.1 95.025 667 326 322.500
30 85 92.800 94.996 94.933 95.083 92.3 95.125 502 277 270.750
30 95 92.733 95.183 94.717 95.450 92.5 94.925 530 281 270.500
30 100 92.850 95.296 94.983 95.650 92.3 95.500 538 284 277.750
50 95 90.283 93.683 91.750 94.450 88.7 93.075 252 172 161.250
50 100 90.450 94.021 93.417 94.383 88.4 93.375 260 178 169.000
66 100 86.183 91.996 90.833 93.283 85.7 91.325 131 110 100.750
75 100 78.367 90.483 89.717 91.317 77.6 90.525 84 71 73.250
80 100 75.600 87.054 85.317 88.583 74.7 86.300 58 54 52.750
90 100 52.850 79.304 71.167 84.700 53.2 78.675 21 21 20.75
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Table A.33: Gisette VNN-SVM 2 pass with 1st pass 0 75 and k = 1 results k=1

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.217 96.304 95.917 96.667 96.2 96.050 1005 466 402.750
0 25 95.517 95.917 95.583 96.350 96.1 96.000 857 392 363.250
0 50 96.133 96.225 95.700 96.833 96.7 95.950 969 424 409.750
0 75 96.367 96.321 96.283 96.383 97.2 96.000 991 465 399.000
10 50 96.133 96.137 95.867 96.350 96.7 96.125 969 424 403.750
10 75 96.367 96.396 96.133 96.667 97.2 95.900 991 465 401.250
10 90 96.233 95.958 95.583 96.217 96.4 95.675 1000 456 406.500
10 100 96.217 96.217 95.883 96.450 96.2 96.025 1005 466 402.000
20 80 91.067 94.608 94.233 94.817 90.6 94.775 362 245 220.000
20 95 90.317 94.517 94.033 95.050 90.7 94.500 370 263 212.250
25 75 89.717 93.363 92.467 94.200 89.5 92.775 206 177 142.750
25 100 87.900 93.392 92.550 94.167 88.2 93.400 220 191 151.750
30 85 86.283 92.787 92.200 93.433 87.4 92.175 140 133 110.000
30 95 85.017 91.938 91.167 92.967 86.6 91.825 145 140 109.750
30 100 84.783 93.079 92.300 93.767 85.7 92.775 148 143 115.250
50 95 39.417 87.154 86.367 88.700 39.5 86.775 35 34 34.000
50 100 41.500 85.625 83.067 88.083 42.2 85.275 38 37 36.000
66 100 40.517 75.508 69.467 82.050 42.7 75.250 21 21 20.500
75 100 43.017 73.675 52.683 86.617 43.8 73.875 14 14 14.000
80 100 43.483 64.125 53.617 73.217 45.2 64.325 11 11 11.000
90 100 48.567 61.875 50.650 72.883 49.4 61.675 5 5 5.0

Table A.34: Gisette VNN-SVM 2 pass with 1st pass 0 75 and k = 1 results k=2

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.933 97.042 96.650 97.583 96.8 96.500 1615 580 532.750
0 25 96.167 96.804 96.650 97.050 96.0 96.125 1324 474 492.500
0 50 96.483 97.196 96.867 97.450 96.5 96.525 1561 533 522.750
0 75 96.900 97.088 96.983 97.200 96.9 96.675 1598 553 525.500
10 50 95.700 96.125 95.967 96.433 96.0 95.750 848 407 378.500
10 75 95.867 95.975 95.750 96.250 95.9 96.075 885 426 379.750
10 90 95.667 96.062 95.717 96.333 95.2 96.225 897 437 380.500
10 100 95.650 96.154 95.800 96.500 94.8 95.700 902 435 384.750
20 80 94.267 95.250 95.100 95.467 94.2 95.125 543 331 278.750
20 95 93.767 94.950 94.667 95.200 93.8 94.525 553 336 275.500
25 75 93.033 94.204 93.967 94.400 92.5 94.125 373 258 217.250
25 100 92.250 94.362 93.617 94.867 91.5 94.650 390 272 220.250
30 85 91.133 94.162 93.150 94.950 91.0 93.550 282 223 175.250
30 95 90.383 93.979 93.467 94.450 90.6 93.250 288 224 189.000
30 100 90.233 94.325 94.000 94.800 90.1 94.675 291 231 188.500
50 95 52.117 86.150 82.567 88.983 52.0 85.675 54 52 50.000
50 100 52.767 90.150 88.400 91.717 53.1 89.900 57 55 53.750
66 100 43.733 80.496 74.333 85.083 46.0 79.575 26 26 26.000
75 100 44.367 80.717 72.500 84.133 45.5 80.225 17 17 16.750
80 100 42.550 67.379 55.450 78.267 44.3 66.800 13 13 12.750
90 100 50.033 58.429 50.967 70.100 50.0 57.350 7 7 7.000
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Table A.35: Gisette VNN-SVM 2 pass with 1st pass 0 75 and k = 1 results k=3

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 97.500 97.583 97.483 97.783 96.8 96.700 1995 610 609.250
0 25 96.317 97.125 97.000 97.283 96.7 96.300 1617 507 541.250
0 50 96.717 97.571 97.417 97.667 96.8 96.575 1919 559 605.250
0 75 97.133 97.438 97.133 97.883 96.8 96.775 1976 590 613.250
10 50 95.200 96.200 95.917 96.417 95.0 95.750 1054 426 420.000
10 75 95.133 96.329 96.100 96.700 95.3 95.725 1111 451 452.250
10 90 95.183 96.554 96.150 96.900 95.3 95.950 1124 464 438.000
10 100 95.100 96.533 96.400 96.883 94.7 95.950 1130 466 435.500
20 80 94.183 95.338 94.850 95.650 94.5 94.950 633 358 310.250
20 95 93.533 95.308 94.850 95.817 94.0 95.200 644 368 309.750
25 75 93.033 94.792 94.383 95.317 93.1 95.100 457 291 246.000
25 100 92.250 94.829 94.550 95.000 92.4 94.475 476 312 253.250
30 85 92.633 94.225 93.583 94.483 91.6 93.825 367 269 219.750
30 95 92.367 94.525 94.100 94.800 92.0 94.275 375 273 224.500
30 100 92.200 94.375 93.867 95.283 92.0 94.375 378 274 216.250
50 95 61.100 90.729 89.717 91.750 61.2 90.650 85 82 75.500
50 100 60.817 90.050 88.967 91.067 60.5 90.075 88 84 73.500
66 100 43.483 82.442 79.200 85.800 46.2 81.250 30 30 28.750
75 100 43.983 77.125 69.483 86.917 46.8 76.000 19 19 19.000
80 100 44.883 72.638 50.050 82.167 45.9 72.100 14 14 13.750
90 100 49.967 58.504 50.017 67.567 50.2 58.800 6 6 6.00

Table A.36: Gisette VNN-SVM 2 pass with 1st pass 0 75 and k = 1 results k=4

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 97.750 97.667 97.400 97.917 97.1 96.700 2269 655 653.250
0 25 96.650 97.288 97.100 97.483 96.8 96.225 1784 529 566.500
0 50 97.117 97.621 97.467 97.750 96.9 96.700 2156 588 643.000
0 75 97.500 97.588 97.533 97.683 97.0 97.050 2247 629 641.750
10 50 95.867 96.596 96.483 96.700 95.4 96.100 1078 435 430.000
10 75 96.017 96.612 96.433 96.900 95.7 96.000 1169 490 443.250
10 90 95.983 96.333 96.167 96.483 95.5 95.875 1184 493 436.000
10 100 95.850 96.517 96.433 96.700 94.9 96.225 1191 493 434.500
20 80 94.650 95.600 95.383 95.783 94.9 95.525 696 376 329.500
20 95 94.467 95.604 94.833 96.167 94.3 95.550 710 389 321.000
25 75 93.850 95.283 95.050 95.633 94.4 95.075 560 328 293.500
25 100 92.883 95.287 94.750 95.833 93.9 94.800 582 353 287.750
30 85 93.500 94.883 94.350 95.317 92.9 94.800 415 278 237.500
30 95 92.867 94.567 93.883 94.883 93.1 94.375 423 289 239.500
30 100 92.767 94.442 93.833 94.800 93.1 93.875 426 291 227.500
50 95 67.483 91.558 90.533 92.083 67.4 91.400 110 104 90.750
50 100 66.867 91.179 90.117 92.333 65.6 90.775 113 106 92.750
66 100 43.733 84.117 83.117 85.267 45.8 83.275 37 36 35.250
75 100 45.517 81.229 77.200 84.517 48.1 81.500 22 22 22.000
80 100 45.817 71.513 56.000 81.267 48.2 70.400 17 17 16.750
90 100 50.033 75.525 69.150 84.450 50.0 75.175 7 7 7.00
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Table A.37: Gisette VNN-SVM 2 pass with 1st pass 0 75 and k = 1 results k=5

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 97.717 97.925 97.767 98.033 97.3 96.525 2469 676 689.250
0 25 96.517 97.538 97.433 97.650 96.5 96.500 1977 540 598.000
0 50 97.250 97.858 97.533 98.067 96.7 96.675 2336 607 667.500
0 75 97.517 98.054 97.817 98.150 97.1 96.650 2445 645 693.000
10 50 95.667 96.646 96.533 96.783 95.8 96.225 1152 437 440.750
10 75 95.667 96.571 96.283 96.850 95.5 96.025 1261 482 472.500
10 90 95.667 96.592 96.400 96.833 95.0 95.850 1277 513 456.250
10 100 95.533 96.829 96.383 97.150 94.6 96.000 1285 503 488.000
20 80 94.733 95.713 95.317 96.200 94.9 95.725 717 377 327.000
20 95 94.317 95.633 95.433 95.833 94.5 95.500 731 395 335.000
25 75 93.767 95.188 94.917 95.717 94.2 94.875 537 322 277.250
25 100 93.100 95.538 95.367 95.683 93.8 94.975 561 342 283.500
30 85 93.400 94.500 94.367 94.683 93.8 94.150 426 295 239.000
30 95 92.900 95.117 94.717 95.350 93.5 94.850 434 296 242.250
30 100 92.767 94.821 94.433 95.267 93.5 94.525 438 304 247.250
50 95 72.483 92.037 90.833 92.900 74.0 91.425 141 125 109.250
50 100 72.000 92.496 92.233 92.950 73.2 91.975 145 127 115.750
66 100 45.250 84.967 79.617 88.400 49.1 84.575 42 38 40.000
75 100 46.000 74.558 56.833 86.267 47.9 74.775 24 23 23.750
80 100 47.833 72.746 61.150 81.550 48.9 72.725 18 18 17.500
90 100 49.900 64.729 59.700 74.783 50.2 64.950 8 8 8.00

Table A.38: Gisette VNN-SVM 2 pass with 1st pass 30 85 and k = 1 results k=1

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 97.950 97.004 96.717 97.167 96.4 96.325 1612 676 524.750
0 25 96.817 96.408 96.100 96.750 95.3 96.050 1146 500 426.500
0 50 97.600 97.017 96.650 97.233 96.5 96.325 1486 610 512.000
0 75 97.783 97.088 96.883 97.250 96.7 96.550 1594 649 551.750
10 50 97.600 97.013 96.917 97.133 96.5 96.500 1486 610 504.000
10 75 97.783 97.125 97.000 97.200 96.7 96.675 1594 649 549.000
10 90 97.767 97.104 96.817 97.333 96.5 96.325 1606 677 528.000
10 100 97.950 97.204 97.067 97.367 96.4 96.525 1612 676 529.500
20 80 96.483 95.958 95.683 96.067 96.1 95.750 871 484 380.500
20 95 96.433 96.075 95.833 96.350 96.0 95.625 881 496 381.500
25 75 95.183 95.804 95.617 95.983 94.2 95.475 727 416 331.250
25 100 95.017 95.825 95.350 96.383 93.5 95.675 745 438 335.750
30 85 94.650 95.346 94.867 95.733 94.0 94.825 540 374 286.750
30 95 94.567 95.392 94.933 95.767 93.9 95.075 546 384 279.500
30 100 94.717 95.096 94.883 95.233 93.7 95.050 549 389 278.750
50 95 83.133 92.683 92.133 93.250 82.2 92.950 195 176 135.750
50 100 82.117 93.287 93.083 93.483 81.2 93.175 198 178 145.500
66 100 48.233 87.163 82.667 90.917 48.6 86.500 54 48 50.500
75 100 43.133 77.604 66.000 82.550 44.2 78.125 18 18 17.750
80 100 44.200 70.746 63.733 80.183 45.0 70.975 13 13 13.000
90 100 49.967 62.621 57.450 69.000 50.2 61.625 6 6 6.00
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Table A.39: Gisette VNN-SVM 2 pass with 1st pass 30 85 and k = 1 results k=2

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 98.150 97.696 97.567 97.900 96.6 96.900 2207 765 645.750
0 25 96.933 97.100 96.983 97.250 96.6 96.575 1646 568 539.750
0 50 97.533 97.596 97.350 97.800 97.0 96.550 2005 682 612.000
0 75 97.867 97.779 97.717 97.950 97.0 96.900 2174 732 631.500
10 50 96.733 96.692 96.450 96.950 96.3 96.325 1243 550 467.750
10 75 97.167 96.825 96.550 97.217 96.6 96.725 1412 604 491.500
10 90 97.400 96.879 96.567 97.100 96.7 96.325 1438 626 494.250
10 100 97.433 96.888 96.733 97.067 96.8 96.425 1445 623 502.500
20 80 96.267 96.108 95.783 96.267 95.3 96.050 909 494 370.750
20 95 96.300 96.179 96.017 96.433 95.5 95.850 924 508 376.750
25 75 94.000 95.400 95.183 95.750 93.7 95.375 709 411 310.750
25 100 94.117 95.838 95.600 96.000 93.7 95.425 742 431 344.000
30 85 93.650 95.746 95.417 95.967 93.0 95.850 678 399 322.000
30 95 93.433 95.833 95.533 96.200 92.8 95.725 687 413 326.000
30 100 93.383 95.583 95.150 96.050 92.8 95.500 690 415 321.250
50 95 83.833 93.746 93.550 94.217 82.9 93.225 253 209 175.750
50 100 83.317 93.804 93.183 94.417 82.2 93.875 256 212 169.250
66 100 62.683 90.054 89.367 91.050 62.7 89.150 91 81 76.500
75 100 46.533 80.308 76.433 84.883 47.0 79.750 33 31 31.750
80 100 44.600 75.588 66.000 86.650 46.4 75.375 18 18 17.750
90 100 50.000 56.746 50.017 65.817 50.1 57.525 7 7 7.00

Table A.40: Gisette VNN-SVM 2 pass with 1st pass 30 85 and k = 1 results k=3

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 98.450 98.008 97.850 98.283 96.7 96.725 2615 800 712.000
0 25 97.017 97.492 97.233 97.733 96.6 96.225 1889 591 590.250
0 50 97.733 97.792 97.750 97.850 97.2 96.675 2348 715 665.500
0 75 98.300 97.908 97.833 97.967 96.8 96.850 2570 774 699.750
10 50 96.917 97.004 96.817 97.317 96.1 96.175 1388 585 500.250
10 75 97.250 97.146 96.900 97.417 96.1 96.675 1610 652 555.250
10 90 97.333 97.171 96.900 97.433 96.6 96.525 1646 661 555.250
10 100 97.467 97.067 96.833 97.433 96.2 96.800 1655 661 540.250
20 80 96.183 96.292 96.250 96.333 95.5 95.900 1017 510 401.000
20 95 96.133 96.467 96.200 96.867 95.7 95.925 1037 529 419.750
25 75 95.367 95.992 95.900 96.167 94.7 95.950 820 447 361.250
25 100 95.483 95.663 95.417 95.883 94.8 95.275 865 485 359.750
30 85 93.717 95.617 95.417 95.783 93.4 95.175 675 402 326.500
30 95 93.517 95.458 95.033 95.850 93.1 94.975 685 410 326.500
30 100 93.450 95.400 95.150 95.617 93.1 95.625 689 418 316.250
50 95 84.367 94.379 94.033 94.767 82.4 94.175 308 231 192.750
50 100 83.867 94.638 94.333 95.167 81.9 94.300 312 235 194.000
66 100 68.733 91.821 89.100 93.250 67.8 91.325 113 95 96.000
75 100 49.383 88.250 83.950 91.117 50.7 87.875 53 50 50.250
80 100 45.883 86.300 81.783 89.067 46.8 85.975 26 26 25.250
90 100 44.483 69.283 50.750 80.933 45.8 68.800 9 9 9.00
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Table A.41: Gisette VNN-SVM 2 pass with 1st pass 30 85 and k = 1 results k=4

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 98.600 98.275 98.183 98.350 97.1 96.850 2925 834 738.000
0 25 97.267 97.808 97.700 97.933 97.5 96.675 2183 633 646.500
0 50 97.800 98.038 97.917 98.167 97.3 96.900 2628 738 708.250
0 75 98.333 98.050 97.900 98.217 97.2 96.800 2867 795 733.250
10 50 97.000 96.942 96.717 97.050 96.8 95.950 1400 567 494.500
10 75 97.517 96.975 96.767 97.283 96.3 96.425 1639 651 545.500
10 90 97.717 97.150 96.850 97.433 96.5 95.950 1687 682 544.000
10 100 97.733 97.071 96.950 97.233 96.5 96.250 1697 692 559.750
20 80 96.417 96.433 96.383 96.500 95.2 95.925 1087 517 423.000
20 95 96.350 96.558 96.367 96.650 95.8 96.125 1115 543 420.750
25 75 94.917 95.754 95.683 95.833 94.2 95.600 782 428 361.500
25 100 95.083 95.808 95.600 96.033 94.7 95.625 840 475 364.500
30 85 94.467 95.683 95.483 96.100 93.4 95.500 725 421 337.000
30 95 94.217 95.971 95.683 96.217 93.6 95.725 738 440 352.500
30 100 94.217 95.758 95.383 96.167 93.7 95.625 742 440 350.250
50 95 86.417 94.458 94.333 94.583 85.3 94.500 332 254 201.750
50 100 85.883 93.675 93.117 93.950 85.1 94.075 336 256 196.000
66 100 69.833 90.654 89.100 92.283 68.0 89.875 126 112 101.750
75 100 51.067 88.708 88.083 89.867 51.9 88.150 64 60 59.500
80 100 46.567 81.617 67.250 89.433 47.1 81.125 35 34 34.250
90 100 49.733 64.204 53.517 73.050 50.4 63.900 10 10 10.00

Table A.42: Gisette VNN-SVM 2 pass with 1st pass 30 85 and k = 1 results k=5

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

VNN-SVM
Validation

Accuracy(%)

Rand Validation
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 98.733 98.504 98.417 98.583 97.3 97.050 3179 852 789.250
0 25 97.267 97.638 97.567 97.750 97.1 96.675 2342 634 659.750
0 50 97.883 98.150 98.117 98.200 97.2 96.900 2866 749 749.250
0 75 98.350 98.338 98.183 98.417 97.3 96.850 3111 794 765.750
10 50 97.100 96.917 96.600 97.267 96.3 96.600 1487 589 514.250
10 75 97.517 97.058 96.900 97.250 96.1 96.450 1732 662 568.500
10 90 97.733 97.308 97.133 97.633 96.5 96.575 1789 687 572.250
10 100 97.683 97.279 97.217 97.400 96.6 96.550 1800 690 583.000
20 80 96.100 96.383 96.083 96.667 95.1 96.350 1137 543 430.000
20 95 96.300 96.588 96.467 96.750 95.2 96.425 1170 563 449.500
25 75 95.400 96.108 95.950 96.250 94.7 96.100 856 447 371.250
25 100 95.467 96.167 96.000 96.367 94.7 96.375 924 480 391.250
30 85 94.917 95.833 95.617 96.183 94.0 95.425 733 426 336.750
30 95 94.817 95.942 95.583 96.350 94.0 95.650 747 447 344.750
30 100 94.900 95.579 95.367 95.917 94.2 95.550 753 445 349.750
50 95 87.567 94.321 93.933 94.600 86.6 94.100 339 252 203.500
50 100 86.450 94.333 93.883 94.733 85.9 93.975 345 259 212.750
66 100 76.900 91.817 91.267 92.350 75.8 91.125 151 131 115.250
75 100 52.017 90.246 89.400 91.767 52.3 89.700 77 70 67.250
80 100 48.450 85.896 81.783 90.000 49.7 85.350 45 40 42.750
90 100 49.867 62.633 50.800 75.017 50.5 62.650 11 11 11.00
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A.4 Kepler Results tables

Table A.43: Kepler dataset VNN-SVM results k=1

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 88.659 85.157 84.986 85.431 4612 4163 3826.2
0 25 85.732 81.801 81.458 82.115 3537 3183 2990.2
0 50 88.058 83.991 83.806 84.463 4192 3762 3505.4
0 75 88.870 84.937 84.585 85.587 4498 4057 3730.0
10 50 86.878 83.317 82.660 83.773 3993 3633 3338.6
10 75 87.557 84.287 84.185 84.519 4334 3945 3606.2
10 90 87.368 84.439 84.162 84.641 4417 4021 3679.6
10 100 87.245 84.632 84.341 85.131 4449 4050 3690.0
20 80 83.684 81.756 81.592 82.014 3532 3208 2990.8
20 95 83.506 82.121 81.681 82.404 3616 3311 3068.0
25 75 81.736 80.890 80.668 81.180 3240 2941 2765.8
25 100 81.469 81.738 81.336 82.337 3390 3095 2882.2
30 85 75.403 78.847 78.575 79.110 2711 2568 2318.4
30 95 74.947 79.023 78.653 79.288 2764 2618 2366.4
30 100 74.869 79.018 78.520 79.577 2780 2629 2388.2
50 95 64.029 73.899 73.400 74.279 1468 1411 1335.0
50 100 63.873 73.937 73.511 74.669 1485 1424 1344.4
66 100 30.729 69.146 68.826 69.405 670 655 637.2
75 100 25.320 66.306 65.465 67.869 332 325 324.0
80 100 24.129 64.160 62.871 65.064 207 206 205.6
90 100 22.582 57.683 55.671 60.757 83 83 83.0
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Table A.44: Kepler dataset VNN-SVM results k=2

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 93.923 88.806 88.492 89.082 5931 5194 4815.6
0 25 88.881 85.583 84.930 85.854 4820 4117 3986.6
0 50 92.454 87.831 87.435 88.214 5516 4777 4519.0
0 75 93.600 88.329 88.203 88.492 5817 5081 4738.6
10 50 89.249 85.954 85.799 86.210 4931 4264 4055.8
10 75 90.918 87.061 86.878 87.190 5325 4667 4356.6
10 90 91.308 87.352 86.800 87.535 5443 4802 4438.0
10 100 91.419 87.346 87.067 87.702 5482 4849 4463.2
20 80 83.517 83.553 83.228 83.951 4093 3735 3426.2
20 95 83.172 84.045 83.773 84.374 4194 3831 3507.4
25 75 77.496 80.198 79.633 80.512 3029 2834 2595.8
25 100 75.659 80.683 80.267 81.157 3219 2991 2731.2
30 85 75.081 79.789 79.098 80.378 2844 2642 2450.4
30 95 74.602 80.031 79.889 80.301 2901 2700 2494.4
30 100 74.402 79.726 79.354 80.590 2924 2721 2507.0
50 95 58.642 73.854 73.389 74.279 1389 1312 1247.2
50 100 58.453 74.259 73.667 75.270 1412 1324 1279.4
66 100 30.451 69.596 69.349 69.894 679 657 639.4
75 100 26.778 66.967 65.843 68.692 395 383 385.4
80 100 51.753 65.478 62.137 66.778 268 265 265.2
90 100 23.773 58.762 56.694 61.213 84 84 84.0

Table A.45: Kepler dataset VNN-SVM results k=3

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 95.314 90.322 90.150 90.696 6641 5714 5338.0
0 25 89.816 87.375 87.134 87.590 5428 4544 4433.8
0 50 93.600 89.322 89.015 89.716 6246 5297 5042.4
0 75 94.969 90.108 89.883 90.428 6531 5585 5261.4
10 50 88.815 86.017 85.988 86.032 4966 4345 4106.2
10 75 90.607 87.459 87.168 87.791 5418 4804 4418.8
10 90 90.874 87.648 87.334 88.102 5563 4942 4522.4
10 100 90.718 87.871 87.501 88.147 5608 4994 4585.0
20 80 84.830 83.410 83.161 83.717 4053 3670 3412.2
20 95 84.096 83.677 83.038 84.296 4172 3791 3486.2
25 75 79.577 81.224 80.735 81.681 3308 3087 2821.0
25 100 77.741 81.972 81.425 82.549 3531 3276 2981.8
30 85 77.106 80.686 80.456 80.879 3186 2958 2716.0
30 95 76.583 80.979 80.668 81.425 3262 3021 2777.6
30 100 76.138 81.055 80.601 81.247 3284 3038 2802.2
50 95 58.108 74.339 73.979 74.802 1501 1397 1350.8
50 100 57.629 74.375 73.901 74.936 1523 1415 1368.6
66 100 52.454 69.718 68.770 70.762 737 710 688.4
75 100 28.214 66.856 66.099 67.557 399 385 386.0
80 100 25.097 65.458 64.062 66.299 278 275 274.6
90 100 24.196 59.326 56.672 61.981 106 106 106.0
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Table A.46: Kepler dataset VNN-SVM results k=4

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.194 91.630 91.185 92.042 7087 6010 5666.8
0 25 90.306 88.630 88.481 88.792 5948 4882 4820.2
0 50 94.346 90.504 90.006 90.996 6720 5612 5394.6
0 75 95.737 91.248 91.029 91.430 6984 5891 5595.4
10 50 89.360 87.254 86.956 87.668 5420 4598 4430.0
10 75 91.363 88.657 88.314 89.115 5891 5094 4763.2
10 90 91.820 89.071 88.815 89.360 6037 5256 4882.2
10 100 91.909 88.991 88.414 89.393 6090 5327 4921.2
20 80 83.539 83.517 83.228 83.951 4042 3675 3371.8
20 95 82.849 83.949 83.795 84.240 4169 3800 3492.6
25 75 76.127 80.459 79.978 80.935 3066 2858 2616.6
25 100 74.190 80.839 80.556 81.080 3295 3043 2814.2
30 85 74.791 80.107 79.822 80.390 2992 2784 2567.0
30 95 73.957 80.465 80.056 80.657 3075 2841 2640.8
30 100 73.612 80.309 80.111 80.568 3097 2857 2627.0
50 95 60.790 74.509 74.057 74.758 1530 1446 1380.4
50 100 60.134 74.553 74.168 74.880 1552 1465 1400.2
66 100 31.274 70.186 69.393 70.918 729 697 680.8
75 100 51.987 67.439 66.733 68.659 437 424 419.8
80 100 25.721 66.259 64.151 67.101 283 278 275.8
90 100 24.296 61.340 59.989 63.172 112 112 112.0

Table A.47: Kepler dataset VNN-SVM results k=5

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.327 92.167 91.987 92.309 7408 6212 5872.4
0 25 90.473 89.249 89.004 89.883 6194 5036 4996.8
0 50 94.491 91.299 91.163 91.553 7064 5839 5625.8
0 75 95.915 91.853 91.642 92.031 7316 6105 5793.2
10 50 87.846 84.946 84.652 85.264 4534 4006 3757.0
10 75 89.471 86.152 86.021 86.400 5024 4509 4123.8
10 90 89.249 86.353 86.088 86.477 5175 4653 4238.6
10 100 88.826 86.642 86.311 86.822 5233 4711 4300.6
20 80 81.247 82.435 82.204 82.749 3756 3450 3172.6
20 95 79.967 82.900 82.504 83.361 3898 3579 3239.6
25 75 80.467 81.538 80.935 81.836 3449 3175 2901.6
25 100 78.408 82.451 82.048 82.860 3684 3383 3116.2
30 85 75.882 80.922 80.312 81.558 3244 2997 2778.4
30 95 75.237 81.485 80.890 81.981 3328 3074 2842.4
30 100 74.891 81.307 80.991 81.558 3353 3090 2840.4
50 95 58.242 74.722 74.480 75.036 1492 1390 1353.8
50 100 57.540 74.433 73.578 75.147 1517 1412 1374.0
66 100 53.645 70.326 69.416 71.575 771 731 726.6
75 100 28.314 67.472 66.288 68.926 425 416 411.6
80 100 25.498 66.179 65.008 66.878 296 291 290.8
90 100 24.018 60.688 57.340 64.096 123 121 122.2
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Table A.48: Kepler dataset VNN-SVM results k=10

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.661 93.950 93.845 94.035 8201 6702 6459.4
0 25 90.284 91.041 90.829 91.230 6899 5398 5512.8
0 50 94.814 93.353 93.133 93.634 7868 6325 6236.8
0 75 96.227 93.779 93.634 93.912 8125 6612 6404.0
10 50 88.013 85.349 85.109 85.576 4740 4153 3895.4
10 75 90.184 87.023 86.878 87.290 5287 4736 4344.4
10 90 90.440 87.428 87.145 87.924 5458 4893 4453.2
10 100 89.572 87.497 87.212 87.735 5527 4970 4510.6
20 80 84.252 83.967 83.528 84.207 4223 3884 3521.8
20 95 83.528 84.574 84.318 84.875 4386 4043 3635.6
25 75 81.302 81.850 81.781 81.914 3598 3357 3031.2
25 100 79.098 82.575 82.170 83.127 3871 3604 3252.4
30 85 75.938 80.543 80.078 81.091 3166 2951 2707.6
30 95 75.392 80.866 80.490 81.436 3266 3036 2787.8
30 100 74.736 80.966 80.779 81.057 3298 3062 2801.4
50 95 61.324 75.159 74.391 75.815 1671 1540 1500.6
50 100 60.723 75.508 75.003 76.450 1703 1571 1519.6
66 100 31.831 70.531 69.560 71.308 825 785 768.0
75 100 29.048 68.149 66.600 68.948 492 483 476.0
80 100 27.457 66.164 64.430 67.958 342 338 335.6
90 100 24.240 61.974 60.712 64.085 137 135 136.6

Table A.49: Kepler dataset VNN-SVM results k=15

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.594 94.598 94.402 94.747 8548 6904 6707.2
0 25 89.917 91.722 91.297 92.087 7230 5614 5782.2
0 50 94.958 94.043 93.957 94.179 8235 6577 6489.8
0 75 96.238 94.529 94.424 94.580 8473 6830 6664.0
10 50 87.568 85.694 85.031 86.099 4846 4279 4007.6
10 75 90.339 87.043 86.756 87.423 5378 4796 4374.8
10 90 90.918 87.786 87.479 88.102 5571 5008 4543.6
10 100 90.562 87.802 87.501 88.002 5648 5091 4595.6
20 80 84.185 84.109 83.606 84.452 4232 3925 3532.8
20 95 83.250 84.416 83.873 84.786 4409 4085 3687.0
25 75 79.655 81.482 81.235 81.937 3411 3203 2893.6
25 100 77.796 82.515 82.282 82.883 3713 3465 3126.2
30 85 74.947 80.737 80.556 80.913 3157 2936 2700.2
30 95 74.168 81.157 81.035 81.269 3264 3031 2776.6
30 100 73.712 80.986 80.278 81.235 3300 3063 2804.6
50 95 58.965 74.978 74.124 76.227 1676 1510 1496.6
50 100 57.807 75.065 74.658 75.871 1712 1549 1517.0
66 100 32.565 71.212 70.161 72.131 883 828 821.4
75 100 30.239 68.683 67.490 69.371 528 514 501.6
80 100 27.735 67.134 66.834 67.479 372 367 363.0
90 100 24.274 62.308 61.280 63.361 149 149 148.8
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Table A.50: Kepler dataset VNN-SVM results k=20

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.572 95.063 94.958 95.159 8706 6992 6835.8
0 25 89.649 91.947 91.820 92.098 7322 5629 5820.0
0 50 94.969 94.424 94.246 94.647 8380 6636 6601.6
0 75 96.138 94.829 94.702 94.958 8624 6901 6776.4
10 50 86.778 85.580 85.075 85.832 4817 4244 3968.0
10 75 89.883 86.983 86.700 87.101 5370 4794 4406.8
10 90 90.529 87.766 87.479 88.158 5569 4995 4530.8
10 100 90.050 87.671 87.346 87.958 5650 5081 4584.2
20 80 83.595 83.838 83.406 84.062 4192 3886 3496.4
20 95 82.916 84.356 83.984 84.597 4372 4053 3628.2
25 75 79.288 81.576 81.146 82.048 3501 3274 2954.2
25 100 77.585 82.742 82.404 83.250 3813 3533 3187.2
30 85 74.302 80.605 80.334 80.857 3149 2925 2676.2
30 95 73.478 81.153 80.879 81.413 3259 3022 2751.2
30 100 72.888 81.173 80.979 81.547 3299 3059 2822.6
50 95 59.889 75.813 75.326 76.149 1758 1600 1562.4
50 100 58.876 75.368 75.047 75.537 1798 1642 1604.4
66 100 32.999 70.960 70.818 71.074 908 849 835.4
75 100 30.106 68.748 68.214 69.661 571 550 549.2
80 100 27.913 66.802 65.743 67.746 394 388 383.0
90 100 24.619 62.028 60.156 63.250 164 164 161.8

Table A.51: Kepler dataset VNN-SVM results k=25

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.583 95.230 95.192 95.270 8796 7035 6897.2
0 25 89.304 92.198 91.786 92.677 7360 5633 5868.4
0 50 94.858 94.477 94.402 94.546 8467 6683 6650.8
0 75 96.127 95.112 95.047 95.192 8709 6941 6829.4
10 50 86.578 85.543 85.097 85.865 4845 4234 3979.8
10 75 89.950 87.181 86.756 87.457 5417 4827 4427.4
10 90 90.295 88.033 87.568 88.425 5625 5039 4571.8
10 100 89.850 87.955 87.846 88.058 5713 5118 4640.2
20 80 83.395 83.695 83.383 84.207 4194 3882 3482.2
20 95 82.638 84.341 84.107 84.641 4385 4046 3650.8
25 75 79.054 82.039 81.669 82.393 3570 3328 3025.4
25 100 77.874 82.871 82.504 83.161 3895 3597 3268.8
30 85 74.302 80.752 80.278 81.068 3241 3011 2756.4
30 95 73.589 81.427 80.957 81.725 3359 3111 2875.2
30 100 72.910 81.304 81.068 81.881 3399 3146 2900.8
50 95 60.056 75.617 75.259 76.004 1783 1622 1589.8
50 100 57.652 75.753 75.036 76.194 1823 1660 1617.4
66 100 32.510 71.423 70.840 72.543 942 887 876.6
75 100 29.727 69.048 68.581 69.438 590 572 558.2
80 100 27.490 67.421 66.822 68.091 419 412 407.4
90 100 24.752 63.866 63.172 64.942 170 170 169.4
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A.4.1 Kepler 2 classes Results tables

Table A.52: Kepler 2 classes dataset VNN-SVM results k=1

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 86.667 87.439 87.090 87.769 3179 2790 2296.6
0 25 88.114 85.169 84.652 85.776 2262 1888 1698.8
0 50 89.538 86.322 86.021 86.800 2814 2422 2078.0
0 75 88.826 87.001 86.511 87.501 3071 2691 2226.6
10 50 89.538 86.457 85.932 86.822 2814 2422 2066.6
10 75 88.826 86.751 86.366 87.023 3071 2691 2237.4
10 90 87.713 87.216 86.845 87.490 3152 2762 2273.0
10 100 86.667 87.248 87.012 87.479 3179 2790 2287.6
20 80 45.465 82.840 82.415 83.350 1482 1348 1162.4
20 95 44.363 83.072 82.449 83.294 1545 1396 1205.2
25 75 45.810 82.769 82.382 83.094 1450 1330 1139.2
25 100 44.118 83.003 82.727 83.361 1558 1403 1230.6
30 85 44.930 82.640 81.714 83.283 1511 1372 1187.2
30 95 44.363 83.228 83.027 83.350 1545 1396 1228.6
30 100 44.118 82.974 82.705 83.261 1558 1403 1209.8
50 95 28.191 79.192 78.464 80.423 516 435 461.8
50 100 28.169 79.105 78.108 79.911 529 444 462.6
66 100 30.150 75.746 73.389 77.218 199 174 191.8
75 100 33.111 74.266 71.497 77.340 123 115 121.4
80 100 34.068 72.352 67.613 76.772 87 84 86.0
90 100 47.134 61.567 49.449 73.344 30 30 30.0
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Table A.53: Kepler 2 classes dataset VNN-SVM results k=1

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 93.267 90.061 89.750 90.362 4501 3742 3124.4
0 25 88.614 87.350 87.045 87.735 3195 2408 2295.0
0 50 92.721 89.209 88.993 89.560 4033 3206 2859.0
0 75 93.567 89.888 89.560 90.039 4368 3595 3049.4
10 50 87.123 87.199 86.544 87.691 3164 2712 2312.4
10 75 85.643 87.927 87.590 88.180 3499 3071 2506.8
10 90 83.550 88.140 87.969 88.280 3597 3151 2580.2
10 100 82.404 88.418 88.180 88.614 3632 3182 2607.8
20 80 66.355 84.959 83.996 85.620 2153 1948 1638.8
20 95 64.563 84.848 84.474 85.331 2228 2010 1685.6
25 75 45.342 83.421 82.883 83.884 1670 1504 1307.4
25 100 43.038 84.049 83.639 84.430 1803 1596 1389.8
30 85 34.769 82.108 81.247 82.827 1246 1089 1012.8
30 95 34.847 82.088 81.736 82.782 1290 1117 1025.4
30 100 34.602 82.132 81.814 82.538 1306 1125 1033.4
50 95 27.691 79.130 77.663 80.479 550 459 492.6
50 100 27.746 78.938 77.451 80.512 566 468 499.6
66 100 29.516 76.441 74.613 78.709 251 211 237.2
75 100 34.936 70.161 58.631 75.003 133 127 131.0
80 100 38.063 74.484 72.499 75.938 94 92 93.4
90 100 47.858 56.296 49.738 69.171 42 42 42.0

Table A.54: Kepler 2 classes dataset VNN-SVM results k=3

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 95.270 91.608 91.386 91.786 5326 4282 3641.8
0 25 88.625 88.759 88.303 89.282 3834 2689 2725.6
0 50 93.222 90.538 90.373 90.918 4780 3607 3308.4
0 75 95.159 91.392 90.818 91.809 5191 4102 3564.6
10 50 90.885 87.021 86.455 87.546 2973 2581 2170.6
10 75 89.048 87.679 87.457 88.158 3384 2943 2440.2
10 90 87.012 87.748 87.423 88.080 3480 3033 2509.8
10 100 84.975 88.053 87.835 88.247 3519 3064 2522.2
20 80 57.685 85.527 85.275 85.799 2478 2209 1844.4
20 95 53.801 85.890 85.698 86.110 2558 2273 1899.4
25 75 44.942 83.860 83.417 84.129 1799 1603 1389.2
25 100 42.660 84.062 83.339 84.474 1934 1694 1497.2
30 85 36.750 82.366 81.302 82.849 1426 1231 1153.6
30 95 36.594 82.898 82.471 83.450 1474 1263 1163.2
30 100 36.494 83.054 82.048 83.695 1492 1273 1177.2
50 95 28.036 79.092 78.453 80.067 611 498 530.2
50 100 28.036 79.444 78.030 80.479 629 511 552.0
66 100 30.428 76.583 75.760 77.385 265 242 250.2
75 100 34.802 74.326 71.675 77.774 148 144 145.6
80 100 37.874 72.349 70.829 73.556 98 96 97.2
90 100 46.889 57.672 49.560 69.928 39 39 39.0
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Table A.55: Kepler 2 classes dataset VNN-SVM results k=4

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.439 92.763 92.510 92.866 5863 4607 3993.4
0 25 88.314 89.600 89.304 89.827 4247 2840 2983.0
0 50 93.489 91.622 91.274 92.020 5301 3870 3627.6
0 75 95.982 92.439 92.176 92.732 5722 4390 3878.2
10 50 88.347 86.898 86.678 87.123 3110 2671 2261.6
10 75 86.032 87.771 87.168 88.214 3531 3080 2519.0
10 90 84.307 88.214 87.869 88.659 3630 3152 2598.0
10 100 81.647 88.501 88.269 89.026 3672 3182 2627.4
20 80 52.554 85.351 85.075 85.776 2417 2140 1808.8
20 95 51.285 85.716 85.275 86.010 2500 2195 1874.6
25 75 42.782 84.098 83.550 84.430 1850 1651 1432.0
25 100 41.970 84.594 83.673 84.942 1991 1734 1535.4
30 85 36.661 83.029 82.627 83.439 1547 1326 1206.8
30 95 36.906 83.263 82.916 83.539 1596 1351 1238.4
30 100 36.761 83.196 82.883 84.029 1616 1366 1265.0
50 95 27.023 79.829 79.009 80.879 608 494 525.2
50 100 27.023 79.626 78.932 80.423 628 508 546.8
66 100 31.842 76.815 75.326 77.618 269 241 253.8
75 100 34.903 74.595 71.341 77.140 151 143 147.8
80 100 37.785 73.961 70.050 77.318 105 103 103.8
90 100 47.468 60.416 50.618 68.915 45 45 45.0

Table A.56: Kepler 2 classes dataset VNN-SVM results k=5

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 96.795 93.440 93.189 93.600 6274 4822 4229.8
0 25 87.947 90.099 89.805 90.250 4555 2919 3176.2
0 50 93.511 92.209 91.953 92.476 5680 4008 3856.6
0 75 96.149 93.280 93.077 93.567 6122 4588 4138.6
10 50 90.417 86.996 86.656 87.368 3070 2609 2246.6
10 75 88.848 88.214 88.102 88.336 3512 3030 2524.6
10 90 86.177 88.378 88.314 88.436 3621 3108 2589.0
10 100 83.428 88.301 88.069 88.692 3664 3139 2611.0
20 80 48.948 85.142 84.585 85.531 2338 2062 1758.8
20 95 47.869 85.560 84.897 86.166 2423 2124 1809.0
25 75 43.684 84.098 83.372 84.719 1892 1681 1460.2
25 100 42.248 84.532 84.151 85.398 2044 1779 1551.2
30 85 35.381 82.624 82.081 83.528 1419 1204 1123.2
30 95 35.426 82.907 82.471 83.294 1472 1238 1161.8
30 100 35.392 83.078 82.927 83.317 1491 1250 1177.6
50 95 29.226 79.630 78.943 80.356 633 551 546.4
50 100 29.215 79.479 79.143 80.434 652 564 565.0
66 100 32.209 76.280 75.248 78.297 282 253 262.0
75 100 34.613 74.520 71.408 76.817 152 144 148.8
80 100 38.497 72.009 58.720 76.928 108 106 106.0
90 100 45.888 60.565 49.683 74.936 46 46 46.0
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Table A.57: Kepler 2 classes dataset VNN-SVM results k=10

VNN-SVM
Accuracy(%)

Rand
Accuracy(%)

Min Rand
Accuracy(%)

Max Rand
Accuracy(%)

N
SVC

N
SV VNN

N
SV Rand

kNN-SVM 97.752 95.221 94.891 95.348 7473 5382 4909.2
0 25 87.568 92.231 91.886 92.532 5592 3212 3823.8
0 50 93.445 94.402 94.146 94.546 6796 4375 4528.8
0 75 96.572 95.087 94.802 95.359 7303 5081 4820.2
10 50 87.357 87.439 87.257 87.635 3157 2668 2290.8
10 75 85.865 88.252 87.924 88.648 3664 3135 2614.8
10 90 81.413 88.280 88.102 88.514 3783 3219 2694.8
10 100 79.232 88.657 88.447 89.082 3834 3261 2722.4
20 80 48.692 85.714 85.543 85.965 2399 2069 1805.8
20 95 47.613 85.585 85.153 85.787 2497 2146 1868.0
25 75 44.129 84.245 83.784 84.619 1896 1637 1431.8
25 100 41.914 84.401 84.296 84.541 2066 1745 1577.4
30 85 38.286 83.326 82.871 83.884 1671 1418 1313.2
30 95 37.874 83.677 83.183 84.496 1730 1459 1320.8
30 100 37.908 83.835 83.083 84.430 1755 1472 1368.6
50 95 29.750 79.630 78.998 80.100 684 606 585.2
50 100 29.750 79.984 79.432 80.835 709 623 600.0
66 100 32.165 77.511 76.105 78.242 309 280 285.8
75 100 32.577 75.208 72.265 76.772 177 168 170.2
80 100 35.960 72.743 59.889 77.852 125 121 121.8
90 100 43.395 65.848 52.799 77.819 55 54 55.0
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A.5 APS Failure and Operational Data for Scania Trucks Results ta-
bles

Table A.58: APS dataset VNN-SVM results k=01

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 89.722 84.647 98.8 98.850 89.568 84.406 1958 1894 1237.50

0 25 76.863 82.567 98.8 98.900 76.492 82.290 1549 1522 1161.50
0 50 85.912 84.376 98.8 98.850 85.693 84.131 1837 1786 1231.25
0 75 87.562 84.706 98.8 98.900 87.371 84.466 1905 1842 1246.00
10 50 85.912 84.297 98.8 98.875 85.693 84.050 1837 1786 1227.00
10 75 87.562 84.632 98.8 98.875 87.371 84.390 1905 1842 1235.00
10 90 88.953 84.917 98.8 98.850 88.786 84.681 1944 1883 1256.50
10 100 89.722 84.901 98.8 98.850 89.568 84.665 1958 1894 1257.75
20 80 88.225 84.808 98.8 98.875 88.046 84.570 1925 1862 1258.25
20 95 89.520 84.818 98.8 98.875 89.363 84.580 1954 1892 1254.75
25 75 87.562 84.552 98.8 98.875 87.371 84.309 1905 1842 1232.75
25 100 89.722 84.792 98.8 98.825 89.568 84.554 1958 1894 1250.00
30 85 2.342 80.892 100.0 98.925 0.686 80.586 1388 1353 1119.50
30 95 2.378 81.486 100.0 99.000 0.724 81.189 1405 1367 1117.75
30 100 2.385 81.326 100.0 98.975 0.731 81.027 1409 1370 1112.50
50 95 2.040 77.632 100.0 99.075 0.380 77.269 1214 1184 1063.50
50 100 2.047 78.219 100.0 99.100 0.386 77.865 1218 1189 1071.25
66 100 1.880 72.104 100.0 99.275 0.217 71.643 1121 1084 1030.25
75 100 1.797 67.564 100.0 99.300 0.132 67.026 1076 1037 1005.75
80 100 1.735 59.438 100.0 99.625 0.069 58.756 1041 1003 986.50
90 100 1.702 45.651 100.0 99.900 0.036 44.732 1021 978 971.50
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Table A.59: APS dataset VNN-SVM results k=02

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 89.722 84.906 98.8 98.850 89.568 84.669 1958 1894 1259.25

0 25 76.863 82.852 98.8 98.925 76.492 82.580 1549 1522 1169.50
0 50 85.912 84.642 98.8 98.875 85.693 84.400 1837 1786 1230.00
0 75 87.562 84.676 98.8 98.900 87.371 84.435 1905 1842 1243.50
10 50 85.912 84.330 98.8 98.875 85.693 84.083 1837 1786 1230.50
10 75 87.562 84.798 98.8 98.900 87.371 84.559 1905 1842 1254.50
10 90 88.953 84.885 98.8 98.825 88.786 84.649 1944 1883 1258.75
10 100 89.722 85.073 98.8 98.825 89.568 84.840 1958 1894 1255.50
20 80 88.225 84.848 98.8 98.850 88.046 84.611 1925 1862 1243.25
20 95 89.520 85.006 98.8 98.825 89.363 84.772 1954 1892 1259.00
25 75 87.562 84.837 98.8 98.875 87.371 84.599 1905 1842 1243.75
25 100 89.722 84.683 98.8 98.850 89.568 84.442 1958 1894 1252.25
30 85 2.342 80.901 100.0 98.975 0.686 80.594 1388 1353 1115.75
30 95 2.378 81.089 100.0 98.975 0.724 80.786 1405 1367 1114.75
30 100 2.385 81.572 100.0 98.950 0.731 81.278 1409 1370 1132.25
50 95 2.040 77.220 100.0 99.175 0.380 76.847 1214 1184 1062.50
50 100 2.047 78.203 100.0 99.100 0.386 77.848 1218 1189 1064.50
66 100 1.880 72.619 100.0 99.200 0.217 72.168 1121 1084 1024.00
75 100 1.797 68.283 100.0 99.425 0.132 67.755 1076 1037 1010.00
80 100 1.735 59.000 100.0 99.550 0.069 58.313 1041 1003 988.50
90 100 1.702 49.140 100.0 99.850 0.036 48.281 1021 978 969.50

Table A.60: APS dataset VNN-SVM results k=03

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.977 86.125 98.8 98.825 99.997 85.910 2253 2170 1324.25

0 25 87.425 84.673 98.8 98.875 87.232 84.432 1898 1830 1245.50
0 50 91.450 85.016 98.8 98.900 91.325 84.781 2025 1950 1260.50
0 75 99.973 85.600 98.8 98.875 99.993 85.375 2180 2097 1304.00
10 50 91.450 85.034 98.8 98.850 91.325 84.800 2025 1950 1263.75
10 75 99.973 85.712 98.8 98.850 99.993 85.489 2180 2097 1305.50
10 90 99.977 86.081 98.8 98.800 99.997 85.866 2233 2154 1329.75
10 100 99.977 86.113 98.8 98.850 99.997 85.897 2253 2170 1320.25
20 80 99.975 85.865 98.8 98.850 99.995 85.645 2202 2119 1304.75
20 95 99.977 85.925 98.8 98.825 99.997 85.707 2245 2160 1321.25
25 75 2.835 82.470 100.0 98.950 1.188 82.191 1525 1496 1153.50
25 100 3.022 82.702 100.0 98.900 1.378 82.428 1598 1570 1165.00
30 85 2.963 82.683 100.0 98.925 1.319 82.408 1572 1542 1164.75
30 95 3.003 82.879 100.0 98.925 1.359 82.607 1590 1559 1173.00
30 100 3.022 82.931 100.0 98.925 1.378 82.660 1598 1570 1170.00
50 95 2.257 80.183 100.0 99.050 0.600 79.863 1347 1320 1105.25
50 100 2.270 80.585 100.0 99.000 0.614 80.272 1355 1322 1105.50
66 100 1.917 74.010 100.0 99.200 0.254 73.583 1147 1109 1035.25
75 100 1.790 66.771 100.0 99.500 0.125 66.216 1073 1040 1003.25
80 100 1.790 70.233 100.0 99.275 0.125 69.741 1073 1040 1006.50
90 100 1.702 43.185 100.0 99.925 0.036 42.223 1020 977 969.75
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Table A.61: APS dataset VNN-SVM results k=04

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.977 86.756 98.7 98.825 99.998 86.552 2501 2389 1372.50

0 25 90.117 85.005 98.8 98.875 89.969 84.770 2023 1926 1262.50
0 50 99.975 85.925 98.8 98.825 99.995 85.707 2271 2167 1323.25
0 75 99.977 86.495 98.7 98.850 99.998 86.286 2438 2331 1341.50
10 50 99.975 86.075 98.8 98.775 99.995 85.859 2271 2167 1328.25
10 75 99.977 86.668 98.7 98.825 99.998 86.462 2438 2331 1361.75
10 90 99.977 86.934 98.7 98.800 99.998 86.733 2480 2365 1380.25
10 100 99.977 86.825 98.7 98.825 99.998 86.622 2501 2389 1371.25
20 80 3.778 83.758 100.0 98.850 2.147 83.503 1693 1639 1195.50
20 95 3.922 83.865 100.0 98.900 2.293 83.610 1738 1681 1210.75
25 75 3.742 83.567 100.0 98.900 2.110 83.308 1684 1632 1193.75
25 100 3.952 83.772 100.0 98.900 2.324 83.515 1747 1690 1206.00
30 85 3.837 83.568 100.0 98.900 2.207 83.308 1713 1656 1201.25
30 95 3.922 84.070 100.0 98.850 2.293 83.819 1738 1681 1200.00
30 100 3.952 83.921 100.0 98.900 2.324 83.667 1747 1690 1206.75
50 95 2.205 80.260 100.0 99.075 0.547 79.942 1315 1286 1099.25
50 100 2.220 80.141 100.0 99.075 0.563 79.820 1324 1293 1102.75
66 100 1.948 75.530 100.0 99.150 0.286 75.130 1166 1133 1041.75
75 100 1.818 68.798 100.0 99.350 0.154 68.281 1090 1051 1008.25
80 100 1.775 67.037 100.0 99.300 0.110 66.490 1063 1029 999.25
90 100 1.707 49.857 100.0 99.800 0.041 49.011 1024 977 974.50

Table A.62: APS dataset VNN-SVM results k=05

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.977 87.252 98.7 98.825 99.998 87.056 2736 2627 1412.50

0 25 93.850 85.414 98.8 98.850 93.766 85.186 2149 2028 1285.50
0 50 99.975 86.816 98.7 98.825 99.997 86.612 2513 2383 1376.00
0 75 99.977 87.058 98.7 98.800 99.998 86.858 2659 2528 1394.50
10 50 99.975 86.971 98.7 98.775 99.997 86.771 2513 2383 1381.75
10 75 99.977 87.248 98.7 98.800 99.998 87.052 2659 2528 1398.75
10 90 99.977 87.423 98.7 98.825 99.998 87.230 2714 2605 1423.50
10 100 99.977 87.257 98.7 98.775 99.998 87.061 2736 2627 1407.25
20 80 4.550 84.386 100.0 98.825 2.932 84.141 1822 1763 1222.50
20 95 5.083 84.431 100.0 98.850 3.475 84.186 1879 1817 1230.75
25 75 4.492 84.250 100.0 98.875 2.873 84.002 1809 1751 1221.00
25 100 5.158 84.693 100.0 98.875 3.551 84.453 1886 1826 1234.25
30 85 2.607 82.914 100.0 98.925 0.956 82.642 1549 1522 1164.50
30 95 2.663 82.835 100.0 98.900 1.014 82.563 1580 1550 1168.75
30 100 2.675 82.825 100.0 98.925 1.025 82.552 1587 1555 1172.00
50 95 2.172 79.003 100.0 99.050 0.514 78.664 1296 1267 1087.50
50 100 2.183 79.888 100.0 99.100 0.525 79.562 1303 1275 1098.00
66 100 1.962 76.125 100.0 99.225 0.300 75.733 1175 1141 1052.50
75 100 1.842 69.834 100.0 99.275 0.178 69.335 1102 1066 1013.50
80 100 1.773 65.880 100.0 99.425 0.108 65.312 1064 1032 998.00
90 100 1.710 47.123 100.0 99.850 0.044 46.229 1026 988 977.50
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Table A.63: APS dataset VNN-SVM results k=10

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.973 89.063 98.4 98.750 100.000 88.899 3615 3326 1580.00

0 25 99.973 87.548 98.5 98.825 99.998 87.357 2834 2557 1435.00
0 50 99.973 88.596 98.4 98.750 100.000 88.424 3310 3038 1530.25
0 75 99.973 88.792 98.4 98.700 100.000 88.624 3510 3217 1560.50
10 50 99.973 88.645 98.4 98.775 100.000 88.473 3310 3038 1537.00
10 75 99.973 88.952 98.4 98.775 100.000 88.786 3510 3217 1578.25
10 90 99.973 89.139 98.4 98.700 100.000 88.977 3582 3298 1582.50
10 100 99.973 89.015 98.4 98.700 100.000 88.851 3615 3326 1566.50
20 80 38.153 86.705 99.8 98.800 37.108 86.500 2403 2301 1370.25
20 95 38.705 86.514 99.8 98.800 37.669 86.306 2464 2356 1353.25
25 75 5.317 84.250 100.0 98.900 3.712 84.001 1898 1826 1233.00
25 100 7.268 85.220 100.0 98.850 5.697 84.989 2003 1925 1280.00
30 85 3.000 83.622 100.0 98.875 1.356 83.364 1733 1670 1204.75
30 95 3.058 84.154 100.0 98.850 1.415 83.905 1768 1705 1213.50
30 100 3.085 84.017 100.0 98.850 1.442 83.766 1781 1716 1219.00
50 95 2.235 80.651 100.0 99.000 0.578 80.340 1339 1301 1106.00
50 100 2.257 80.532 100.0 99.000 0.600 80.219 1352 1323 1105.00
66 100 1.972 76.448 100.0 99.175 0.310 76.063 1182 1147 1052.25
75 100 1.875 73.547 100.0 99.275 0.212 73.111 1124 1088 1029.75
80 100 1.805 69.133 100.0 99.375 0.141 68.620 1082 1046 1008.75
90 100 1.733 62.245 100.0 99.575 0.068 61.613 1040 1003 987.00

Table A.64: APS dataset VNN-SVM results k=15

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.970 89.841 98.2 98.700 100.000 89.691 4265 3789 1682.00

0 25 99.973 88.793 98.4 98.775 100.000 88.624 3377 2958 1540.25
0 50 99.972 89.602 98.3 98.775 100.000 89.447 3879 3437 1642.75
0 75 99.970 90.046 98.2 98.750 100.000 89.898 4155 3690 1696.50
10 50 46.195 86.848 99.8 98.800 45.286 86.646 2531 2394 1374.50
10 75 47.498 87.470 99.7 98.775 46.614 87.279 2807 2685 1428.25
10 90 47.727 87.601 99.7 98.750 46.846 87.412 2883 2754 1431.50
10 100 47.860 87.696 99.7 98.775 46.981 87.508 2917 2792 1444.75
20 80 26.130 86.401 100.0 98.825 24.878 86.190 2270 2165 1341.25
20 95 27.135 86.610 100.0 98.775 25.900 86.404 2340 2230 1354.75
25 75 3.893 85.214 100.0 98.850 2.264 84.983 1976 1893 1259.25
25 100 15.262 85.375 100.0 98.825 13.825 85.147 2086 1993 1279.25
30 85 3.187 84.390 100.0 98.825 1.546 84.145 1826 1755 1221.75
30 95 3.298 84.640 100.0 98.850 1.659 84.400 1871 1800 1235.75
30 100 3.347 84.709 100.0 98.825 1.708 84.469 1888 1816 1247.50
50 95 2.285 81.520 100.0 99.000 0.629 81.223 1369 1337 1119.00
50 100 2.313 80.856 100.0 99.000 0.658 80.548 1386 1346 1111.75
66 100 2.027 78.940 100.0 99.050 0.366 78.599 1214 1186 1068.50
75 100 1.882 74.428 100.0 99.150 0.219 74.009 1128 1093 1029.75
80 100 1.828 71.362 100.0 99.175 0.164 70.891 1097 1054 1016.25
90 100 1.733 56.282 100.0 99.725 0.068 55.546 1040 995 988.50

119



Table A.65: APS dataset VNN-SVM results k=20

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.970 90.758 98.2 98.750 100.000 90.622 4815 4156 1782.25

0 25 99.970 89.638 98.2 98.700 100.000 89.484 3853 3237 1637.75
0 50 99.970 90.337 98.2 98.775 100.000 90.194 4435 3781 1732.00
0 75 99.970 90.791 98.2 98.725 100.000 90.656 4690 4046 1787.00
10 50 50.612 87.688 99.6 98.800 49.781 87.499 2924 2760 1453.00
10 75 51.542 88.375 99.6 98.825 50.727 88.197 3179 3008 1509.50
10 90 51.835 88.475 99.6 98.775 51.025 88.301 3265 3098 1515.75
10 100 51.982 88.570 99.6 98.775 51.175 88.397 3304 3128 1523.25
20 80 20.445 85.942 100.0 98.800 19.097 85.724 2239 2132 1316.50
20 95 21.957 86.110 100.0 98.875 20.634 85.894 2319 2217 1328.25
25 75 4.010 85.154 100.0 98.850 2.383 84.922 2004 1914 1280.50
25 100 17.143 85.453 100.0 98.850 15.739 85.226 2129 2028 1294.50
30 85 3.330 84.610 100.0 98.875 1.692 84.368 1900 1828 1244.50
30 95 3.468 84.815 100.0 98.900 1.832 84.577 1944 1872 1261.75
30 100 3.527 84.952 100.0 98.900 1.892 84.716 1962 1888 1244.75
50 95 2.355 81.021 100.0 99.000 0.700 80.716 1409 1372 1122.25
50 100 2.385 81.470 100.0 99.025 0.731 81.173 1427 1399 1134.00
66 100 2.047 78.145 100.0 99.125 0.386 77.790 1225 1197 1065.25
75 100 1.903 74.623 100.0 99.150 0.241 74.207 1141 1109 1036.75
80 100 1.843 74.107 100.0 99.175 0.180 73.682 1106 1072 1023.25
90 100 1.740 58.775 100.0 99.750 0.075 58.080 1044 1004 988.25

Table A.66: APS dataset VNN-SVM results k=25

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.968 91.430 98.1 98.750 100.000 91.306 5284 4451 1876.25

0 25 99.970 90.040 98.2 98.750 100.000 89.893 4279 3486 1687.25
0 50 99.970 90.896 98.2 98.750 100.000 90.763 4858 4020 1798.25
0 75 99.970 91.281 98.2 98.725 100.000 91.155 5142 4305 1852.50
10 50 56.473 88.444 99.6 98.750 55.742 88.269 3225 3008 1521.75
10 75 57.470 89.069 99.6 98.750 56.756 88.905 3509 3285 1579.00
10 90 57.617 88.937 99.6 98.775 56.905 88.770 3612 3383 1565.75
10 100 57.630 89.272 99.6 98.750 56.919 89.111 3651 3424 1600.00
20 80 20.698 85.910 100.0 98.875 19.354 85.691 2248 2141 1322.00
20 95 22.138 86.213 100.0 98.825 20.819 85.999 2330 2216 1333.75
25 75 4.435 85.176 100.0 98.825 2.815 84.945 2014 1932 1272.50
25 100 18.263 85.543 100.0 98.875 16.878 85.317 2156 2065 1299.50
30 85 3.430 85.116 100.0 98.850 1.793 84.883 1937 1865 1267.25
30 95 3.660 85.172 100.0 98.850 2.027 84.940 1987 1909 1267.75
30 100 3.810 84.951 100.0 98.850 2.180 84.716 2005 1925 1263.50
50 95 2.412 81.596 100.0 98.925 0.758 81.303 1442 1415 1134.75
50 100 2.443 81.421 100.0 98.975 0.790 81.123 1460 1432 1138.50
66 100 2.070 77.373 100.0 99.075 0.410 77.005 1240 1212 1074.25
75 100 1.923 75.866 100.0 99.175 0.261 75.471 1154 1122 1045.25
80 100 1.845 73.752 100.0 99.275 0.181 73.320 1107 1073 1018.50
90 100 1.742 61.367 100.0 99.575 0.076 60.719 1045 1000 988.00
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Table A.67: APS dataset VNN-SVM results k=50

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.967 93.468 98.0 98.650 100.000 93.380 7247 5448 2177.50

0 25 99.967 92.405 98.0 98.700 100.000 92.298 6024 4256 2011.25
0 50 99.967 92.998 98.0 98.725 100.000 92.901 6752 4965 2107.50
0 75 99.967 93.185 98.0 98.625 100.000 93.093 7077 5270 2139.00
10 50 49.123 88.662 99.9 98.750 48.263 88.491 3386 3171 1538.50
10 75 50.238 89.140 99.8 98.800 49.398 88.976 3711 3481 1590.00
10 90 50.590 89.430 99.8 98.750 49.756 89.272 3829 3574 1627.25
10 100 50.758 89.620 99.8 98.725 49.927 89.466 3881 3633 1640.00
20 80 24.398 86.667 100.0 98.800 23.117 86.461 2539 2437 1368.00
20 95 25.765 87.058 100.0 98.775 24.507 86.860 2639 2562 1388.00
25 75 17.467 85.587 100.0 98.875 16.068 85.362 2142 2042 1307.75
25 100 21.643 86.345 100.0 98.825 20.315 86.134 2312 2219 1340.50
30 85 3.615 85.164 100.0 98.875 1.981 84.931 1979 1897 1265.75
30 95 11.130 85.314 100.0 98.825 9.624 85.085 2042 1953 1281.00
30 100 13.198 85.437 100.0 98.850 11.727 85.210 2065 1977 1286.50
50 95 2.492 82.460 100.0 98.875 0.839 82.182 1492 1463 1148.00
50 100 2.532 82.516 100.0 98.950 0.880 82.238 1515 1487 1167.00
66 100 2.133 78.983 100.0 99.075 0.475 78.643 1279 1249 1083.00
75 100 1.967 76.511 100.0 99.150 0.305 76.128 1180 1144 1051.75
80 100 1.882 74.705 100.0 99.200 0.219 74.290 1129 1093 1032.75
90 100 1.758 62.463 100.0 99.575 0.093 61.834 1055 1016 994.50

Table A.68: APS dataset VNN-SVM results k=100

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.967 99.962 98.0 98.450 100.000 99.988 9950 6332 2594.50

0 25 99.967 98.763 98.0 98.525 100.000 98.767 8544 4962 2409.25
0 50 99.967 99.953 98.0 98.475 100.000 99.978 9381 5777 2516.25
0 75 99.967 99.962 98.0 98.550 100.000 99.986 9738 6128 2558.25
10 50 56.295 89.601 99.9 98.725 55.556 89.446 3950 3592 1651.75
10 75 56.683 90.097 99.9 98.725 55.951 89.951 4307 3936 1701.25
10 90 56.815 90.404 99.9 98.750 56.085 90.263 4450 4062 1743.25
10 100 56.863 90.431 99.9 98.700 56.134 90.291 4519 4130 1753.50
20 80 26.568 87.215 100.0 98.800 25.324 87.019 2700 2609 1408.00
20 95 28.125 87.610 100.0 98.800 26.907 87.420 2826 2731 1438.50
25 75 20.048 86.147 100.0 98.800 18.693 85.933 2250 2155 1326.75
25 100 23.087 86.493 100.0 98.850 21.783 86.283 2462 2354 1369.00
30 85 13.133 85.198 100.0 98.850 11.661 84.967 2067 1972 1275.00
30 95 17.378 85.864 100.0 98.825 15.978 85.644 2149 2050 1306.75
30 100 18.338 85.966 100.0 98.850 16.954 85.747 2180 2088 1325.25
50 95 2.602 83.140 100.0 98.900 0.951 82.872 1558 1531 1161.75
50 100 2.655 82.990 100.0 98.925 1.005 82.719 1589 1559 1172.50
66 100 2.205 80.407 100.0 99.025 0.547 80.092 1323 1291 1100.00
75 100 2.020 77.836 100.0 99.125 0.359 77.475 1212 1181 1067.75
80 100 1.938 76.299 100.0 99.125 0.276 75.912 1162 1122 1043.25
90 100 1.790 67.611 100.0 99.425 0.125 67.072 1074 1037 1009.25
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Table A.69: APS dataset VNN-SVM results k=150

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.967 99.967 98.0 98.375 100.000 99.994 12141 6765 2889.50

0 25 99.967 99.965 98.0 98.425 100.000 99.991 10595 5260 2683.50
0 50 99.967 99.967 98.0 98.450 100.000 99.993 11497 6128 2789.25
0 75 99.967 99.968 98.0 98.475 100.000 99.993 11900 6537 2844.75
10 50 55.938 89.513 99.9 98.700 55.193 89.357 3932 3551 1630.25
10 75 56.425 90.295 99.9 98.775 55.688 90.151 4335 3935 1712.50
10 90 56.598 90.338 99.9 98.800 55.864 90.194 4498 4084 1725.75
10 100 56.647 90.568 99.9 98.725 55.914 90.430 4576 4159 1753.25
20 80 27.307 87.483 100.0 98.775 26.075 87.292 2759 2673 1426.50
20 95 28.697 87.716 100.0 98.800 27.488 87.528 2897 2802 1450.75
25 75 21.618 86.350 100.0 98.825 20.290 86.139 2338 2236 1335.00
25 100 24.268 86.987 100.0 98.850 22.985 86.786 2579 2496 1387.25
30 85 17.855 85.757 100.0 98.825 16.463 85.536 2165 2072 1306.50
30 95 20.120 86.019 100.0 98.825 18.766 85.802 2255 2164 1330.50
30 100 20.767 86.482 100.0 98.800 19.424 86.273 2291 2192 1339.50
50 95 2.717 83.328 100.0 98.900 1.068 83.064 1627 1590 1181.75
50 100 2.782 83.408 100.0 98.925 1.134 83.145 1663 1613 1191.50
66 100 2.283 81.232 100.0 99.000 0.627 80.931 1369 1339 1113.25
75 100 2.070 78.284 100.0 99.100 0.410 77.931 1241 1210 1071.00
80 100 1.978 76.839 100.0 99.125 0.317 76.461 1184 1148 1057.00
90 100 1.800 69.225 100.0 99.225 0.136 68.717 1080 1039 1002.25

Table A.70: APS dataset VNN-SVM results k=200

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.967 99.970 98.0 98.325 100.000 99.998 13979 7012 3164.25

0 25 99.967 99.966 98.0 98.350 100.000 99.994 12312 5413 2906.25
0 50 99.967 99.969 98.0 98.325 100.000 99.997 13273 6325 3039.25
0 75 99.967 99.965 98.0 98.200 100.000 99.995 13717 6772 3135.25
10 50 55.855 89.845 99.9 98.750 55.108 89.694 4166 3700 1664.50
10 75 56.333 90.672 99.9 98.700 55.595 90.536 4610 4110 1779.25
10 90 56.485 90.900 99.9 98.725 55.749 90.768 4788 4293 1803.00
10 100 56.532 90.886 99.9 98.700 55.797 90.753 4872 4377 1802.25
20 80 28.470 87.893 100.0 98.800 27.258 87.708 2908 2811 1455.75
20 95 29.815 88.080 100.0 98.750 28.625 87.899 3063 2954 1473.75
25 75 22.452 86.406 100.0 98.775 21.137 86.196 2405 2302 1351.50
25 100 25.480 87.158 100.0 98.800 24.217 86.961 2667 2583 1408.50
30 85 20.137 86.120 100.0 98.800 18.783 85.906 2255 2160 1324.25
30 95 21.643 86.247 100.0 98.850 20.315 86.033 2351 2251 1343.00
30 100 22.162 86.315 100.0 98.850 20.842 86.103 2389 2291 1336.75
50 95 2.807 83.589 100.0 98.925 1.159 83.329 1677 1624 1192.50
50 100 2.870 84.020 100.0 98.900 1.224 83.768 1715 1649 1207.25
66 100 2.340 81.086 100.0 98.975 0.685 80.783 1403 1360 1122.25
75 100 2.107 78.744 100.0 99.125 0.447 78.399 1262 1231 1074.75
80 100 1.997 76.857 100.0 99.175 0.336 76.478 1198 1160 1052.75
90 100 1.810 69.134 100.0 99.375 0.146 68.622 1086 1045 1013.50
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Table A.71: APS dataset VNN-SVM results k=250

VNNAcc RandAcc PositiveAcc PositiveAccRand NegativeAcc NegativeAccRand nSVC nSV VNN nSV Rand
kNN-SVM 99.967 99.972 98.0 98.300 100.000 100.000 15697 7210 3412.50

0 25 99.967 99.972 98.0 98.475 100.000 99.997 13930 5505 3162.50
0 50 99.967 99.970 98.0 98.275 100.000 99.999 14943 6470 3340.50
0 75 99.967 99.972 98.0 98.350 100.000 99.999 15420 6951 3384.75
10 50 55.132 89.882 99.9 98.750 54.373 89.731 4139 3667 1675.25
10 75 55.733 90.550 99.9 98.725 54.985 90.411 4616 4121 1754.50
10 90 55.933 90.735 99.9 98.725 55.188 90.600 4803 4296 1785.25
10 100 55.988 91.018 99.9 98.725 55.244 90.887 4893 4387 1816.50
20 80 28.948 87.848 100.0 98.800 27.744 87.662 2973 2856 1465.25
20 95 30.288 88.338 100.0 98.775 29.107 88.161 3141 3020 1502.00
25 75 23.730 86.855 100.0 98.800 22.437 86.652 2521 2415 1375.25
25 100 27.018 87.648 100.0 98.800 25.781 87.459 2798 2707 1437.25
30 85 21.278 86.160 100.0 98.825 19.944 85.946 2324 2225 1335.25
30 95 22.595 86.619 100.0 98.775 21.283 86.413 2430 2323 1361.75
30 100 23.008 86.480 100.0 98.850 21.703 86.270 2470 2360 1350.25
50 95 2.885 83.844 100.0 98.925 1.239 83.588 1722 1653 1206.00
50 100 2.958 84.128 100.0 98.875 1.314 83.878 1762 1692 1218.25
66 100 2.375 81.025 100.0 99.000 0.720 80.721 1424 1388 1127.00
75 100 2.132 79.657 100.0 99.075 0.473 79.328 1279 1248 1089.75
80 100 2.020 77.651 100.0 99.150 0.359 77.286 1212 1178 1064.50
90 100 1.820 71.414 100.0 99.325 0.156 70.941 1092 1047 1016.25
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APPENDIX B

Glossary

• Classifier - In machine learning a classifier is an algorithm that predicts the

class or label of points based on it’s input variables.

• Coalescing Memory Reading - Coalescing Memory Reading is the con-

cept used in GPU programming that sequential threads will use the same

sequential sections of memory. GPU architectures uses this concept to speed

up computation by, when receiving a memory access request, instead of load-

ing just the memory requested it sends to the thread managers a group of

memory consisting of the one requested and ones close to it in memory, this

way any other threads can use those extra memory points for their own

computation.

• Continuous Variables - Continuous Variables are variables that can have

a infinite number of possible values. In practical terms continuous variables

are any variables that can receive any natural or real numbers.

• Decision Surface - Decision Surface or Decision Boundary is a n-

dimensional hyperplane that divides the feature space in two classes. The

points will be classified as belonging to a class depending on which side of

the decision surface they reside.

• Discrete Variables - Discrete Variables are variables that can have a finite

number of real values.

• Euclidean Distance - Is the common method of calculating distance be-

tween two points by finding the straight line distance between two points in

euclidean space.
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• Feature Space - In Machine Learning, feature space is the n-dimension

space where the variables of a dataset live, where n is the number of attributes

of the dataset.

• Greatest Margin Classifier - A greatest margin classifier is a algorithm

that will find the region in feature space where the distance between the

classes is the greatest and use it to create a decision hyperplane that will be

placed in the middle of the margin, classifying every point one side of the

margin as one class and the all points on the other side as another class.

• Hamming Distance - Is a common method of comparing discrete variables,

where all possible values of the variable receive a bit of information corre-

sponding to that value and the distance between points is calculated by how

many bits are different.

• Kernel Space - On SVM s, kernel space refers to the n-dimensions space

where the distance calculation takes place in the SVM algorithm, where

n > of attributes of the dataset. Although the data is never converted

to kernel space the decision surface created by the SVM is a plane in that

n-dimensional kernel space.

• Linear Classifiers - In machine learning a linear classifier is an algorithm

that classify points based on a linear combination of its features. Even though

they are called linear they can exist in n-dimensional space as a hyperplane

achieving the same results.

• Margin - In machine learning the margin is the distance between the decision

surface and the closest data points of each class.

• Non-linear Problems - In machine learning a non-linear problems is a
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problem that can‘t be classified correctly using a linear classifier.

• Outliers - In machine learning outliers are points that are separated from

other members of the same class by a great distance, not sharing the same

characteristics of points of its class. Because of this distance these points are

usually hard to classify and sometimes they may lay closer to members of

other classes hindering the creation of a classifier.

• Overfitting - Overfitting is a common modeling error that happens when

the created model tries too fit the training data too closely often learning

noise or outliers that don’t represent the overall form of the data.

• Polytope - Polytope is an n-dimensional geometric object. In the context

of the text it refers to a geometric object that encloses a subset of points to

be classified.

• Test/Training Data - When creating a classifier it is usual to divide the

data you have in 2 sets, one bigger for training and a smaller for testing.

This way you can train your classifier with your training data. And, with

the remaining points, see how your classifier performs on points never seen

to check for Overfitting or bad parameters in your training.

• Time Complexity - In computer science, time complexity is the computa-

tional complexity that describes the amount of time it will take to run an

algorithm. On this dissertation we will be dealing with the Big O notation

of the code implemented indicating the order of function that relates with

its growth rate.

• XOR - XOR or Exclusive Or, is a basic logic operation that receives 2 inputs

and based on their sign it outputs 0 (if the inputs have the same sign) or 1
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(if the inputs have different signs). This logic operation when applied to a

2 dimensional data set will divide the data in 4 different quadrants that are

impossible to classify with a normal linear classifier, so it is often used that

way to create data to test classification algorithms.
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