
University of Rhode Island
DigitalCommons@URI

Open Access Dissertations

2018

INDUCTIVE EQUATIONAL LOGIC
PROGRAMMING
Arthur A. McDonald
University of Rhode Island, arthur_mcdonald@my.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Terms of Use
All rights reserved under copyright.

This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations
by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.

Recommended Citation
McDonald, Arthur A., "INDUCTIVE EQUATIONAL LOGIC PROGRAMMING" (2018). Open Access Dissertations. Paper 791.
https://digitalcommons.uri.edu/oa_diss/791

https://digitalcommons.uri.edu/?utm_source=digitalcommons.uri.edu%2Foa_diss%2F791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/791?utm_source=digitalcommons.uri.edu%2Foa_diss%2F791&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@etal.uri.edu

INDUCTIVE EQUATIONAL LOGIC PROGRAMMING

BY

ARTHUR A. MCDONALD

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2018

DOCTOR OF PHILOSOPHY DISSERTATION

OF

ARTHUR A. MCDONALD

APPROVED:

Dissertation Committee:

Major Professor Lutz Hamel

Joan Peckham

Haibo He

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2018

ABSTRACT

Inductive Logic Programming (ILP) is an area of research that is at the in-

tersection of Machine Learning and Logic Programming. An ILP system uses

positive and negative facts (examples) and optional background knowledge to in-

duce a logic program that 1) accurately describes the facts and 2) successfully

predicts the outcome of unseen examples.

This thesis introduces a new ILP algorithm implemented in Equational Logic

that takes a hybrid approach to induction, using bottom-up generalization com-

bined with inverse narrowing to create recursive equations.

We also introduce a framework for the induction of conditional equations from

positive ground examples.

ACKNOWLEDGMENTS

First, I would like to thank the members of my doctoral committee: Professors

Joan Peckham and Haibo He.

Thanks to Dr. Edmund Lamagna for serving on my comprehensive examina-

tion committee and giving me excellent feedback on my initial research proposal.

Thank you to Lorraine Berube, administrative assistant for the Computer

Science department for her helpfulness in jumping through administrative hoops.

Finally, thanks to my advisor, Lutz Hamel, for his academic counsel and

support throughout my graduate studies.

iii

DEDICATION

This thesis is dedicated to my father, Professor Robert A. McDonald.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

DEDICATION . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . viii

CHAPTER

1 Introduction . 1

1.1 Overview . 1

1.2 Statement of Problem . 1

1.3 Contribution . 3

1.4 Related Work . 3

1.4.1 Inductive Logic Programming 3

1.4.2 Evolutionary Equational Logic Programming 9

1.4.3 Functional Inductive Logic Programming 10

1.5 A Few Notes . 11

1.6 Structure of Thesis . 11

2 Background . 13

2.1 Equational Logic . 13

2.2 Programming with Equations 18

2.2.1 Rewriting as Operational Semantics 19

v

Page

vi

2.2.2 BOBJ . 20

3 Inverse Narrowing . 23

3.1 Narrowing as Equational Logic Unification 23

3.2 Inverse Narrowing for Equation Induction 24

4 Induction of Equational Logic Programs 29

4.1 A Hybrid Approach to Induction 29

4.1.1 Preliminaries . 30

4.1.2 Induce . 31

4.1.3 Initialization . 31

4.1.4 Inverse Narrowing . 33

4.1.5 Generalization . 34

4.1.6 Equation Pruning . 34

4.2 Negative Knowledge Representation 35

4.3 Background Knowledge . 35

5 Experiments and Results . 36

5.1 Trivial Example . 36

5.1.1 Stack . 36

5.1.2 Stack - Multiple Terms 38

5.2 Classification Problems . 41

5.2.1 Car Buying . 41

5.2.2 Voting Patterns . 43

5.2.3 Play Tennis . 47

5.3 Recursive Problems . 50

Page

vii

5.3.1 Sum . 50

5.3.2 Even . 53

5.3.3 Less Than . 55

5.3.4 Length . 58

5.3.5 Drop . 61

5.4 Conclusion . 64

6 Conditional Equations . 65

6.1 Induction of Conditional Equations 65

6.2 Condition Creation . 65

6.3 Example . 67

7 Conclusions and Future Work . 71

7.1 Future Work . 71

7.1.1 Conditional Equation Generation 71

7.1.2 Parallel Execution . 72

7.1.3 Sophisticated Pruning Operator 72

7.1.4 Hypothesis Selection . 72

7.2 Conclusions . 72

LIST OF REFERENCES . 74

APPENDIX

Complete Output of Induction Algorithm on SUM 78

BIBLIOGRAPHY . 82

LIST OF FIGURES

Figure Page

1 Inductive vs. Deductive Logic 5

2 Generality Lattice of Formulae 6

3 Equation 0 + 1 = 1 Represented as a Graph 10

4 Axioms of Evenness of Natural Numbers 15

5 Inference Rules of Equational Logic 17

viii

CHAPTER 1

Introduction

1.1 Overview

This dissertation extends the BOBJ equational logic programming system

with an inductive engine for learning equational theories from positive and negative

examples and optional background information.

We further the research into inductive logic programming and inductive con-

cept learning using equational logic that was begun by Hamel [1, 2, 3] and Shen

[4], as well as the inductive processes used in the functional programming system

FLIP [5].

Additionally, we present a framework for the induction of conditional equa-

tions in equational logic. Initial results of this research show that it can be a

powerful addition to the field of inductive logic programming.

1.2 Statement of Problem

While the problem of inductive logic programming (ILP) in first-order pred-

icate logic systems and traditional attribute-value representation languages has

been well researched, the use of equational logic programming has been a fairly

open problem in the field of ILP.

An inductive logic programming system’s learning algorithm essentially has

three parts: representation, search, and evaluation [6]. Because the representation

language of equational logic has been thoroughly established and formalized, this

dissertation has concentrated on the search and evaluation of an ILP algorithm.

In general, the search algorithm of ILP systems is a set covering algorithm. We

now discuss a brief overview so that the reader has an understanding of an ILP

problem.

1

Suppose we would like to know whether or not to play tennis given the day’s

weather attributes. We give our learning algorithm a set of positive and negative

examples from past observations, using Propositional Calculus as the representa-

tion language. We have four weather attributes for outlook, temperature, humidity,

and wind speed as operands and use the logical conjunction operator ∧ to connect

them. If all of the operands are true, then the outcome, represented as −→, is to

play tennis, or do not play tennis. These examples are shown below:

Overcast ∧ Mild ∧ Low ∧ Weak −→ Play Tennis

Overcast ∧ Mild ∧ High ∧ Weak −→ Play Tennis

Sunny ∧ Cool ∧ Low ∧ Weak −→ Play Tennis

Overcast ∧ Cool ∧ Low ∧ Weak −→ Play Tennis

Overcast ∧ Cool ∧ High ∧ Weak −→ Play Tennis

Rain ∧ Hot ∧ Low ∧ Weak −→ Do Not Play Tennis

Rain ∧ Hot ∧ Low ∧ Strong −→ Do Not Play Tennis

Based on this input knowledge, the learning algorithm is able to induce the

following set of rules that tell us when we should play tennis. Here X and Y are

variables that can represent any value for that attribute. The algorithm searched

the hypothesis space and discovered that the three rules below cover all of the

examples that were given to it. That is, this set of rules account for all of the Play

Tennis and Do Not Play Tennis examples given above, and thus a solution was

found.

Overcast ∧ Mild ∧ X ∧ Weak −→ Play Tennis

X ∧ Cool ∧ Y ∧ Weak −→ Play Tennis

Rain ∧ Hot ∧ X ∧ Y −→ Do Not Play Tennis

We can now evaluate the algorithm by testing unseen examples against these

rules and comparing the results with the actual values. If Outlook=Sunny,

2

Temp=Cool, Humidity=Low, and Wind=Weak and the outcome was to play

tennis, then this would be a positive test. However, if Outlook=Overcast,

Temp=Mild, Humidity=High, and Wind=Weak and tennis was not played, this

would be a negative test, as the first rule states that the outcome should be to

play tennis when those conditions are true.

In ILP, one of the primary goals is for the solutions to be complete and consis-

tent. Meaning it covers all of the set of positive examples given as input (complete),

but none of the negative examples (consistent). Another goal is for that solution

to accurately predict or classify unseen data. The goal of this dissertation is to

implement an inductive logic programming system using equational logic as the

representation language.

1.3 Contribution

The significant contribution of this thesis is a new method for learning equa-

tional logic programs from given example equations. This algorithm uses a novel

hybrid approach to equation induction that combines bottom-up induction for

equation generalization with inverse narrowing for the discovery of recursive equa-

tions.

We show that using sorted equational logic for inductive logic programming is

an effective representation language. We also introduce a framework for inducing

conditional equations. Conditional equations are shown to be a powerful tool in

equational logic.

1.4 Related Work
1.4.1 Inductive Logic Programming

Inductive logic programing (ILP) is the intersection of inductive machine

learning and logic programming. It can be stated that ILP is the discovery of

a theory from positive and negative facts using optional background knowledge.

3

More formally, we define ILP in Definition 1.

Definition 1. Given a set E+ of positive examples, a set E− of negative examples

and a logic program B such that B 6|= E+ and B 6|= E−, find a logic program P

such that B ∪ P |= E+ and B ∪ P 6|= E−

Definition 2. A logic program P , also called a theory or a model, satisfies a set

of equations E, written P |= E, if for every equation e ∈ E, e is a consequence,

or follows from, P .

A program P is complete with respect to E+ if P |= E+ and it is consistent

with respect to E− if P 6|= E− [7]. A complete and consistent program is called

correct, and a correct program is considered a solution in terms of inductive logic

programming. Notice that P = E+ is a solution, but it would be useless in

prediction of new, unseen examples, as any example e 6∈ E+ would always be

classified as negative.

The relationship between induction and deduction is interesting. In Philos-

ophy, Induction is the study of the derivation of general statements from specific

instances. In Principles of Science [8], Jevons demonstrated that inductive infer-

ence could be performed by reversing the deductive rules of inference. In deduction,

we are given a theory, or set of premises, that is assumed to be true and use this

to prove that certain statements hold true. In inductive logic, we are given a set

of facts and a theory is induced that explains those facts. Figure 1 is a summary

of this relationship [1].

4

Figure 1. Inductive vs. Deductive Logic

The challenge for ILP is to create a system where the machine can learn these

hypotheses automatically given the facts and background knowledge.

ILP Methods

In a broad sense, inductive logic programming can be viewed as a search of

the hypothesis space for a solution to a given input theory and possible back-

ground knowledge. Traditionally, these search techniques in ILP used two strate-

gies, namely top-down and bottom-up.

Figure 2 shows the generality lattice of clause formulae [9]. At the

base of the lattice is a clause in its most specific state, i.e. a ground

clause or a clause with no variables. At the top of the lattice is a most

general clause, or a clause with no literals. In equational logic, the term

playtennis(overcast,hot,normal,weak) is in its most specific state, while playten-

nis(OutlookVar,TempVar,HumidityVar,WindVar) is its most general form.

5

Figure 2. Generality Lattice of Formulae

Top-Down ILP

Top-down strategies for searching the hypothesis space begin with the most

general rule, or clause, and iteratively specialize, as long as positive exam-

ples are covered and negative examples are not covered. In first-order pred-

icate logic systems, clauses can be specialized in two ways: substitution ap-

plication and by adding a literal to the body. In equational logic, the term

playtennis(OutlookVar,TempVar,HumidityVar,WindVar) specializes to playten-

nis(rain,TempVar,HumidityVar,WindVar). Here, we replaced the variable Out-

lookVar with the literal constant rain.

Bottom-Up ILP

While top-down strategies successively specialize a general starting clause,

bottom-up approaches begin with a specific ground clause (usually a posi-

6

tive example) and generalize. Generalizations are created by inverting logi-

cal resolution. If a generalization covers a negative example, then it is dis-

carded. The term playtennis(overcast,hot,normal,weak) generalizes to playten-

nis(overcast,hot,HumidityVar,weak). This is an example of generalizing a subterm,

the literal constant normal, by replacing it with a variable, HumidityVar.

Inductive Logic Programming in Predicate Logic

There have been many systems built that induce first-order logic programs. In

the early 1990s, Stephen Muggleton [9] officially coined the term Inductive Logic

Programming and has contributed significant work in the field with his Progol,

Golem, and ProGol ILP systems. Prior to this, Plotkin [10] established the foun-

dations for what would evolve into the present research area of ILP. His work had

two major contributions which were 1) a relationship of generality between clauses

called relative subsumption and 2) a method of induction called Relative Least

General Generalization (RLGG).

While Plotkin’s method of induction used a bottom-up strategy, this encour-

aged Shapiro [11] to explore a top-down induction method. Shapiro’s work on the

Model Inference System (MIS) was the first to use a Horn clause representation

for inductive logic programming. The MIS algorithm uses a top-down approach to

induction. Beginning with an initial (empty) theory, it constructs hypotheses to

add to the theory that explain the given examples.

Definition 3. A Horn clause is a clause (disjunction of literals) with exactly one

positive literal.

Brian Cohen’s CONFUCIUS [12] [13] was the first system to learn concepts

in first-order logic that could be reused in further learning. The system stored

the learned concepts that examples could be matched with via a complex pattern

7

matcher he developed. This pattern matching system would become the precursor

to unification systems developed by Sammut.

Claude Sammut developed a system, Marvin [14], which contributed to the

field of ILP in several ways. Marvin was one of the first learners to test its gen-

eralizations by showing the training engine instances of the hypothesis. Marvin’s

generalization procedure would also become the groundwork for Muggleton’s ab-

sorption operator and Rouveirol’s saturation operator [15]. Finally, Marvin was

one of the only ILP systems that combined both generalization and specialization,

using the latter as a way to refine inconsistent generalizations.

Quinlan’s First Order Inductive Learner (FOIL) [16] system generates function

free Horn clauses, given a set of positive and negative examples and background

knowledge predictates. The language of FOIL is a restricted subset of Prolog.

The algorithm takes a top-down approach to clause construction. Given the most

general clause, it continues to specialize by adding literals to the clause body until

all positive examples are covered, and no negative examples are.

Stephen Muggleton has been one of the most prominent researchers in ILP

over the last twenty years. His first foray in the field was with the DUCE system

[17], which used rewrite operators generalize a theory composed of Horn clauses to a

smaller one. These operators were the operational equivalent of inverse resolution.

Another advancement of DUCE was that it could construct new symbols into the

language.

Through the 1990s and 2000s he has developed several other ILP systems and

has pioneered many new techniques in the field. His Golem system [18], developed

with Feng, uses Plotkin’s relative least general generalization to generate clauses in

a bottom-up search. Progol is a top-down approach that uses inverse entailment

to derive the most specific clause that entails (covers) an example. One other

8

important system that Muggleton has developed is ProGolem, which combines

top-down clause creation from Progol with a new technique that replaces Golem’s

RLGG called Relative Minimal Generalization.

1.4.2 Evolutionary Equational Logic Programming

Hamel [1, 2, 3] and Shen [4] have produced ILP algorithms in equational logic

using a genetic algorithm for searching the space of possible solution programs.

These genetic programming engines were implemented in the OBJ3 and Maude

equational logic programming languages, respectively. While these systems are

able to accurately learn equational logic programs, there are several limitations,

which include:

• Implementation of only a subset of equational logic. Conditional equations

are not supported.

• Some solutions produced are technically correct, yet presented in a way that

is algebraically incorrect. This was a result of the way the underlying Maude

rewrite engine considers equations in order [4].

• These systems used significant memory resources and computational time

due to the stochastic nature of genetic algorithms.

The theory behind the evolutionary algorithms implemented in these systems

used mutation and cross-over for equation induction. Mutation replaces a term in

an equation with a randomly generated term of the same sort. Cross-over generates

new equations from two parent equations by selecting cross-over points (subterms)

and replacing the cross-over point in Parent A with the cross-over point in Parent

B. Equations are good candidates for this type of algorithm as they can easily be

represented as a graph, as shown in Figure 3.

9

Figure 3. Equation 0 + 1 = 1 Represented as a Graph

Potential cross-over points would be any of the edges of the graph, and the

nodes (terms) are where mutation occurs.

1.4.3 Functional Inductive Logic Programming

The work that is most closely related to this thesis is the FLIP system [19]

[20]. FLIP is a system for the induction of functional logic programs. It takes a

set of positive and negative facts and an optional set of background knowledge,

all represented as functional equations, and induces a solution functional logic

program. The system uses a technique called inverse narrowing for the creation of

new equations.

There are several limitations to the FLIP system. First, it is not typed (many-

sorted). Terms are simply represented as sets of symbols, so 0 + 1 = 1 and 0 + 1 =

true are perfectly acceptable input functions as FLIP does not check that the sort

10

of the right hand sides of the two functions are different.

Secondly, there is no concept of conditional functions in the FLIP system. We

believe conditional equations to be a powerful aspect of equational logic and have

begun work on implementing them into inductive equational logic.

Finally, for each positive input function, the system generates almost all pos-

sible generalizations for that function in the initial step of the equation. Then, at

any given iteration of the induction process, the FLIP system continues to gener-

ate all the possible generalizations and hypothesis programs for each newly created

function. We believe this is an inefficiency of the algorithm because many of these

programs will be unsound and are therefore discarded immediately.

We address each of these limitations in our implementation of inductive equa-

tional logic programming.

1.5 A Few Notes

Throughout this dissertation, we use the Peano notation for natural numbers

in many of the examples and in several of our experiments in Chapter 5. The

Peano notation uses the successor function to define the naturals. That is, there is

a natural number 0 and every natural number X has a natural number successor,

denoted s(X). Therefore we can represent the natural numbers as 0 = 0, s(0) = 1,

s(s(0)) = 2, s(s(s(0))) = 3, and so on.

Additionally, we use capital letters such as X and Y to represent variables

and lower case letters, such as a and c, for literals and functions.

1.6 Structure of Thesis

The remainder of this dissertation is structured as follows.

Chapter 2 presents the preliminaries and background work in equational logic

and equational logic programming.

11

Chapter 3 describes the process of inverse narrowing, which we use as a method

of inducing recursive equations.

Chapter 4 presents our algorithm work in detail. We present the algorithms

implemented in a pseudocode and review the methods taken.

Chapter 5 discusses experiments using our algorithm and the results from

those tests.

Chapter 6 is an overview of conditional equations and how to handle them in

inductive equational logic programming.

Chapter 7 concludes the dissertation with some final remarks and directions

for future work in this area.

12

CHAPTER 2

Background

2.1 Equational Logic

Equational logic is a subset of first-order logic. It deals with logic sentences

where the only logical operator is the binary predicate for equality, typically written

as = or the standard equals sign [21]. It is the logic of substituting equals for equals

using algebras as models and term rewriting as the operational semantics [1]. In

1935, Birkhoff developed a general theory of algebras as we know them to be a

fully mathematical discipline [22]. He also proved two theorems: a completeness

theorem for equational logic and a theorem which provides a purely algebraic

characterization for equational classes [21].

In equational logic, equations are built from the equality operator and first-

order terms. Equations are expressions of the form l = r where l and r are terms.

For the remainder of this dissertation, we abbreviate the left hand side and right

hand side of an equation as LHS and RHS. Terms are well-formed expressions built

on a set of operator symbols (functions) with arity (the number of operands to an

operator) and a set of variables. A term is either a variable, an operator, or a

constant (an operator of arity 0).

A term u is a subterm of a term t if u is t or if t is f(t1, t2, ..., tn) and u is

a subterm of some ti. Subterms appear at occurrences within a term, which are

defined in Definition 4 [23].

Definition 4. An occurrence w in a term t is represented as a sequence of

integers. O(t) and O(t) denote the set of occurrences and non-variable occurrences

of t. t|w denotes the subterm of t at occurrence w and t[t′]w is the replacement of

the subterm of t at occurrence w by the term t′.

13

A sort s is a type or kind of object, such as integers, booleans, lists, and so

on. Variables of a term may be instantiated by a substitution, which are mappings

from a subset of variables to terms [24].

Definition 5. A substitution is a mapping θ : X −→ TΣ(X) which maps vari-

ables to terms of the same sort.

In this dissertation, substitutions are represented as sets of variable/replace-

ment terms, such as {X/0, Y/s(0)}, which, when the substitution is applied to a

term or equation, any occurrences of X and Y should be replaced with 0 and s(0),

respectively.

Substitutions play an important role in one of the main ideas of logic pro-

gramming called unification. In unification, given a set of terms with variables, we

want to find a substitution that will make all the terms (syntactically) equal.

Definition 6. A substitution θ is a unifier for a set {E1, E2, ..., En} iff θ(E1) =

θ(E2) = ... = θ(En)

Definition 7. A unifier θ is a most general unifier (mgu) for a set of equations

E = {E1, E2, ..., En} iff for each unifier λ there exists a substitution µ such that

λ = θ ◦ µ

The idea of the most general unifier is that θ is less specific (more general)

than any other unifier λ. That is, we can substitute literal terms for some of the

variables in θ and produce λ.

From equations, terms, variables, and sorts, we can construct theories, or

hypotheses, that describe a concept. Theories include an equational signature,

which defines the operations and sorts of the theory, and a set of equations.

Definition 8. An equational signature is a pair (S,Σ), where S is a set of

14

sorts and Σ is a (S∗ × S)-sorted set of operation names. We usually abbreviate

(S,Σ) as Σ.

Definition 9. A Σ-theory is a pair (Σ, E) where Σ is an equational signature and

E is a set of Σ-equations. Each equation e ∈ E has the form (∀X)l = r, where X

is a set of variables and l, r ∈ TΣ(X) are terms over the set Σ and X. If l and r

contain no variables, i.e. X = ∅, then we say the equation is ground.

From a Σ-theory, new equalities can be deduced using inference rules. The

inference rules for equational deduction are shown in Figure 5 [25]. Let us work

through some proofs to better explain these inference rules. First, assume the

following axioms on the evenness of natural numbers are true:

Axiom 1. even(s(0)) = false

Axiom 2. even(0) = true

Axiom 3. even(s(s(X))) = even(X)

Figure 4. Axioms of Evenness of Natural Numbers

Using the axioms in Figure 4 and the inference rules in Figure 5, we are able to

prove the following theorems:

15

Theorem 1. even(s(s(s(0)))) = false

Proof.

(i) even(s(s(s(0)))) = false

Using the Leibniz rule, Substitute s(0) for X in Axiom 3 to obtain:

(ii) even(s(s(s(0)))) = even(s(0))

Using Axiom 1 and the RHS of (ii), we have:

(iii) even(s(0)) = false

And by Transitivity:

(iv) even(s(s(s(0)))) = even(s(0)) = false

Let us look at another example:

Theorem 2. even(s(s(s(s(0))))) = true

Proof.

(i) even(s(s(s(s(0))))) = true

Using the Leibniz rule, Substitute s(s(0)) for X in Axiom 3 to obtain:

(ii) even(s(s(s(s(0))))) = even(s(s(0)))

Applying this same procedure, using 0 for X and the RHS of (ii) gives us:

(iii) even(s(s(0))) = even(0)

And by Axiom 2 and the RHS of (iii):

(iv) even(0) = true

Finally, through Transitivity we have:

(v) even(s(s(s(s(0))))) = even(s(s(0))) = even(0) = true

We say that an equation (∀X)t = t′ is deducible from a theory (Σ, E) if there

16

For the inference rules below, p[X := e] denotes textual substitution of
expression e, for variable X, in expression p. A = B represents equality for
A and B of the same sort and A ≡ B is equivalence only of sort Boolean.
A = B and A ≡ B have the same meaning for Booleans.

Symmetry

If p = q is a theorem, then so is q = p

Substitution

If p is a theorem, then so is p[X := e]

Transitivity

If p = q and q = r are theorems, then so is p = r

Leibniz

If p = q is a theorem, then so is e[X := p] = e[X := q]

Equanimity

If p and p ≡ q are theorems, then so is q

Figure 5. Inference Rules of Equational Logic

17

is a deduction from E using the inference rules whose last equation is (∀X)t = t′.

We write this as E ` (∀X)t = t′.

A basic question for equational logic is: when does an equation follow from

a set of other equations? Or, when is an equation or term a logical consequence

from other equations? The semantic notion of logical consequence is when an

equation is true in a Σ-theory. The syntactic notion is the axioms and rules of

inference. These two notions are equivalent, and this equivalence is the soundness

and completeness of equational logic.

Soundness means that only equations that correspond to valid arguments are

derivable in a theory. That is, all theorems of the theory are universally valid.

Completeness means that all equations that correspond to a valid argument can

be derived in a theory. Or, a theory Γ is complete iff Γ |= A and Γ ` A for any

equation A [26].

Theorem 3 (Soundness and Completeness of Equational Logic). Given a set of

equations E, an arbitrary equation (∀X)t = t′ is semantically entailed iff (∀X)t = t′

is deducible from E.

The proofs of the soundness and completeness theorems of equational logic

have been shown in [25, 26].

2.2 Programming with Equations

Goguen [27] has stated that “any reasonable computational process can be

specified purely equationally.” From a programming view, computation in equa-

tional logic is the reduction of an input term to an equivalent normal form using

a given set of equations and symbols of the programming language. If a set of

equations can be used as a term rewriting system, then we can compute with it

using an equation as a rewrite rule [28].

18

Before we go into the operational semantics of equational logic programming,

the notion of what a logic programming language is should be defined. A program

P over a logic Λ is a set of Σ-sentences, written Sen(Σ); a query q is a sentence of

the form (∃X) q(X) where X is a set of variables; and an answer a to a query is

an assignment from X to terms such that q(a) is in Sen(Σ) and P `Σ q(a), where

q(a) is the result of substituting a(x) into q for each x ∈ X [29].

Let us now describe a computing scenario using equations:

A programmer inputs a sequence of equations as an equational logic program. She

then may query the program with questions such as “What is X?” or “Is X

equivalent to Y?” The program will respond with an answer such as “X = Z” in

the former case or “true/false” in the latter.

Programming with equations and reasoning about equations are closely re-

lated. Reasoning may involve determining if an equation is a consequence of a

given equational theory or if it is true [30]. As we can see in the example of our

programmer above, this is what they are trying to determine using a programming

system.

2.2.1 Rewriting as Operational Semantics

The operational semantics of equational logic is rewriting. That is, given a

set of equations l1 = r1, l2 = r2, ..., ln = rn, rewrite rules are used to replace “equals

for equals.” These rules are repeatedly applied to terms containing a subterm that

matches some li, which then replaces the subterm. In rewriting, this is a one way

direction, so the converse is never used (unlike in equational logic).

Definition 10. A term t rewrites to a term t′ using an equation l = r if there

is a subterm t|u of t at a given occurrence u of t such that l matches t|u via a

substitution σ and t′ is obtained by replacing the subterm t|u = σ(l) with the term

σ(r)

19

Given a signature Σ and a set of variables X, a Σ-rewrite rule is a pair of

terms, l −→ r such that l and r have the same sort and all variables in r also

appear in l. A Σ-rewrite system, or term rewrite system, is a set of Σ-rewrite

rules. A term rewrite system is terminating if there is no infinite rewriting, such

as t1 −→ t2 −→ t3...

Evans [31] then Knuth and Bendix [32] were the first to propose rewriting

as the way to operationalize equation deduction. The goal was to establish term

rewriting systems for proving the validity of equalities in first-order equational

theories [24].

The OBJ family of languages use term rewriting as operational semantics,

using equations as rewrite rules. Equations are viewed as rewrite rules which are

applied with the command red, for reduce, followed by a term, a space, then a

period [29]. A reduction in OBJ evaluates a term within its given Σ-theory.

2.2.2 BOBJ

The BOBJ equational logic programming language originates from Goguen’s

original development of the OBJ family of languages. OBJ-2 [33] and OBJ-3 [34]

are based on order-sorted equational logic, and BOBJ is the most recent imple-

mentation that includes new techniques for increased rewrite speed.

The original goal for BOBJ was to be a language for prototyping, algebraic

specification and verification. Many of the interesting features of the language

are not utilized in the implementation of our algorithms for this dissertation, such

as behavioral rewriting, cobasis generation, and modulo attributes including asso-

ciativity and commutativity. We are primarily interested in the equational logic

language parser and the ordinary rewrite engine for order sorted equational logic

to parse our input programs and test hypotheses, respectively.

Listing 2.1 is an example equational logic program in BOBJ syntax. This is

20

a programmatic representation of a Σ-theory, (Σ, E), where lines 2-13 are Σ, and

15-17 are E.

Listing 2.1. BOBJ Syntax Example

1 obj TENNIS i s

2 sorts Humidity Temp Wind Outlook .

3

4 var HumidityVar : Humidity .

5 var WindVar : Wind .

6 var OutlookVar : Outlook .

7

8 ops weak st rong : −> Wind .

9 ops normal high : −> Humidity .

10 ops sunny ove r ca s t ra in : −> Outlook .

11 ops coo l mild hot : −> Temp .

12

13 op p l ay t enn i s (, , ,) : Outlook Temp Humidity Wind −> Bool .

14

15 eq p l ay t enn i s (overcast , hot , HumidityVar , weak) = fa l se .

16 eq p l ay t enn i s (OutlookVar , cool , HumidityVar , weak) = true .

17 eq p l ay t enn i s (OutlookVar , mild , normal ,WindVar) = true .

18 end

First, we define our theory with the obj keyword (for object). On line 2, we

define the sorts that this theory will contain. Lines 4-6 set three variables and

their sort. Lines 8-11 are operators of arity 0, and are interpreted as literals in

the theory. We must also specify their sort just as with variables. Line 13 is our

playtennis operator which we define as taking four arguments of sorts Outlook,

Temp, Humidity, and Wind, and returns a Boolean result. BOBJ includes several

types predefined in the system, of which Boolean is one, and therefore we do not

need to define it with the others. Finally, on lines 15-17 we have three equations

21

that use the playtennis operator using the operators and variables defined above.

With the tennis Σ-theory defined in BOBJ, a programmer can then query the

system as in Listing 2.2. Here, we are asking BOBJ to reduce the term playten-

nis(sunny, mild, normal, weak) in the theory defined in Listing 2.1 and the system

returned the value true.

Listing 2.2. BOBJ Reduction

1 BOBJ> reduce p l ay t enn i s (sunny , mild , normal , weak) .

2 ==

3 reduce in TENNIS : p l ay t enn i s (sunny , mild , normal , weak)

4 r e s u l t Bool : true

5 r ewr i t e time : 3ms parse time : 1ms

22

CHAPTER 3

Inverse Narrowing

3.1 Narrowing as Equational Logic Unification

As stated in 2.1, unification is a deductive method used in many programming

languages to solve equations among symbolic terms. A unification algorithm is a

process to determine if two expressions are the same based on some assumptions.

If they are, the algorithm finds the unifiers (the assumptions). Unification is a

special form of pattern matching. Where pattern matching finds a substitution

that can make pattern t equal to term t′ and free variables are only allowed in the

pattern, unification allows for free variables in both the term and the pattern.

Narrowing is a computational method for solving equations by computing

unifiers with respect to a Σ-theory. While term rewriting uses pattern matching,

narrowing performs unification to reduce a term [35]. Therefore, substitutions can

be applied to both the pattern and the term in narrowing as well as its inverse

operation, which we will discuss in the next section.

Consider the equations that define the concept of sum of natural numbers,

0 + X = X and s(X) + Y = s(X + Y). The term U + 0, where U is a variable,

narrows to 0 as follows. First, U + 0 is set to 0 + 0 by narrowing with the term

0 + X using the unifier β = {U/0, X/0}. A narrowing is notated as {U −→ 0}.

Then the narrowed term 0 + 0 is rewritten to 0 via the first equation above. We

follow [23] by defining narrowing in Definition 11.

Definition 11. A term t narrows to term t′ iff u ∈ Ō(t), there exists a rule l = r,

θ = mgu(t|u, l), and t′ = θ(t[r]u)

It has been shown that narrowing is a complete method for solving equations in

a terminating term rewriting system [36]. Here, completeness means that for every

23

solution to an equation, a more general solution can be found through narrowing

[37]. The soundness of narrowing says that for all terms t0 ∈ TΣ(X), t1 ∈ TΣ, if

{t0 −→ t1}, where TΣ(X) is the set of all variable and non-variable terms and TΣ is

the set of non-variable terms, then there exists a ground substitution σ such that

σ(t0) −→ t1.

3.2 Inverse Narrowing for Equation Induction

Logic programming is the programmatic deduction of logical formulae, and

induction can be thought of as the inverse of deduction and therefore inductive

inference rules can be created by inverting deductive rules. It follows, then, that

by using the above definition of equation narrowing, we can now look to its inverse

operation for equation induction. The definition of inverse narrowing is given in

[5].

Definition 12. Given an equational logic program P, a term t inversely narrows

to t′ iff u ∈ O(t), l = r is a new variant of a rule from P, θ = mgu(t|u, r) and

t′ = θ(t[l]u). Where O(t) is the set of occurrences of t, θ is the most general

unification of (t|u, r).

To clarify the above, let us look at an example. Suppose we want to attempt

to inverse narrow between the two equations sum(X, 0) = X and sum(X, s(0)) =

s(X). The right hand side of the second equation, i.e. s(X), can be used in the

first equation, unifying with the X and creating the new term t1 ←− sum(s(X), 0).

That is to say, t1 can be narrowed to s(X) using the first equation. The resulting

equation would be sum(X, s(0)) = sum(s(X), 0).

Algorithm 1 defines our inverse narrowing algorithm in pseudocode. It uses a

helper function that finds the most general unifier between two terms (Algorithm

2). This algorithm takes two Σ-theories as input, p1 and p2. For each equation e1

from p1 and, for each equation e2 ∈ p2, we attempt to inverse narrow e2 with e1

24

by finding the most general unifier between the RHS of the two equations. If this

most general unifier exists, create a substitution θ using it. This substitution is

then applied to the LHS of e1 to create a new term t′, which is used as the RHS of

a new equation. The new equation is then added to a set of narrowed equations

to be returned.

Algorithm 1: Inverse Narrowing (inverseNarrow)

input : Two Σ-theories p1 and p2

output: A set of narrowed equations, NE

foreach equation e1 in p1 do
foreach equation e2 in p2 do

right1 ←− right hand term of e1;
left1 ←− left hand term of e1;
right2 ←− right hand term of e2;
left2 ←− left hand term of e2;
mgu←− most general unifier of right1 and right2;
t′ ←− θ(left1,mgu);
narrowedEquation←− left2 = t′;
NE ←− NE ∪ narrowedEquation;

The most general unifier algorithm (Algorithm 2) takes two terms as input

and initializes index k to 0 and the array Sk to contain the input terms. If Sk

contains two identical terms, then there is no mgu and return, otherwise find the

disagreement set Dk of Sk. While Dk is not empty, check the two terms in the

disagreement set if either is a variable. If one of the terms is a variable and that

variable is not a subterm of the second term, then create a substitution with these

terms and add it to the mgu σ as well as apply the substitution to the terms in

Sk (storing the new terms in Sk+1). Next, find the disagreement set Dk+1 of Sk+1,

increment k and continue with the next loop iteration. Example 1 is an example

of finding the mgu of two terms with this algorithm.

25

Example 1. Find the most general unifier of p(a,X) and p(Z, h(b)):

• S0 ={p(a,X), p(Z, h(b)}

• D0 ={a, Z} first disagreement of S0

• σ ={Z/a} add the substitution to mgu

• S1 = {p(a,X), p(a, h(b))} apply the substitution

• D1 = {X, h(b)} disagreement of S1

• σ = {Z/a, X/h(b)} add substitution to mgu

• S2 = {p(a, h(b)), p(a, h(b))} apply the substitution

No disagreement - σ = {Z/a, X/h(b)} is mgu.

Two terms cannot be unified if we find a disagreement set Dx where neither

of the terms in Dx are a variable, or if the variable is a subterm of the second term

in Dx. Example 2 shows two terms that cannot be unified.

Example 2. Find the most general unifier of p(f(a), b) and p(X,X):

• S0 = {p(f(a), b), p(X,X)}

• D0 = {f(a), X} first disagreement of S0

• σ = {X/f(a)} add the substitution to mgu

• S1 = {p(f(a), b), p(f(a), f(a))} apply the substitution

• D1 = {b, f(a)} disagreement of S1

Neither term in D1 is a variable so no unification possible.

The disagreement set of a group of terms is determined by finding the first

position, starting from the left, at which the two terms do not have the same

symbol. The subterms at this position are the disagreement set. The pseudocode

for finding the disagreement set is found in Algorithm 3. This algorithm takes two

terms as input. If the two terms, t1 and t2 are the same operation, then recursively

find the disagreement set for each of the subterms. If t1 and t2 are not the same

operation, then the terms are in disagreement and add them to the set.

26

Algorithm 2: Most General Unifier (mgu)

input : Terms: t1, t2
output: MGU of the terms: σ

k ←− 0;
σ ←− {};
Sk ←− {t1, t2};
if Sk contains two identical terms then

return σ
else

Dk ←− findDisagreement(Sk);
while Dk! = {} do

if Dk[0] = V is a variable and Dk[1] = T is a term not containing
Dk[0] (or vice-versa) then
θ ←− {V/T} (create a substitution);
σ ←− σ ∪ {θ};
Sk+1 ←− θ(Sk) (apply the substitution);

else
return null (terms could not be unified);

Dk+1 ←− findDisagreement(Sk+1);
k ←− k + 1;

return σ;

Algorithm 3: Disagreement Set (findDisagreement)

input : Terms: t1, t2
output: Disagreement set of the terms: D

D ←− {};
if t1 and t2 are the same operation then

foreach subterm st1 ∈ t1 and st2 ∈ t2 do
D ←− D ∪ findDisagreement(st1, st2);

else
D ←− {t1, t2};

return D;

27

Example 3. Let S ={p(f(a), g(X)), p(f(a), Y)}. The disagreement set of S is

D ={g(X), Y }.

Although a general disagreement set algorithm could be applied to a set of

any number of terms to find their disagreement, our algorithm is implemented to

work on specifically two terms, as that is all that is needed for our most general

unifier used in inverse narrowing.

28

CHAPTER 4

Induction of Equational Logic Programs

We have implemented an inductive learning engine in the BOBJ equational

logic programming language [29, 38, 39]. The learning algorithm uses a hybrid

of bottom-up generalization and inverse narrowing for the creation of recursive

equations. In this chapter we describe the algorithm in detail.

4.1 A Hybrid Approach to Induction

While the FLIP system relied entirely on inverse narrowing to induce solu-

tion programs, and first-order logic ILP systems tend towards either bottom-up

or top-down induction techniques, we have chosen to implement an induction al-

gorithm that takes a hybrid of these methods to solve the problem of inductive

equational logic programming. Our algorithm uses a bottom up generalization

search, combined with inverse narrowing for the creation of recursive equations.

We take this approach to algorithm development for two reasons. First, while

a purely top-down or bottom-up strategy may work well for predicate logic, these

methods cannot induce new recursive equations. Also, consider the most general

equation of any equational logic program: X = Y . This equation would cover any

positive and negative example given as input for reduction (assuming the sorts are

the same).

The FLIP system generates all possible generalizations for each ground pos-

itive equation at the initial step of the algorithm. For each of these generalized

equations a hypothesis program is created. We believe this is an inefficiency and

that in many instances a solution can be found using bottom up induction on the

ground equations. Also, many of the initial programs will cover negative examples

and are therefore unacceptable as a solution.

29

4.1.1 Preliminaries

Before describing the overall induction algorithm in detail (shown in Algorithm

4), let us review some preliminaries. The array data structure EL (Equation List)

stores all equations that have been generated and used in hypothesis programs.

HL (Hypothesis List) is an array of all current possible hypothesis programs. The

array EL′ is a temporary array to hold newly created equations that have not been

tested to see if they cover negative examples or if the equation already exists in

EL. And HL′ is a temporary array of newly created hypotheses from EL′.

The covering factor of a hypothesis, H, is the count of the number of posi-

tive ground example equations that can be successfully reduced in H. For testing

hypotheses for their covering factor, and whether or not they cover negative ex-

amples, we use BOBJ’s rewrite (reduction) engine. Given a hypothesis, for each

positive example equation, reduce it in the hypothesis program module. If the re-

sult is true, then increase the covering factor of that hypothesis by one. Similarly,

for each negative example, reduce it in the hypothesis program. If the result is

true for any negative example equation, then set the coversNegative flag for the

hypothesis to true.

A term is generalized by creating a new variable for the term, or for any

of its subterms that have not been generalized. Variable names are created by

concatenating the name of the sort of the term, the string “Var”, and optionally

an integer. The integer is determined by the number of other variables of the

same sort are in the equation that the term is in. If the term s(0) was of the sort

Nat and there were no other variables of that sort in the equation, then it would

be generalized to NatV ar. If there was another variable of sort Nat already in

the equation, an integer would be appended to the new variable name, such as

NatV ar1. The sort of the new variable is the same as the term it is replacing.

30

4.1.2 Induce

The induction process is run by first loading a valid equational logic theory

using BOBJ’s in operation, then calling our newly created induce command which

runs on the currently loaded module in BOBJ. By default, conditions are not

used in the induction process (see Chapter 6), neither are background knowledge

equations. However, both of these can be induced if the appropriate flags are set.

Appendix A is output of a full run of the algorithm on the SUM example shown

in the next chapter.

4.1.3 Initialization

The first step of the algorithm is to create a generalized equation of each

positive ground equation, where exactly one subterm is generalized for each occur-

rence. We call these new equations GE-1 equations and add them to the set EL

(Equation List).

Definition 13. A GE-1 equation is a Σ-equation of the form l = r where,

l|u ∈ X is one occurrence in l being generalized to a variable V . If l|u occurs in r,

then also replace that term in r with V . I.e. if r|s = l|u for some occurrence s in

r, then r|s ←− V .

Example 4. Given the Σ-equation s(0) + 0 = s(0), we can generate the following

GE-1 equations:

• s(X) + 0 = s(X)

• s(0) +X = s(X)

• X + 0 = X

For each of the GE-1 equations, a new hypothesis program is created, with only

the new equation included (and any background and negative example equations).

Next, these new hypotheses are evaluated for their covering factor and checked to

31

see if they cover any negative examples. Algorithm 5 is our covering algorithm

in pseudocode. It takes as input an induced hypothesis and the original input

program and checks each ground positive equation to see if it can be reduced in

the hypothesis. If so, increase the hypothesis’ covering factor by one. It then

checks each negative ground equation to see if it can be reduced in the hypothesis.

If so, then the hypothesis covers a negative example and is therefore inconsistent

with respect to E−.

Algorithm 4: Overall Equational Logic Induction

input : A Σ-theory (Σ, E)
output: An induced hypothesis H = (Σ, E ′)

HL←− createGE1Hypotheses();
foreach h ∈ HL do

calculateCoveringFactor(h);

H ←− findSolution();
while H = null do

while H = null and CountUnmarked() ≥ 2 do
p1, p2 ←− 2 hypotheses in HL with best cover and unmarked;
mark p1 and p2;
EL′ ←− inverseNarrow(p1, p2);
HL′ ←− Create new hypotheses from equations in EL′;
EL′ ←− {};
foreach hl in HL′ do

calculateCoveringFactor(hl);
if hl does not cover a negative example then

unmark hl;
HL←− HL ∪ hl;

H ←− findSolution();

if H 6= null then
break and output H;

generaliseHL();
H ←− findSolution();
if H 6= null then

break and output H;

If a hypothesis covers all the positive examples and none of the negatives, it

32

is marked as a solution. If multiple solutions are found, then the best solution is

determined using the minimum description length principle. That is, the solution

program with the fewest equations. Algorithm 6 finds the best solution, if any exist.

If the hypothesis is not a solution, and does not cover any negative examples, it is

added to the array HL.

Algorithm 5: Calculate Covering Factor (calculateCoveringFactor)

input : An induced hypothesis H = (Σ, E ′) and the original Σ-theory
(Σ, E+, E−)

foreach equation e1 ∈ E+ do
if reduce e1 in H == true then

H.coveringFactor++

foreach equation e2 ∈ E− do
if reduce e2 in H == true then

H.coversNegative ←− true

4.1.4 Inverse Narrowing

If no solution is found after the initial GE-1 equation creation, the algorithm

enters a two loop process. At each iteration of the inner loop, we select two

programs with the best covering factor and which are not marked as having been

used for inverse narrowing. We use these two programs, p1 and p2, to run the

inverse narrowing procedure on their equations. As described in Chapter 3, inverse

narrowing attempts to create new equations from two input equations. In our

algorithm, we narrow each equation in p1, with each in p2. If the equations are

equal, then narrowing is skipped. Also, if both equations are background equations,

narrowing is skipped.

If narrowing is possible between two equations, then new equations are created

and added to EL′. New hypotheses are then generated for each equation in EL′

and their covering factor is calculated. If the new hypothesis does not cover any

negative examples, it is added to HL. After all the equations in EL′ have had

33

hypotheses created with them, the algorithm begins the generalization step.

Algorithm 6: Find Best Solution (findSolution)

input : Set of possible solution hypotheses HL
solutions ←− {}
foreach hypothesis h ∈ HL do

if h covers all positive examples and does not cover negative examples
then

solutions ←− solutions ∪ h

if solutions = null then
return null

foreach hypothesis h ∈ solutions do
return h with minimum number of equations

4.1.5 Generalization

If there is no solution after inverse narrowing completes, all equations in EL′

are generalized by one term and new hypotheses are create for each new, unused

(not already in EL) equation. This is the bottom-up induction part of the algo-

rithm. These new hypotheses are added to HL and the inner loop continues.

The inner loop concludes after all the possible hypotheses have been used

in inverse narrowing and there has been no solution found. Similarly, the user

can specify the max number of iterations and the inner loop will break once that

value has been reached. When this happens, all the hypotheses in HL are cleared

as having been marked as used. Then, for each hypothesis, generalize all of its

equations by one term and create a new hypothesis with this generalized equation.

4.1.6 Equation Pruning

For classification problems, we are able to implement a pruning operator on

theories. When a solution is found, the system tries to prune equations to get a

program with minimal equation count. Pruning consists of checking each left hand

term of equations where the RHS is of sort Boolean to see if it can be subsumed

by another equation in the theory.

34

Definition 14. Term G subsumes term F if and only if G |= F. We say that G is

more general than F. That is, there exists a substitution θ such that θ(G) = F .

Example 5. playtennis(X, hot, Y, weak) subsumes playtennis(overcast, hot, high,

weak), since θ = {X/overcast, Y/high}.

If a term is subsumed by the LHS from some other equation in the theory, then

that equation is removed from the theory and the covering factor is recalculated

to ensure that the equation removal did not reduce it, and thus make the solution

unsound.

4.2 Negative Knowledge Representation

Our system allows the programmer to represent negative knowledge in two

ways. The first method is by letting the right hand side of the equation be the

Boolean value false. For example, even(s(0)) = false.

The second way to represent negative knowledge in the system is by syn-

tactically marking the equations with the [negative] declaration (the shorthand

syntax [neg] can also be used). This method of representation is useful for equa-

tions where the right hand side is not of the sort Boolean. Such as [negative]

sum(s(0), 0) = 0.

4.3 Background Knowledge

The programmer in our system also has the option to include background

knowledge. Equations are identified as background knowledge using the [back-

ground] declaration. Alternatively, the shorthand syntax [back] can be used. By

default, background equations are not considered in the generalization process,

only used when reducing equations in the generated hypotheses. However, the

user can run the induction process with an optional flag, in which case background

knowledge equations will also be generalized.

35

CHAPTER 5

Experiments and Results

We now discuss several experimental input programs and the results that

our algorithm produced. First, we show how the algorithm performed on the

trivial example of learning the definition of the stack data structure. We then

show how the system performed on some classification problems. Finally, we ran

the induction algorithm on input programs where the solution produced concept

definitions with recursive equations. For each experiment we present the input

program used, the solution our system was able to find, and some discussion on

each problem. All of these experiments were run on an Intel Core i5 microprocessor

with two CPU cores and clock speed of 1.4 GHz. The computer has 4 GB of DDR3

RAM and is running Java Runtime Environment 1.8.0 31 on Mac OS X version

10.10.5.

5.1 Trivial Example

We first present the example of learning the concept of a stack data structure.

While rather trivial, this experiment shows how our system was able to learn a

concept using standard ILP bottom-up induction.

5.1.1 Stack

We define a stack with the following Σ-theory, where a stack is built from

a sequence of push operations, elements are literals that can be pushed onto the

stack, and the top operator returns an element. Listing 5.1 is the input program

for this experiment.

36

Listing 5.1. Stack

1 obj STACK i s

2 sort Element .

3 sort Stack .

4 ops a b u s : −> Element .

5 op v : −> Stack .

6 op top : Stack −> Element .

7 op push : Stack Element −> Stack .

8

9 eq top (push (v , a)) = a .

10 eq top (push (push (v , a) ,b)) = b .

11 eq top (push (push (v , b) , a)) = a .

12 eq top (push (push (v , u) , s)) = s .

13 endo

Running the induction learner on the Σ-theory produced the solution in List-

ing 5.2.

37

Listing 5.2. Stack Solution

1 dth STACK221 i s

2 sorts Element Stack .

3 var ElementVar : Element .

4 var StackVar : Stack .

5 ops a b u s : −> Element .

6 op v : −> Stack .

7 op top : Stack −> Element .

8 op push : Stack Element −> Stack .

9 [STACK221] eq top (push (StackVar , ElementVar)) = ElementVar .

10 end

11 Covering f a c t o r : 4

12 I s Marked : fa l se

13 Covers nega t i v e s : fa l se

14 Examples covered : [0 , 1 , 2 , 3]

15

16 Induct ion Star t Time : 2017 11 24 11 : 04 : 45

17 Induct ion End Time : 2017 11 24 11 : 04 : 45

18

19 Total induct i on time : 0 minutes , 0 seconds , 70 m i l l i s e c ond s .

Discussion

We can see from the solution, the system learned the concept of a stack’s top

operator, which is defined as the last element pushed onto the stack.

5.1.2 Stack - Multiple Terms

In the first Stack example, we showed how the system learned the definition

of a stack with a single defining term, namely, top. Next, we show how the system

is capable of learning multiple terms simultaneously. Our input program is shown

38

in Listing 5.3 and the solution produced by the system is in Listing 5.4.

Listing 5.3. Stack with two operators

1 obj STACK i s

2 sorts Element Stack .

3 ops a b c d : −> Element .

4 op v : −> Stack .

5 op top : Stack −> Element .

6 op pop : Stack −> Stack .

7 op push : Stack Element −> Stack .

8

9 eq top (push (v , a)) = a .

10 eq top (push (push (v , a) , b)) = b .

11 eq top (push (push (v , b) , a)) = a .

12 eq top (push (push (v , d) , c)) = c .

13 eq pop (push (v , a)) = v .

14 eq pop (push (push (v , a) , b)) = push (v , a) .

15 eq pop (push (push (v , b) , a)) = push (v , b) .

16 eq pop (push (push (v , d) , c)) = push (v , d) .

17 endo

39

Listing 5.4. Stack solution with two operators

1 dth STACK50 i s

2 sorts Element Stack .

3 var ElementVar : Element .

4 vars StackVar StackVar1 : Stack .

5 op v : −> Stack .

6 ops a b c d : −> Element .

7 op top : Stack −> Element .

8 op pop : Stack −> Stack .

9 op push : Stack Element −> Stack .

10

11 [STACK50] eq top (push (StackVar1 , ElementVar)) = ElementVar .

12 [STACK50] eq pop (push (StackVar , ElementVar)) = StackVar .

13 end

14 Covering f a c t o r : 8

15 I s Marked : fa l se

16 Covers nega t i v e s : fa l se

17 Examples covered : [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]

18

19 Induct ion Star t Time : 2017 10 11 19 : 53 : 34

20 Induct ion End Time : 2017 10 11 19 : 53 : 34

21

22 Total induct i on time : 0 minutes , 0 seconds , 150 m i l l i s e c ond s .

Discussion

Like the previous example, our system was able to discover the definition of

top, which returns an Element, and pop, which returns a Stack object with the top

element removed. This is an important result because learning multiple predicates

in first-order logic ILP systems turns out to be a difficult task [40].

40

5.2 Classification Problems

In machine learning, classification identifies which set of categories a new

observation or example belongs. For the experiments in this section, our induction

algorithm is a supervised machine learning classification algorithm, where the input

equations represent positive and negative observations (facts) and the resulting

solution theory should be able to predict unseen examples with high accuracy.

The three data sets we have chosen were taken from the University of California,

Irvine’s Machine Learning Repository [41].

5.2.1 Car Buying

In this example, the equations describe the concept of whether or not a cus-

tomer bought a car based on six attributes: the price (low, medium, high, very

high), maintenance cost (low, medium, high, very high), number of doors, number

of passengers it can seat, size of the trunk (small, medium, big), and the safety

rating (low, medium, high) [42]. For input, we used 54 positive and 5 negative

equations. For brevity, we have omitted the input program. Listing 5.5 is the

solution program discovered by our system.

41

Listing 5.5. Car Buying

1 dth CAR−FACTS1149 i s

2 sorts LowHigh SmallBig Num .

3 var LowHighVar0 : LowHigh .

4 var SmallBigVar0 : SmallBig .

5 vars NumVar NumVar1 NumVar0 : Num .

6 ops smal l medium big : −> SmallBig .

7 ops 1 2 3 4 5 : −> Num .

8 ops vhigh high med low : −> LowHigh .

9 op buycar : LowHigh LowHigh Num Num SmallBig LowHigh −> Bool .

10

11 [CAR−FACTS1149] eq buycar (low , low ,NumVar,NumVar1 , small ,med) =

true .

12 [CAR−FACTS1149] eq buycar (med , LowHighVar0 ,NumVar,NumVar0 ,

SmallBigVar0 , high) = true .

13 [CAR−FACTS1149] eq buycar (med , LowHighVar0 ,NumVar,NumVar1 ,

SmallBigVar0 ,med) = true .

14 [CAR−FACTS1149] eq buycar (low , LowHighVar0 ,NumVar,NumVar1 ,

SmallBigVar0 ,med) = buycar (low , low ,NumVar,NumVar1 , small ,med) .

15 end

16 Covering f a c t o r : 54

17 I s Marked : fa l se

18 Covers nega t i v e s : fa l se

19

20 Induct ion Star t Time : 2017 09 22 13 : 42 : 52

21 Induct ion End Time : 2017 09 22 13 : 43 : 02

22

23 Total induct i on time : 0 minutes , 9 seconds , 912 m i l l i s e c ond s .

42

Discussion

If we look at the solution program, we see that it induced three equations by

bottom-up generalization, and the fourth equation is recursive and uses equation

one to evaluate to true.

5.2.2 Voting Patterns

In this example, we show how the system first found a solution, then through

equation pruning was able to produce a more compact solution theory. The con-

cept to learn in this example is the prediction of which way a Congressperson

is most likely to vote (Democrat or Republican), based on their yes/no vote for

nine previous votes [43]. We used a subset of ten examples from the dataset for

induction, and used another subset for testing. We omitted noisy examples, i.e.

examples where the vote was unknown (a question mark (?) in the original data).

Listing 5.6 is a solution generated by our induction algorithm.

43

Listing 5.6. Voting Patterns

1 dth VOTE884 i s

2 sorts VoteOutcome Party .

3 var VoteOutcomeVar : VoteOutcome .

4 var VoteOutcomeVar1 : VoteOutcome .

5 var VoteOutcomeVar2 : VoteOutcome .

6 var VoteOutcomeVar3 : VoteOutcome .

7 var VoteOutcomeVar4 : VoteOutcome .

8 var VoteOutcomeVar5 : VoteOutcome .

9 ops democrat r epub l i can : −> Party .

10 ops y n : −> VoteOutcome .

11 op vote (, , , , , , , ,) : VoteOutcome VoteOutcome VoteOutcome

VoteOutcome VoteOutcome VoteOutcome VoteOutcome VoteOutcome

VoteOutcome −> Party .

12

13 [VOTE884] eq vote (VoteOutcomeVar , y , y , VoteOutcomeVar1 , y , y , n , n , n)=

democrat .

14 [VOTE884] eq vote (n , y , n , VoteOutcomeVar , VoteOutcomeVar1 , y , n , n ,

VoteOutcomeVar2)=repub l i can .

15 [VOTE884] eq vote (n , y , n , VoteOutcomeVar , VoteOutcomeVar1 , y , n ,

VoteOutcomeVar2 , VoteOutcomeVar3)=repub l i can .

16 [VOTE884] eq vote (VoteOutcomeVar , VoteOutcomeVar1 , y , n , y , n , y , y , y)=

democrat .

17 end

18 Covering f a c t o r : 10

19 I s Marked : fa l se

20 Covers nega t i v e s : fa l se

44

Discussion

If we look at the solution found, we can see that the the second equation is

subsumed by the third. That is, the third equation is more general than the second

equation as the eighth attribute is a variable in the third equation. Therefore the

second equation was pruned from the final solution, shown in Listing 5.7.

45

Listing 5.7. Pruned Voting Patterns Solution

1 dth VOTE884 i s

2 sorts VoteOutcome Party .

3 var VoteOutcomeVar : VoteOutcome .

4 var VoteOutcomeVar1 : VoteOutcome .

5 var VoteOutcomeVar2 : VoteOutcome .

6 var VoteOutcomeVar3 : VoteOutcome .

7 var VoteOutcomeVar4 : VoteOutcome .

8 var VoteOutcomeVar5 : VoteOutcome .

9 ops democrat r epub l i can : −> Party .

10 ops y n : −> VoteOutcome .

11 op vote (, , , , , , , ,) : VoteOutcome VoteOutcome VoteOutcome

VoteOutcome VoteOutcome VoteOutcome VoteOutcome VoteOutcome

VoteOutcome −> Party .

12

13 [VOTE884] eq vote (VoteOutcomeVar , y , y , VoteOutcomeVar1 , y , y , n , n , n)=

democrat .

14 [VOTE884] eq vote (n , y , n , VoteOutcomeVar , VoteOutcomeVar1 , y , n ,

VoteOutcomeVar2 , VoteOutcomeVar3)=repub l i can .

15 [VOTE884] eq vote (VoteOutcomeVar , VoteOutcomeVar1 , y , n , y , n , y , y , y)=

democrat .

16 end

17 Covering f a c t o r : 10

18 I s Marked : fa l se

19 Covers nega t i v e s : fa l se

20 Examples covered : [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9]

21

22 Induct ion Star t Time : 2017 12 18 15 : 59 : 12

23 Induct ion End Time : 2017 12 18 15 : 59 : 13

24

25 Total induct i on time : 0 minutes , 0 seconds , 816 m i l l i s e c ond s .

46

5.2.3 Play Tennis

Finally, we return to the classic machine learning classification problem of

learning when to play tennis [44]. Our input equations take four weather attributes,

Humidity, Temperature, Wind, and Outlook, and returns a Boolean. There are

nine positive examples and five negatives. Listing 5.8 is the Play Tennis input

theory.

47

Listing 5.8. Play Tennis

1 obj TENNIS i s

2 sorts Humidity Temp Wind Outlook .

3 ops weak st rong : −> Wind .

4 ops normal high : −> Humidity .

5 ops coo l mild hot : −> Temp .

6 ops sunny ove r ca s t ra in : −> Outlook .

7 op p l ay t enn i s (, , ,) : Outlook Temp Humidity Wind −> Bool .

8

9 ∗∗∗ p o s i t i v e examples

10 eq p l ay t enn i s (overcast , hot , high , weak) = true .

11 eq p l ay t enn i s (ra in , mild , high , weak) = true .

12 eq p l ay t enn i s (ra in , cool , normal , weak) = true .

13 eq p l ay t enn i s (overcast , coo l , normal , s t rong) = true .

14 eq p l ay t enn i s (sunny , cool , normal , weak) = true .

15 eq p l ay t enn i s (ra in , mild , normal , weak) = true .

16 eq p l ay t enn i s (sunny , mild , normal , s t rong) = true .

17 eq p l ay t enn i s (overcast , mild , high , s t rong) = true .

18 eq p l ay t enn i s (overcast , hot , normal , weak) = true .

19

20 ∗∗∗ negat ive examples

21 eq p l ay t enn i s (sunny , hot , high , weak) = fa l se .

22 eq p l ay t enn i s (sunny , hot , high , s t rong) = fa l se .

23 eq p l ay t enn i s (ra in , cool , normal , s t rong) = fa l se .

24 eq p l ay t enn i s (sunny , mild , high , weak) = fa l se .

25 eq p l ay t enn i s (ra in , mild , high , s t rong) = fa l se .

26 endo

The inductive equational logic algorithm found the solution hypothesis in

Listing 5.9.

48

Listing 5.9. Play Tennis Solution

1 dth TENNIS101 i s

2 sorts Humidity Temp Wind Outlook .

3 var HumidityVar : Humidity .

4 var TempVar : Temp .

5 var WindVar : Wind .

6 var OutlookVar : Outlook .

7 ops weak st rong : −> Wind .

8 ops normal high : −> Humidity .

9 ops sunny ove r ca s t ra in : −> Outlook .

10 ops coo l mild hot : −> Temp .

11 op p l ay t enn i s (, , ,) : Outlook Temp Humidity Wind −>

Bool .

12 [TENNIS101] eq p l ay t enn i s (ra in , mild , HumidityVar , weak)=true .

13 [TENNIS101] eq p l ay t enn i s (overcast , hot , HumidityVar , weak)=

p lay t enn i s (ra in , mild , HumidityVar , weak) .

14 [TENNIS101] eq p l ay t enn i s (OutlookVar , cool , HumidityVar , weak)=true

.

15 [TENNIS101] eq p l ay t enn i s (OutlookVar , mild , normal ,WindVar)=true .

16 [TENNIS101] eq p l ay t enn i s (overcast , TempVar , HumidityVar , s t rong)=

true .

17 end

18 Covering f a c t o r : 9

19 I s Marked : fa l se

20 Covers nega t i v e s : fa l se

21 Examples covered : [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8]

22

23 Induct ion Star t Time : 2018 01 12 11 : 40 : 20

24 Induct ion End Time : 2018 01 12 11 : 40 : 21

25

26 Total induct i on time : 0 minutes , 0 seconds , 428 m i l l i s e c ond s .

49

Discussion

Our solution contains five rules that cover all of the positive examples and

none of the negative ones. Four of the rules were formed by bottom up induction,

and one rule is recursive and rewrites to the LHS of one of the bottom up induced

rules.

5.3 Recursive Problems

In this section we show the results of the induction algorithm on some inter-

esting recursive problems.

5.3.1 Sum

The next test case was to learn the definition of the sum operation. This is

the first example of the system finding a solution with recursive equations. See

Listing 5.10 for the Sum input theory.

50

Listing 5.10. Sum

1 obj SUM i s

2 sort Nat .

3 op 0 : −> Nat .

4 op s () : Nat −> Nat .

5 op sum(,) : Nat Nat −> Nat .

6

7 ∗∗∗ p o s i t i v e examples

8 eq sum((s (0)) , 0) = s (0) .

9 eq sum(0 , (s (0))) = s (0) .

10 eq sum((s (0)) , (s (0))) = s ((s (0))) .

11 eq sum((s (0)) , (s ((s (0))))) = s ((s ((s (0))))) .

12 eq sum(0 , 0) = 0 .

13 eq sum((s ((s (0)))) , (s ((s (0))))) = s ((s ((s ((s (0))))))) .

14

15 ∗∗∗ negat ive examples

16 [negat ive] sum((s (0)) , 0) = 0 .

17 [negat ive] sum((s (0)) , (s (0))) = s (0) .

18 endo

51

Listing 5.11. Sum Solution

1 dth SUM27 i s

2 sort Nat .

3 vars NatVar NatVar1 : Nat .

4 op 0 : −> Nat .

5 op s () : Nat −> Nat .

6 op sum(,) : Nat Nat −> Nat .

7

8 [SUM27] eq sum(0 , NatVar) = NatVar .

9 [SUM27] eq sum((s (NatVar1)) ,NatVar) = sum(NatVar1 , (s (NatVar))) .

10 end

11 Covering f a c t o r : 6

12 I s Marked : fa l se

13 Covers nega t i v e s : fa l se

14 Examples covered : [0 , 1 , 2 , 3 , 4 , 5]

15

16 Induct ion Star t Time : 2017 10 11 19 : 55 : 12

17 Induct ion End Time : 2017 10 11 19 : 55 : 12

18

19 Total induct i on time : 0 minutes , 0 seconds , 83 m i l l i s e c ond s .

Discussion

The induced solution program is shown in Listing 5.11. Looking at the solu-

tion, we see that SUM is an inductive program. The base case states that zero

plus any natural number is that natural number. The inductive step is the second

equation.

It may not be clear on viewing this theory that this is a valid solution for

SUM, so let us walk through an example: sum(s(s(0)), s(s(0))), or 2 + 2. On re-

52

duction, this term would unify with the LHS of equation two, with the substitution

{NatVar1/s(0), NatVar/s(s(0))} and rewriting to the RHS as sum(s(0), s(s(s(0)))).

On the next reduce step, the term would unify with the LHS of equation two again,

with the substitution {NatVar1/0, NatVar/s(s(s(s(0))))}, and rewriting to sum(0,

s(s(s(s(0))))). Finally, the term unifies with the LHS of equation one, substituting

NatVar with s(s(s(s(0)))) and rewriting to the RHS. With no more possibilities,

the reduction is complete and thus the result returned is s(s(s(s(0)))), which is

correct.

5.3.2 Even

Here, the system attempts to learn the concept of evenness of the natural

numbers. Listing 5.12 is our input Σ-theory and Listing 5.13 is the solution that

the system found.

53

Listing 5.12. Even

1 obj EVEN i s

2 sort Nat .

3 op 0 : −> Nat .

4 op s () : Nat −> Nat .

5 op even () : Nat −> Bool .

6

7 ∗∗∗ p o s i t i v e examples

8 eq even (0) = true .

9 eq even ((s ((s (0))))) = true .

10 eq even ((s ((s ((s ((s (0))))))))) = true .

11

12 ∗∗∗ negat ive examples

13 eq even ((s (0))) = fa l se .

14 eq even ((s ((s ((s (0))))))) = fa l se .

15 endo

54

Listing 5.13. Even Solution

1 dth EVEN15 i s

2 sort Nat .

3 var NatVar : Nat .

4 op 0 : −> Nat .

5 op s () : Nat −> Nat .

6 op even () : Nat −> Bool .

7

8 [EVEN15] eq even (0) = true .

9 [EVEN15] eq even ((s ((s (NatVar))))) = even (NatVar) .

10 end

11 Covering f a c t o r : 3

12 I s Marked : fa l se

13 Covers nega t i v e s : fa l se

14 Examples covered : [0 , 1 , 2]

15

16 Induct ion Star t Time : 2017 10 11 19 : 56 : 01

17 Induct ion End Time : 2017 10 11 19 : 56 : 01

18

19 Total induct i on time : 0 minutes , 0 seconds , 35 m i l l i s e c ond s .

Discussion

Again, the solution produced is an inductive program. The base case being

zero is even. The inductive equation states that a natural number is even if two

less than that natural number is also even.

5.3.3 Less Than

The next experiment is another simple example of a recursive theory is the

concept of less than, shown in Listing 5.14. Input equations use the operation lt,

55

which takes two terms. The term is true if the first term is less than the second,

and false otherwise.

Listing 5.14. Less Than

1 obj LESS i s

2 sort Nat .

3 op 0 : −> Nat .

4 op s () : Nat −> Nat .

5 op l t (,) : Nat Nat −> Bool .

6

7 ∗∗∗ p o s i t i v e examples

8 eq l t (0 , (s (0))) = true .

9 eq l t (0 , (s ((s (0))))) = true .

10 eq l t ((s (0)) , (s ((s (0))))) = true .

11 eq l t ((s (0)) , (s ((s ((s (0))))))) = true .

12 eq l t ((s ((s (0)))) , (s ((s ((s (0))))))) = true .

13

14 ∗∗∗ negat ive examples

15 eq l t ((s (0)) , 0) = fa l se .

16 eq l t ((s ((s (0)))) , (s (0))) = fa l se .

17 endo

Our algorithm found the solution in Listing 5.15.

56

Listing 5.15. Less Than Solution

1 dth LESS35 i s

2 sort Nat .

3 vars NatVar NatVar1 : Nat .

4 op 0 : −> Nat .

5 op s () : Nat −> Nat .

6 op l t (,) : Nat Nat −> Bool .

7

8 [LESS35] eq l t (0 , NatVar) = true .

9 [LESS35] eq l t ((s (NatVar1)) , (s (NatVar))) = l t (NatVar1 , NatVar) .

10 end

11 Covering f a c t o r : 5

12 I s Marked : fa l se

13 Covers nega t i v e s : fa l se

14 Examples covered : [0 , 1 , 2 , 3 , 4]

15

16 Induct ion Star t Time : 2017 10 09 18 : 34 : 36

17 Induct ion End Time : 2017 10 09 18 : 34 : 36

18

19 Total induct i on time : 0 minutes , 0 seconds , 105 m i l l i s e c ond s .

Discussion

We can see that the the base equation defines that zero is less than any natural

number, and the recursive equation states that the successor of a natural number

NatVar1 is less than the successor of another natural NatVar, if NatVar1 is less

than NatVar.

This solution also brings up an interesting point about the closed world as-

sumption. If we attempt to reduce the term lt(s(0), 0) in this program, there is no

57

sequence of rewrite steps that can be performed with this input. In fact, BOBJ

returns the following: result Bool: lt ((s (0)) , 0). However, if we try to reduce

lt(s(0), 0) == true, then BOBJ returns result Bool: false. That is, if something

cannot be proven true in a theory, then it is assumed to be false.

5.3.4 Length

This next Σ-theory, shown in Listing 5.16, defines the positive and negative

examples for the length of a stack data structure.

58

Listing 5.16. Length

1 obj LENGTH i s

2 sorts Stack Element Nat .

3 ops a b c x f g j w r q : −> Element .

4 op v : −> Stack .

5 op 0 : −> Nat .

6 op s () : Nat −> Nat .

7 op push : Stack Element −> Stack .

8 op length : Stack −> Nat .

9

10 ∗∗∗ p o s i t i v e examples

11 eq length (v) = 0 .

12 eq length (push (v , a)) = s (0) .

13 eq length (push (v , b)) = s (0) .

14 eq length (push (v , x)) = s (0) .

15 eq length (push (push (v , a) ,b)) = s ((s (0))) .

16 eq length (push (push (v , f) , g)) = s ((s (0))) .

17 eq length (push (push (push (v , c) , j) , g)) = s ((s ((s (0))))) .

18 eq length (push (push (push (v ,w) , r) , q)) = s ((s ((s (0))))) .

19

20 ∗∗∗ negat ive examples

21 [negat ive] length (v) = s (0) .

22 [negat ive] length (push (v , a)) = s ((s (0))) .

23 [negat ive] length (push (v , c)) = 0 .

24 [negat ive] length (push (v , b)) = s ((s (0))) .

25 endo

Listing 5.17 is the solution for the stack length input program.

59

Listing 5.17. Length Solution

1 dth LENGTH116 i s

2 sorts Stack Element Nat .

3 var StackVar0 : Stack .

4 var ElementVar : Element .

5 op v : −> Stack .

6 ops a b c x f g j w r q : −> Element .

7 op 0 : −> Nat .

8 op s () : Nat −> Nat .

9 op push : Stack Element −> Stack .

10 op length : Stack −> Nat .

11

12 [LENGTH116] eq length (v)=0 .

13 [LENGTH116] eq length (push (StackVar0 , ElementVar))=s (length (

StackVar0)) .

14 end

15 Covering f a c t o r : 8

16 I s Marked : fa l se

17 Covers nega t i v e s : fa l se

18 Examples covered : [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]

19

20 Induct ion Star t Time : 2017 09 22 12 : 42 : 42

21 Induct ion End Time : 2017 09 22 12 : 42 : 42

22

23 Total induct i on time : 0 minutes , 0 seconds , 153 m i l l i s e c ond s .

Discussion

The solution theory defines the length of an empty stack as 0 (the base equa-

tion), and the recursive equation that defines the length of a stack variable with

60

one element pushed onto it is one more than the length of the stack variable.

5.3.5 Drop

This experiment, while seems trivial at first, actually highlights an interesting

attribute of recursive equations. The concept to learn is dropping items from a

list of natural numbers. Using Peano notation for the naturals, the system treats

each term as a symbolic representation of a natural number, but does not know,

for example, that s(s(0)) is the number 2. The input theory for Drop is shown in

Listing 5.18.

61

Listing 5.18. Drop

1 obj DROP i s

2 sorts L i s t Element Nat .

3 ops a j b s i c w : −> Element .

4 op empty : −> L i s t .

5 op s () : Nat −> Nat .

6 op 0 : −> Nat .

7 op add (,) : L i s t Element −> L i s t .

8 op drop (,) : Nat L i s t −> L i s t .

9

10 ∗∗∗ p o s i t i v e examples

11 eq drop (0 , add (empty , a))=add (empty , a) .

12 eq drop (0 , add (empty , j))=add (empty , j) .

13 eq drop (s (0) , add (empty , a))=empty .

14 eq drop (s (0) , add (add (empty , a) ,b))=add (empty , a) .

15 eq drop (s (0) , add (add (empty , s) , i))=add (empty , s) .

16 eq drop (s (s (0)) , add (add (add (empty , j) , c) ,w))=add (empty , j) .

17

18 ∗∗∗ negat ive examples

19 [negat ive] drop (0 , empty) = add (empty , a) .

20 [negat ive] drop (0 , add (empty , a)) = empty .

21 [negat ive] drop (s (0) , empty) = add (empty , b) .

22 [negat ive] drop (s (s (0)) , empty) = add (empty , a) .

23 [negat ive] drop (s (0) , add (empty , a)) = add (empty , a) .

24 [negat ive] drop (s (0) , add (add (empty , a) ,b)) = empty .

25 [negat ive] drop (s (0) , add (add (empty , s) , i)) = add (empty , i) .

26 endo

The operator add(,) represents adding an element to a list. The drop oper-

ator takes a natural number and removes that many elements from a list. Listing

62

5.19 is the solution our algorithm produced.

Listing 5.19. Drop Solution

1 dth DROP229 i s

2 sorts L i s t Element Nat .

3 var ListVar : L i s t .

4 var ElementVar0 : Element .

5 var NatVar0 : Nat .

6 op empty : −> L i s t .

7 op 0 : −> Nat .

8 ops a j b s i c w : −> Element .

9 op s () : Nat −> Nat .

10 op add (,) : L i s t Element −> L i s t .

11 op drop (,) : Nat L i s t −> L i s t .

12

13 [DROP229] eq drop (0 , ListVar) = ListVar .

14 [DROP229] eq drop ((s (NatVar0)) , (add (ListVar , ElementVar0))) =

drop (NatVar0 , ListVar) .

15 end

16 Covering f a c t o r : 6

17 I s Marked : fa l se

18 Covers nega t i v e s : fa l se

19 Examples covered : [0 , 1 , 2 , 3 , 4 , 5]

20

21 Induct ion Star t Time : 2018 01 12 16 : 25 : 47

22 Induct ion End Time : 2018 01 12 16 : 25 : 48

23

24 Total induct i on time : 0 minutes , 0 seconds , 607 m i l l i s e c ond s .

63

Discussion

The solution found is another recursive program, where the base case defines

dropping zero elements from a list returns the list. The induction case contin-

ues to drop elements from a list until the first equation is reached. It might

be more useful to walk through an example by reducing the term drop(s(s(0)),

add(add(add(add(empty,a),b),c),w)) in this theory.

At the first step, the term is unified with the LHS of equation two, with

the substitution {NatVar0/s(0), ListVar/add(add(add(empty,a),b),c), Element-

Var0/w}. This term is then rewritten to drop(s(0), add(add(add(empty,a),b),c)).

At the next reduction step, the term is unified again with the LHS of equation

2, using substitution {NatVar0/0, ListVar/add(add(empty,a),b), ElementVar0/c}.

The term is then rewritten to drop(0, add(add(empty,a),b)). This term then uni-

fies with the LHS of equation 1 on the next reduction step, substituting ListVar

with add(add(empty,a),b). This term in its final form is the original list, with two

elements removed.

5.4 Conclusion

In this chapter we have shown the results of several experiments using our

inductive learning engine in equational logic. These results are very promising as

the system was able to find a solution in each case, and the running time was

under one second in all but one of the experiments. The longer running time for

the car buying classification experiment was expected due to the greater number

of examples and each equation having more attributes (subterms) for the concept

to be learned.

64

CHAPTER 6

Conditional Equations

In Equational Logic, equations can also contain conditions on them. A con-

ditional Σ-equation consists of three terms, say l, r, and c, over variables from a

given ground signature Ξ, such that l and r are of the same sort, and c is of sort

Boolean. The notation “(∀Ξ) l = r if c” is used. This conditional Σ-equation is

satisfied by a Σ-theory iff for every substitution θ, we have θ(l) = θ(r) whenever

θ(c) = true [45]. In this chapter, we present our approach to an initial framework

for inducing conditions in the system.

6.1 Induction of Conditional Equations

When the input equational theory contains conditional equations, the obvious

way to handle these is to treat the condition as just another term in the equation

and generalize the condition with respect to the equations. That is, if a term in the

LHS of the equation is generalized, then check for that term in the condition and

generalize it as well. When inverse narrowing between equations with conditions,

the condition is simply carried over to the newly generated equations, or dropped

if the condition was not part of the original equation.

6.2 Condition Creation

An interesting question that this research has brought up is, can we create

new conditions for equations in our solution hypotheses? Currently, our system

can generate basic conditions on equations that can then be tested for correctness

in a possible solution hypothesis. If the useConditions flag is set, the induction

algorithm, shown in Algorithm 7 works as follows: During the initial GE-1 equation

creation, for each positive example ground equation, create a condition from that

65

equation using the Boolean equivalence operator ==. Also, create a condition with

the LHS of each ground equation. Next, create new conditions by generalizing these

terms at one subterm.

Example 6. Given the Σ-equation a in insert(a, empty) = true, the following

condition terms are created:

• a in insert(a, empty) == true

• ItemVar in insert(ItemVar, empty) == true

• a in insert(a, SetVar) == true

• a in insert(a, empty)

• ItemVar in insert(ItemVar, empty)

• a in insert(a, SetVar)

Algorithm 7: Condition Creation

input : Equation list: EL
output: Set of condition terms: CL

CL←− {};
foreach e in EL do

l←− left term of e;
r ←− right term of e;
condition←− l == r;
CL←− CL ∪ condition;
CL←− CL ∪ l;
CL←− CL ∪ generalize(condition);
CL←− CL ∪ generalize(l);

return CL;

The induction algorithm then creates a new conditional equation using each

of the original GE-1 equations created and applying each of the condition terms

that were generated in Algorithm 7. Additionally, at each iteration of the induction

algorithm, condition terms are generalized (as applicable) to create new conditions

and new equations.

66

6.3 Example

In this section, we introduce an example input program and the solution that

our induction engine was able to produce using conditional equations. For this

example, we would like to learn the definition of set membership [29]. The input

program for this example is shown in Listing 6.1.

67

Listing 6.1. Set Membership

1 obj MEMBER i s

2 sorts Set Item .

3 op empty : −> Set .

4 ops a b c d : −> Item .

5 op i n s e r t (,) : Item Set −> Set .

6 op i n : Item Set −> Bool .

7

8 ∗∗∗ p o s i t i v e examples

9 eq a in i n s e r t (a , empty) = true .

10 eq b in i n s e r t (b , empty) = true .

11 eq a in i n s e r t (b , i n s e r t (a , empty)) = true .

12 eq b in i n s e r t (b , i n s e r t (a , empty)) = true .

13 eq c in i n s e r t (a , i n s e r t (b , i n s e r t (c , empty))) = true .

14 eq b in i n s e r t (a , i n s e r t (b , i n s e r t (c , empty))) = true .

15 eq a in i n s e r t (a , i n s e r t (b , i n s e r t (c , empty))) = true .

16 eq d in i n s e r t (a , i n s e r t (b , i n s e r t (c , i n s e r t (d , empty)))) = true .

17

18 ∗∗∗ negat ive examples

19 eq a in i n s e r t (b , empty) = fa l se .

20 eq a in i n s e r t (b , i n s e r t (c , empty)) = fa l se .

21 eq b in i n s e r t (a , i n s e r t (c , empty)) = fa l se .

22 eq c in i n s e r t (b , i n s e r t (a , empty)) = fa l se .

23 eq d in i n s e r t (a , i n s e r t (b , i n s e r t (c , empty))) = fa l se .

24 endo

Running the induction algorithm on this theory with the condition flag set

produces result shown in Listing 6.2.

68

Listing 6.2. Set Membership Solution

1 dth MEMBER94 i s

2 sorts Set Item .

3 var SetVar : Set .

4 vars ItemVar ItemVar1 : Item .

5 op empty : −> Set .

6 ops a b c d : −> Item .

7 op i n s e r t (,) : Item Set −> Set .

8 op i n : Item Set −> Bool .

9 [MEMBER94] eq ItemVar in i n s e r t (ItemVar , SetVar) = true .

10 [MEMBER94] ceq ItemVar in i n s e r t (ItemVar1 , SetVar) = true i f

ItemVar in SetVar .

11 end

12 Covering f a c t o r : 8

13 I s Marked : fa l se

14 Covers nega t i v e s : fa l se

15 Examples covered : [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]

16

17 Induct ion Star t Time : 2017 10 16 18 : 41 : 21

18 Induct ion End Time : 2017 10 16 18 : 41 : 21

19

20 Total induct i on time : 0 minutes , 0 seconds , 493 m i l l i s e c ond s .

The solution found contains one base equation that says that an item is a

member if it is the first item in the set. The second equation is the conditional

equation found that states that if an item is not the first item in the set, it may

still be a member if it is in the rest of the set. We can think of this as the condition

is checking if the item is in the tail of the set. This is an interesting solution, as

the condition of the second equation is essentially handling the recursion.

Let us see how this works in reduction. Assume we try to reduce the following

69

term in this theory: a in insert(b, insert(a, empty)). This term would unify with the

second equation, with the substitution {ItemVar/a, ItemVar1/b, SetVar/insert(a.

empty)}. The condition would then be applied and the term would be rewritten to

a in insert(a, empty). This would then be unified with the first equation, rewriting

to true and returning this result.

It is important to note that the current algorithm for condition creation is lim-

ited to simple, one term conditions. More complex conditions that use disjunction

and conjunction are discussed in Chapter 7.

70

CHAPTER 7

Conclusions and Future Work

7.1 Future Work

In this thesis, we have shown that inductive logic programming in equational

logic can be a useful tool for both concept learning for equational structures as

well as machine learning classification problems. With this initial work completed,

there are several areas that could be explored in the future.

7.1.1 Conditional Equation Generation

Additional research into conditional equation induction for more complex con-

ditions would be an excellent focus area. For example, equations can contain con-

junction (and) and disjunction (or) connectives in the condition. Consider the

following example equations, which define the concept of between (the first nat-

ural number term is between the second and third terms), as well as background

knowledge that defines the less than concept:

Listing 7.1. Between Concept

1 eq between (s (0) , 0 , s (s (0))) = true .

2 eq between (s (s (0)) , s (0) , s (s (s (0)))) = true .

3 [back] l t (0 , X) = true .

4 [back] l t (s (X) , s (Y)) = l t (X, Y) .

A more advanced condition induction algorithm should be able to to induce

the following equation:

Listing 7.2. Between Solution with Condition

1 eq between (X, Y, Z) = true i f (l t (Y, X) == true) and (l t (X, Z) ==

true) .

71

7.1.2 Parallel Execution

At any iteration of the algorithm, there are multiple possible hypothesis pro-

grams that could be a solution. This aspect makes it a good candidate for par-

allelization (multi-threading). At the end of each iteration, instead of checking

all possible hypothesis programs for their covering factor and negative coverings

one at a time, a parallel algorithm could check several simultaneously. This could

improve execution time, but it would come at a cost of resource allocation.

7.1.3 Sophisticated Pruning Operator

Our current pruning operator only works on classification problems where the

right hand side terms of the equations are of sort Boolean. More research needs to

be conducted to see if other types of equations can be pruned and how.

7.1.4 Hypothesis Selection

Minimum Description Length has been a common method for hypothesis se-

lection in many ILP systems, and has shown with our system that it is indeed

sufficient. Ockham’s razor even states that if two theories explain the same facts,

then the simpler theory is preferred [46]. However, more research could be done

to see if there are better heuristics for solution hypothesis selection. Alternative

methods have been studied in [47] and could be explored more in IELP.

7.2 Conclusions

We have presented a new method for the induction of logic programs using

equational logic as the representation language. We have shown that a hybrid

approach to induction, using bottom up generalization found in many predicate

logic ILP systems, combined with inverse narrowing for recursive equation creation

is able to find solution programs quickly and efficiently.

We have also implemented a framework for the induction of conditional equa-

72

tions. Preliminary results have shown that induction of conditions in inductive

equational logic programming is an interesting field of research to explore.

73

LIST OF REFERENCES

[1] L. Hamel, “Evolutionary search in inductive equational logic programming,”
in Proceedings of the Congress on Evolutionary Computation. Canberra,
Australia: IEEE, 2003, pp. 2426–2434.

[2] L. Hamel, “Breeding algebraic structures — an evolutionary approach to in-
ductive equational logic programming,” in Proceedings of the 4th Annual Con-
ference on Genetic and Evolutionary Computation, ser. GECCO’02. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002, pp. 748–755.

[3] L. Hamel and C. Shen, “Inductive acquisition of algebraic specifications,” in
Workshop for Algebraic Development Techniques, La Roche, Belgium, 2006.

[4] C. Shen, “Evolutionary Concept Learning in Equational Logic,” Master’s the-
sis, University of Rhode Island, Kingston, RI, 2006.

[5] J. Hernández-Orallo and M. J. Ramı́rez-Quintana, “Inverse narrowing for the
inductive inference of functional logic programs,” in ”4th Advanced Seminar
on Foundations of Declarative Programming”, Valencia, Spain, June 1998.

[6] P. M. D. Delgado, “A unified approach to concept learning,” Ph.D. disserta-
tion, University of California at Irvine, Irvine, CA, USA, 1997.

[7] J. C. A. Santos, “Efficient learning and evaluation of complex concepts in
inductive logic programming,” Ph.D. dissertation, Imperial College London,
2010.

[8] W. Jevons, The Principles of Science, ser. The Principles of Science. Rout-
ledge/Thoemmes Press, 1996.

[9] S. Muggleton, “Inductive logic programming,” New Generation Comput.,
vol. 8, no. 4, pp. 295–318, 1991.

[10] G. Plotkin, “Automatic methods of inductive inference,” Ph.D. dissertation,
The University of Edinburgh, 1972.

[11] E. Y. Shapiro, “An algorithm that infers theories from facts,” in Proceedings
of the 7th International Joint Conference on Artificial Intelligence - Volume
1, ser. IJCAI’81. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1981, pp. 446–451.

[12] B. Cohen and C. Sammut, “Object recognition and concept learning with
CONFUCIUS,” Pattern Recognition, vol. 15, no. 4, pp. 309–316, 1982.

74

[13] B. L. Cohen and C. Sammut, “CONFUCIUS: A structural concept learning
system,” Australian Computer Journal, vol. 10, no. 4, pp. 138–144, 1979.

[14] C. Sammut and R. Banerji, “Learning concepts by asking questions,” in Ma-
chine Learning : An AI Approach, Vol2. Morgan Kaufman, 1986.

[15] C. Rouveirol and J. Puget, “Beyond inversion of resolution,” in Machine
Learning, Proceedings of the Seventh International Conference on Machine
Learning, Austin, Texas, June 1990, pp. 122–130.

[16] J. R. Quinlan, “Learning logical definitions from relations,” MACHINE
LEARNING, vol. 5, pp. 239–266, 1990.

[17] S. Muggleton, “Duce, an oracle-based approach to constructive induction,”
in Proceedings of the 10th International Joint Conference on Artificial Intelli-
gence - Volume 1, ser. IJCAI’87. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1987, pp. 287–292.

[18] S. Muggleton and C. Feng, “Efficient induction of logic programs,” in New
Generation Computing. Academic Press, 1990.

[19] C. Ferri-Ramirez, J. Hernandez-Orallo, and M. Ramirez-Quintana, “Incre-
mental learning of functional logic programs,” in Functional and Logic Pro-
gramming, ser. Lecture Notes in Computer Science, H. Kuchen and K. Ueda,
Eds. Springer Berlin Heidelberg, 2001, vol. 2024, pp. 233–247.

[20] J. Hernandez-Orallo and M. J. Ramirez-Quintana, “Inverse narrowing for the
induction of functional logic programs,” in 1998 Joint Conference on Declara-
tive Programming, APPIA-GULP-PRODE’98, A Coruna, Spain, July 20-23,
1998, J. L. Freire-Nistal, M. Falaschi, and M. V. Ferro, Eds., 1998, pp. 379–
392.

[21] D. Pigozzi, “Equational logic and equational theories of algebras,” Purdue
University, Technical Report 85, Mar. 1975.

[22] G. Birkhoff, “On the structure of abstract algebras,” Mathematical Proceed-
ings of the Cambridge Philosophical Society, vol. 31, no. 4, pp. 433 – 454,
1935.

[23] J. Hernandez-Orallo and M. Ramirez-Quintana, “A strong complete schema
for inductive functional logic programming,” in Inductive Logic Program-
ming, ser. Lecture Notes in Computer Science, S. Dzeroski and P. Flach,
Eds. Springer Berlin / Heidelberg, 1999, vol. 1634, pp. 116–127.

[24] C. Kirchner and H. Kirchner, “Equational logic and rewriting,” in Handbook
of the History of Logic, ser. History of Logic and Computation in the 20th
Century, D. M. Gabbay, J. H. Siekmann, and J. Woods, Eds. Elsevier, Mar.
2014, vol. 9, no. Chap.8.

75

[25] D. Gries and F. Schneider, A Logical Approach to Discrete Math, ser. Mono-
graphs in Computer Science. Springer New York, 1993.

[26] G. Tourlakis, “On the soundness and completeness of equational predicate
logics,” Journal of Logic and Computation, vol. 11, no. 4, pp. 623–653, Aug
2001.

[27] J. Goguen, “Abstract errors for abstract data types,” in Proceedings of the
IFIP Working Conf. on Formal Description of Programming Concepts, 1977.

[28] J. A. Goguen and J. J. Tardo, “An introduction to obj: A language for writ-
ing and testing formal algebraic program specifications,” in Specifications of
Reliable Software. IEEE, 1979, pp. 170–189.

[29] J. A. Goguen and K. Lin, “Specifying, programming and verifying with equa-
tional logic,” in We Will Show Them! Essays in Honour of Dov Gabbay,
Volume Two, 2005, pp. 1–38.

[30] G. Huet and D. C. Oppen, “Equations and rewrite rules: A survey,” Stanford
University, Stanford, CA, USA, Tech. Rep., 1980.

[31] T. Evans, “On multiplicative systems defined by generators and relations: I.
normal form theorems,” Mathematical Proceedings of the Cambridge Philo-
sophical Society, vol. 47, no. 4, pp. 637–649, 1951.

[32] D. E. Knuth and P. B. Bendix, Simple Word Problems in Universal Algebras.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 342–376.

[33] K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, and J. Meseguer, “Principles of
OBJ-2,” in Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, ser. POPL ’85. New York, NY, USA:
ACM, 1985, pp. 52–66.

[34] J. Goguen, C. Kirchner, H. Kirchner, A. Mégrelis, J. Meseguer, and T. Win-
kler, “An introduction to OBJ-3,” in Conditional Term Rewriting Systems,
S. Kaplan and J. P. Jouannaud, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1988, pp. 258–263.

[35] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, and C. Talcott, “Unification and narrowing in maude 2.4,” in
Rewriting Techniques and Applications, R. Treinen, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 380–390.

[36] W. Nutt, P. Rty, and G. Smolka, “Basic narrowing revisited,” Journal of
Symbolic Computation, vol. 7, no. 3, pp. 295 – 317, 1989.

76

[37] A. Middeldorp, S. Okui, and T. Ida, “Lazy narrowing: Strong completeness
and eager variable elimination,” Theoretical Computer Science, vol. 167, no. 1,
pp. 95 – 130, 1996.

[38] J. A. Goguen, K. Lin, and G. Rosu, “Circular coinductive rewriting.” in ASE.
IEEE Computer Society, 2000, pp. 123–132.

[39] J. A. Goguen and K. Lin, “Behavioral verification of distributed concurrent
systems with BOBJ,” in 3rd International Conference on Quality Software
(QSIC 2003), 6-7 November 2003, Dallas, TX, USA, 2003, p. 216.

[40] L. D. Raedt and N. Lavrac, “Multiple predicate learning in two inductive logic
programming settings,” Logic Journal of the IGPL, vol. 4, no. 2, pp. 227–254,
March 1996.

[41] M. Lichman, “UCI machine learning repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml

[42] M. Bohanec and V. Rajkovic, “V.: Knowledge acquisition and explanation
for multi-attribute decision,” in Making, 8th International Workshop ”Expert
Systems and Their Applications”, 1988.

[43] J. C. Schlimmer, “Concept acquisition through representational adjustment,”
Ph.D. dissertation, University of California, Irvine, 1987.

[44] J. R. Quinlan, “Induction of Decison Trees,” Machine Learning, vol. 1, pp.
81–106, 1986.

[45] J. A. Goguen and G. Malcolm, Algebraic Semantics of Imperative Programs.
Cambridge, MA, USA: MIT Press, 1996.

[46] “Ockham’s razor,” Aug 2010. [Online]. Available: http://www.britannica.
com/EBchecked/topic/424706/Ockhams-razor

[47] J. Hernandez-Orallo and I. Garcia-Varea, “Explanatory and creative alterna-
tives to the mdl principle,” Foundations of Science, vol. 5, no. 2, pp. 185–207,
Jun 2000.

77

http://archive.ics.uci.edu/ml
http://www.britannica.com/EBchecked/topic/424706/Ockhams-razor
http://www.britannica.com/EBchecked/topic/424706/Ockhams-razor

APPENDIX

Complete Output of Induction Algorithm on SUM

BOBJ> induce .

Performing Induct ion Algorithm

==

induce in SUM :

induct ion engine c rea ted

I n i t i a l programs created from the f o l l o w i n g equat ions :

0 eq sum(NatVar , 0) = NatVar

1 eq sum ((s (NatVar)) , 0) = s (NatVar)

2 eq sum ((s (0)) , NatVar) = s (NatVar)

3 eq sum ((s (0)) , 0) = s (0)

4 eq sum(NatVar , (s (0))) = s (NatVar)

5 eq sum(0 , NatVar) = NatVar

6 eq sum (0 , (s (NatVar))) = s (NatVar)

7 eq sum (0 , (s (0))) = s (0)

8 eq sum ((s (NatVar)) , (s (0))) = s ((s (NatVar)))

9 eq sum ((s (0)) , (s (NatVar))) = s ((s (NatVar)))

10 eq sum ((s (0)) , (s (0))) = s ((s (0)))

11 eq sum(NatVar , (s ((s (0))))) = s ((s (NatVar)))

12 eq sum ((s (NatVar)) , (s ((s (0))))) = s ((s ((s (NatVar)))))

13 eq sum ((s (0)) , (s ((s (NatVar))))) = s ((s ((s (NatVar)))))

14 eq sum ((s (0)) , (s ((s (0))))) = s ((s ((s (0)))))

15 eq sum(0 , 0) = 0

78

16 eq sum ((s ((s (NatVar)))) , (s ((s (0))))) = s ((s ((s ((s (NatVar)))))))

17 eq sum ((s ((s (0)))) , NatVar) = s ((s (NatVar)))

18 eq sum ((s ((s (0)))) , (s (NatVar))) = s ((s ((s (NatVar)))))

19 eq sum ((s ((s (0)))) , (s ((s (NatVar))))) = s ((s ((s ((s (NatVar)))))))

20 eq sum ((s ((s (0)))) , (s ((s (0))))) = s ((s ((s ((s (0)))))))

coverage o f hypothes i s 1 (SUM1) : 2 p o s i t i v e s

coverage o f hypothes i s 2 (SUM2) : 1 p o s i t i v e s

coverage o f hypothes i s 3 (SUM3) : 3 p o s i t i v e s

coverage o f hypothes i s 4 (SUM4) : 1 p o s i t i v e s

coverage o f hypothes i s 5 (SUM5) : 2 p o s i t i v e s

coverage o f hypothes i s 6 (SUM6) : 2 p o s i t i v e s

coverage o f hypothes i s 7 (SUM7) : 1 p o s i t i v e s

coverage o f hypothes i s 8 (SUM8) : 1 p o s i t i v e s

coverage o f hypothes i s 9 (SUM9) : 1 p o s i t i v e s

coverage o f hypothes i s 10 (SUM10) : 2 p o s i t i v e s

coverage o f hypothes i s 11 (SUM11) : 1 p o s i t i v e s

coverage o f hypothes i s 12 (SUM12) : 2 p o s i t i v e s

coverage o f hypothes i s 13 (SUM13) : 2 p o s i t i v e s

coverage o f hypothes i s 14 (SUM14) : 1 p o s i t i v e s

coverage o f hypothes i s 15 (SUM15) : 1 p o s i t i v e s

coverage o f hypothes i s 16 (SUM16) : 1 p o s i t i v e s

coverage o f hypothes i s 17 (SUM17) : 1 p o s i t i v e s

coverage o f hypothes i s 18 (SUM18) : 1 p o s i t i v e s

coverage o f hypothes i s 19 (SUM19) : 1 p o s i t i v e s

coverage o f hypothes i s 20 (SUM20) : 1 p o s i t i v e s

coverage o f hypothes i s 21 (SUM21) : 1 p o s i t i v e s

79

No s o l u t i o n found , yet : I t e r a t i o n 1

Inner i t e r a t i o n count : 1

Number o f unmarked hypotheses : 21

Best hypothes i s #1: SUM3, cover s 3 p o s i t i v e s

Best hypothes i s #2: SUM6, cover s 2 p o s i t i v e s

∗∗∗∗∗∗ Begin Inve r s e Narrowing Procedure ∗∗∗∗∗∗

Narrowing between :

eq sum ((s (0)) , NatVar) = s (NatVar)

eq sum (0 , NatVar) = NatVar

No narrowing p o s s i b l e f o r the se equat ions .

Narrowing between :

eq sum(0 , NatVar) = NatVar

eq sum ((s (0)) , NatVar) = s (NatVar)

Resu l t ing equat ion :

eq sum ((s (0)) , NatVar) = sum (0 , (s (NatVar)))

∗∗∗∗∗∗ End Inve r s e Narrowing Procedure ∗∗∗∗∗∗

∗∗∗∗∗∗ Genera l i z i ng Equations in EL’ ∗∗∗∗∗∗

eq sum ((s (0)) , NatVar) = s (NatVar) g e n e r a l i s e d to :

eq sum ((s (NatVar1)) , NatVar) = s (NatVar)

80

eq sum ((s (0)) , NatVar) = sum (0 , (s (NatVar))) g e n e r a l i s e d to :

eq sum ((s (NatVar1)) , NatVar) = sum (NatVar1 , (s (NatVar)))

So lu t i on Found !

dth SUM27 i s

s o r t Nat .

vars NatVar NatVar1 : Nat .

op 0 : −> Nat .

op s () : Nat −> Nat .

op sum(,) : Nat Nat −> Nat .

[SUM27] eq sum(0 , NatVar) = NatVar .

[SUM27] eq sum ((s (NatVar1)) , NatVar) = sum(NatVar1 , (s (NatVar))) .

end

Covering f a c t o r : 6

I s Marked : f a l s e

Covers nega t i v e s : f a l s e

Examples covered : [0 , 1 , 2 , 3 , 4 , 5]

Induct ion Star t Time : 2018 03 23 12 : 09 : 28

Induct ion End Time : 2018 03 23 12 : 09 : 28

Total induct i on time : 0 minutes , 0 seconds , 444 m i l l i s e c o n d s .

81

BIBLIOGRAPHY

“Ockham’s razor,” Aug 2010. [Online]. Available: http://www.britannica.com/
EBchecked/topic/424706/Ockhams-razor

Birkhoff, G., “On the structure of abstract algebras,” Mathematical Proceedings of
the Cambridge Philosophical Society, vol. 31, no. 4, pp. 433 – 454, 1935.

Bohanec, M. and Rajkovic, V., “V.: Knowledge acquisition and explanation for
multi-attribute decision,” in Making, 8th International Workshop ”Expert Sys-
tems and Their Applications”, 1988.

Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,
J., and Talcott, C., “Unification and narrowing in maude 2.4,” in Rewriting
Techniques and Applications, Treinen, R., Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 380–390.

Cohen, B. L. and Sammut, C., “CONFUCIUS: A structural concept learning sys-
tem,” Australian Computer Journal, vol. 10, no. 4, pp. 138–144, 1979.

Cohen, B. and Sammut, C., “Object recognition and concept learning with CON-
FUCIUS,” Pattern Recognition, vol. 15, no. 4, pp. 309–316, 1982.

Delgado, P. M. D., “A unified approach to concept learning,” Ph.D. dissertation,
University of California at Irvine, Irvine, CA, USA, 1997.

Evans, T., “On multiplicative systems defined by generators and relations: I. nor-
mal form theorems,” Mathematical Proceedings of the Cambridge Philosophical
Society, vol. 47, no. 4, pp. 637–649, 1951.

Ferri-Ramirez, C., Hernandez-Orallo, J., and Ramirez-Quintana, M., “Incremen-
tal learning of functional logic programs,” in Functional and Logic Program-
ming, ser. Lecture Notes in Computer Science, Kuchen, H. and Ueda, K., Eds.
Springer Berlin Heidelberg, 2001, vol. 2024, pp. 233–247.

Futatsugi, K., Goguen, J. A., Jouannaud, J.-P., and Meseguer, J., “Principles of
OBJ-2,” in Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, ser. POPL ’85. New York, NY, USA:
ACM, 1985, pp. 52–66.

Goguen, J. A. and Tardo, J. J., “An introduction to obj: A language for writing and
testing formal algebraic program specifications,” in Specifications of Reliable
Software. IEEE, 1979, pp. 170–189.

Goguen, J., “Abstract errors for abstract data types,” in Proceedings of the IFIP
Working Conf. on Formal Description of Programming Concepts, 1977.

82

http://www.britannica.com/EBchecked/topic/424706/Ockhams-razor
http://www.britannica.com/EBchecked/topic/424706/Ockhams-razor

Goguen, J., Kirchner, C., Kirchner, H., Mégrelis, A., Meseguer, J., and Winkler,
T., “An introduction to OBJ-3,” in Conditional Term Rewriting Systems,
Kaplan, S. and Jouannaud, J. P., Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1988, pp. 258–263.

Goguen, J. A. and Lin, K., “Behavioral verification of distributed concurrent sys-
tems with BOBJ,” in 3rd International Conference on Quality Software (QSIC
2003), 6-7 November 2003, Dallas, TX, USA, 2003, p. 216.

Goguen, J. A. and Lin, K., “Specifying, programming and verifying with equational
logic,” in We Will Show Them! Essays in Honour of Dov Gabbay, Volume
Two, 2005, pp. 1–38.

Goguen, J. A., Lin, K., and Rosu, G., “Circular coinductive rewriting.” in ASE.
IEEE Computer Society, 2000, pp. 123–132.

Goguen, J. A. and Malcolm, G., Algebraic Semantics of Imperative Programs.
Cambridge, MA, USA: MIT Press, 1996.

Gries, D. and Schneider, F., A Logical Approach to Discrete Math, ser. Monographs
in Computer Science. Springer New York, 1993.

Hamel, L., “Breeding algebraic structures — an evolutionary approach to inductive
equational logic programming,” in Proceedings of the 4th Annual Conference
on Genetic and Evolutionary Computation, ser. GECCO’02. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2002, pp. 748–755.

Hamel, L., “Evolutionary search in inductive equational logic programming,” in
Proceedings of the Congress on Evolutionary Computation. Canberra, Aus-
tralia: IEEE, 2003, pp. 2426–2434.

Hamel, L. and Shen, C., “Inductive acquisition of algebraic specifications,” in
Workshop for Algebraic Development Techniques, La Roche, Belgium, 2006.

Hernandez-Orallo, J. and Ramirez-Quintana, M., “A strong complete schema for
inductive functional logic programming,” in Inductive Logic Programming, ser.
Lecture Notes in Computer Science, Dzeroski, S. and Flach, P., Eds. Springer
Berlin / Heidelberg, 1999, vol. 1634, pp. 116–127.

Hernandez-Orallo, J. and Garcia-Varea, I., “Explanatory and creative alternatives
to the mdl principle,” Foundations of Science, vol. 5, no. 2, pp. 185–207, Jun
2000.

Hernandez-Orallo, J. and Ramirez-Quintana, M. J., “Inverse narrowing for the
induction of functional logic programs,” in 1998 Joint Conference on Declara-
tive Programming, APPIA-GULP-PRODE’98, A Coruna, Spain, July 20-23,
1998, Freire-Nistal, J. L., Falaschi, M., and Ferro, M. V., Eds., 1998, pp.
379–392.

83

Hernández-Orallo, J. and Ramı́rez-Quintana, M. J., “Inverse narrowing for the
inductive inference of functional logic programs,” in ”4th Advanced Seminar
on Foundations of Declarative Programming”, Valencia, Spain, June 1998.

Huet, G. and Oppen, D. C., “Equations and rewrite rules: A survey,” Stanford
University, Stanford, CA, USA, Tech. Rep., 1980.

Jevons, W., The Principles of Science, ser. The Principles of Science. Rout-
ledge/Thoemmes Press, 1996.

Kirchner, C. and Kirchner, H., “Equational logic and rewriting,” in Handbook
of the History of Logic, ser. History of Logic and Computation in the 20th
Century, Gabbay, D. M., Siekmann, J. H., and Woods, J., Eds. Elsevier,
Mar. 2014, vol. 9, no. Chap.8.

Knuth, D. E. and Bendix, P. B., Simple Word Problems in Universal Algebras.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 342–376.

Lichman, M., “UCI machine learning repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml

Middeldorp, A., Okui, S., and Ida, T., “Lazy narrowing: Strong completeness and
eager variable elimination,” Theoretical Computer Science, vol. 167, no. 1, pp.
95 – 130, 1996.

Muggleton, S., “Duce, an oracle-based approach to constructive induction,” in Pro-
ceedings of the 10th International Joint Conference on Artificial Intelligence
- Volume 1, ser. IJCAI’87. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1987, pp. 287–292.

Muggleton, S., “Inductive logic programming,” New Generation Comput., vol. 8,
no. 4, pp. 295–318, 1991.

Muggleton, S. and Feng, C., “Efficient induction of logic programs,” in New Gen-
eration Computing. Academic Press, 1990.

Nutt, W., Rty, P., and Smolka, G., “Basic narrowing revisited,” Journal of Sym-
bolic Computation, vol. 7, no. 3, pp. 295 – 317, 1989.

Pigozzi, D., “Equational logic and equational theories of algebras,” Purdue Uni-
versity, Technical Report 85, Mar. 1975.

Plotkin, G., “Automatic methods of inductive inference,” Ph.D. dissertation, The
University of Edinburgh, 1972.

Quinlan, J. R., “Learning logical definitions from relations,” MACHINE LEARN-
ING, vol. 5, pp. 239–266, 1990.

84

http://archive.ics.uci.edu/ml

Quinlan, J. R., “Induction of Decison Trees,” Machine Learning, vol. 1, pp. 81–106,
1986.

Raedt, L. D. and Lavrac, N., “Multiple predicate learning in two inductive logic
programming settings,” Logic Journal of the IGPL, vol. 4, no. 2, pp. 227–254,
March 1996.

Rouveirol, C. and Puget, J., “Beyond inversion of resolution,” in Machine Learn-
ing, Proceedings of the Seventh International Conference on Machine Learn-
ing, Austin, Texas, June 1990, pp. 122–130.

Sammut, C. and Banerji, R., “Learning concepts by asking questions,” in Machine
Learning : An AI Approach, Vol2. Morgan Kaufman, 1986.

Santos, J. C. A., “Efficient learning and evaluation of complex concepts in inductive
logic programming,” Ph.D. dissertation, Imperial College London, 2010.

Schlimmer, J. C., “Concept acquisition through representational adjustment,”
Ph.D. dissertation, University of California, Irvine, 1987.

Shapiro, E. Y., “An algorithm that infers theories from facts,” in Proceedings of
the 7th International Joint Conference on Artificial Intelligence - Volume 1,
ser. IJCAI’81. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1981, pp. 446–451.

Shen, C., “Evolutionary Concept Learning in Equational Logic,” Master’s thesis,
University of Rhode Island, Kingston, RI, 2006.

Tourlakis, G., “On the soundness and completeness of equational predicate logics,”
Journal of Logic and Computation, vol. 11, no. 4, pp. 623–653, Aug 2001.

85

	University of Rhode Island
	DigitalCommons@URI
	2018

	INDUCTIVE EQUATIONAL LOGIC PROGRAMMING
	Arthur A. McDonald
	Terms of Use
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	DEDICATION
	TABLE OF CONTENTS
	LIST OF FIGURES
	Introduction
	Overview
	Statement of Problem
	Contribution
	Related Work
	Inductive Logic Programming
	Evolutionary Equational Logic Programming
	Functional Inductive Logic Programming

	A Few Notes
	Structure of Thesis

	Background
	Equational Logic
	Programming with Equations
	Rewriting as Operational Semantics
	BOBJ

	Inverse Narrowing
	Narrowing as Equational Logic Unification
	Inverse Narrowing for Equation Induction

	Induction of Equational Logic Programs
	A Hybrid Approach to Induction
	Preliminaries
	Induce
	Initialization
	Inverse Narrowing
	Generalization
	Equation Pruning

	Negative Knowledge Representation
	Background Knowledge

	Experiments and Results
	Trivial Example
	Stack
	Stack - Multiple Terms

	Classification Problems
	Car Buying
	Voting Patterns
	Play Tennis

	Recursive Problems
	Sum
	Even
	Less Than
	Length
	Drop

	Conclusion

	Conditional Equations
	Induction of Conditional Equations
	Condition Creation
	Example

	Conclusions and Future Work
	Future Work
	Conditional Equation Generation
	Parallel Execution
	Sophisticated Pruning Operator
	Hypothesis Selection

	Conclusions

	LIST OF REFERENCES
	Complete Output of Induction Algorithm on SUM
	BIBLIOGRAPHY

