
PERFORMANCE COMPARISON OF SELF-

ORGANIZING MAPS BASED ON DIFFERENT

AUTOENCODERS

BY

BOREN ZHENG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2019

MASTER OF SCIENCE THESIS

OF

BOREN ZHENG

APPROVED:

Thesis Committee:

Major Professor Lutz Hamel

 Noah Daniels

 Frederick J. Vetter

 Nasser H. Zawia

 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2019

ABSTRACT

The Autoencoder (AE) is a kind of artificial neural network, which is widely used

for dimensionality reduction and feature extraction in unsupervised learning tasks.

Analogously, the Self-Organizing Map (SOM) is an unsupervised learning algorithm to

represent the high-dimensional data by a 2D grid map, thus achieving dimensionality

reduction. Some recent work has shown improvement in performance by combining the

AEs with the SOMs. Knowing which variations of AEs work best and finding out

whether the selection of AEs is data-depended or not is the purpose of this research.

Five types of AEs are implemented in this research; three different data sets are

used for training; map embedding accuracy and estimated topographic accuracy are

used for measuring the model quality. Overall, this research shows that nearly all AEs

at least improve the SOM performance, improving embedding accuracy and letting the

training process become efficient. The Convolutional Autoencoder (ConvAE) shows an

outstanding performance in image-related data set, the Denoising Autoencoder (DAE)

works well with the real-word data with noise, and the Contractive Autoencoder (CAE)

performs excellently in the synthetic data set. Therefore, we can see that the selection

of AEs depends on the properties of data.

iii

ACKNOWLEDGMENTS

During the past two years of study at the University of Rhode Island, I would like

to express the most profound appreciation to my advisor Dr. Hamel for his patient

guidance and support throughout my academic study. I would also like to thank my

committee members: Dr. Daniels and Dr. Vetter, for offering their time and suggestions.

And thank Dr. Eaton for attending and chairing my defense.

I would also like to thank my friend Li Yuan and other staffs in the CS department

for their inspiration and support.

A special thanks to my family – my parents and my aunts, for their constant love

and encouragement. I would also like to express my thanks to my boyfriend Pengcheng,

for his various help and ideas.

iv

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER 1 .. 1

Introduction .. 1

CHAPTER 2 .. 4

Literature Review ... 4

2.1 Self-Organizing Map ... 4

2.1.1 Vectorized SOM Training .. 5

2.2 Autoencoder .. 5

2.2.1 Sparse Autoencoder.. 6

2.2.2 Denoising Autoencoder .. 7

2.2.3 Contractive Autoencoder.. 8

2.2.4 Convolutional Autoencoder ... 9

2.3 Deep Neural Map .. 10

CHAPTER 3 .. 11

Methodology .. 11

v

3.1 Experiment Design .. 11

3.1.1 Model Structure .. 11

3.1.2 Data Set Selection .. 12

3.2 Evaluation Methods... 14

3.2.1 Performance Evaluation of AEs ... 14

3.2.2 Performance Evaluation of SOMs.. 14

3.3 Implementation.. 16

3.3.1 Basic AE ... 16

3.3.2 SAE .. 18

3.3.3 CAE .. 18

3.3.4 DAE .. 19

3.3.4 ConvAE .. 20

3.3.5 SOM ... 22

CHAPTER 4 .. 23

Results .. 23

4.1 ‘dim064’ Experiment Results.. 23

4.1.1 Loss of AEs .. 23

4.1.2 SOM Models Results ... 24

4.1.3 Clustering Result Representation ... 28

4.2 ‘Landsat Satellite’ Experiment Results ... 30

4.2.1 Loss of AEs .. 30

vi

4.2.2 SOM Models Results ... 30

4.2.3 Clustering Result Representation ... 33

4.3 ‘MNIST’ Experiment Results ... 35

4.3.1 Loss of AEs .. 35

4.3.2 SOM Models Results ... 37

4.3.3 Clustering Result Representation ... 40

CHAPTER 5 .. 42

Conclusion ... 42

5.1 Future Work .. 43

LIST OF REFERENCE ... 44

BIBLIOGRAPHY .. 48

vii

LIST OF TABLES

TABLE PAGE

Table 1. Parameters of basic AE in ‘dim064’ .. 16

Table 2. Parameters of basic AE in ‘Landsat Satellite’ ... 17

Table 3. Parameters of basic AE in ‘MNIST’ .. 18

Table 4. Model abbreviation .. 23

viii

LIST OF FIGURES

FIGURE PAGE

Figure 1. The architecture of an autoencoder (the shape of flowcharts does not

represent the dimension variation) ... 2

Figure 2. The DAE architecture. Reproduced from ref [20] .. 7

Figure 3. The DNM architecture. Reproduced from ref [4] ... 10

Figure 4. A Variant of DNM model architecture ... 11

Figure 5. The head five rows of ‘dim064’ data set .. 12

Figure 6. The head five rows of ‘Landsat Satellite’ data set .. 13

Figure 7. Architecture of basic AE in ‘dim064’ .. 17

Figure 8. Architecture of basic AE in ‘Landsat Satellite’ .. 17

Figure 9. Architecture of basic AE in ‘MNIST’ .. 18

Figure 10. Architecture of DCAE in ‘MNIST’ .. 20

Figure 11. Architecture of ConvAE in ‘dim064’ ... 21

Figure 12. Architecture of ConvAE in ‘Landsat Satellite’ .. 22

Figure 13. Training loss and validation loss of five models in ‘dim064’ 24

Figure 14. SOM, AE_SOM, SAE_SOM model quality measures in ‘dim064’ 25

Figure 15. CAE_SOM, DAE_SOM, ConvAE_SOM model quality measures in

‘dim064’ ... 26

Figure 16. Starburst representation of CAE_SOM in ‘dim064’ 29

Figure 17. Starburst representation of SOM with unencoded data in ‘dim064’ 29

Figure 18. Training loss and validation loss of five models in ‘Landsat Satellite’ 30

Figure 19. SOM, AE_SOM, SAE_SOM model quality measures in ‘Landsat Satellite’

 .. 31

file://///Users/boren/Library/Containers/com.microsoft.Word/Data/Desktop/paper/thesis_final2%20copy.docx%23_Toc28375134

ix

Figure 20. CAE_SOM, DAE_SOM, ConvAE_SOM model quality measures in

‘Landsat Satellite’ .. 32

Figure 21. Starburst representation of ConvAE_SOM in ‘Landsat Satellite’ 33

Figure 22. Starburst representation of SOM with unencoded data in ‘Landsat Satellite’

 .. 34

Figure 23. Loss of AE and reconstruction result.. 35

Figure 24. Loss of SAE and reconstruction result ... 35

Figure 25. Loss of CAE and reconstruction result ... 36

Figure 26. Loss of DCAE and reconstruction result .. 36

Figure 27. Loss of ConvAE and reconstruction result ... 37

Figure 28. SOM, AE_SOM, SAE_SOM model quality measures in ‘MNIST’ 38

Figure 29. CAE_SOM, DCAE_SOM, ConvAE_SOM model quality measures in

‘MNIST’ ... 39

Figure 30. Starburst representation of ConvAE_SOM in ‘MNIST’ 40

Figure 31. Starburst representation of SOM with unencoded data in ‘MNIST’ 41

1

CHAPTER 1

Introduction

The Autoencoder (AE) is a kind of artificial neural network. It is an unsupervised

learning algorithm that is mainly used for feature extraction and dimensionality

reduction [1]. It consists of an encoder and a decoder, which intend to reconstruct the

original input data from the hidden layer representation. The architecture of an AE is

shown in Figure 1.

The Self-Organizing Maps (SOMs) proposed by T. Kohonen [2] is another

approach to reduce dimensionality, which shows the clustering results for high-

dimensional input data onto a 2D grid map. In recent research, combining the AEs

with SOMs has shown some promise in improving the performance of regular SOMs

[3]. A Deep Neural Maps (DNMs) [4] model proposed in 2018 achieved this

combination and gave excellent performance in high-dimensional data visualization.

However, there are many different kinds of AEs, and knowing which one works best

is an open question. Performance comparison of different AEs could help one find

more appropriate AEs for a data set, hence improving the performance of the

underlying SOMs.

In fields such as genomic data clustering [5] [6] and cluster analysis of massive

astronomical data [7] [8], the SOM is a good approach since it does not only

accomplish the clustering task but also provides an accessible visible clustering

representation. However, because both genomic data and astronomical data are high-

dimensional, it takes the SOM a long time to train the data. The AE is an excellent

2

method to bring the data to a lower dimensionality while keeping the intrinsic

structure of the data. Hence, the SOM in conjunction with AE could help save the

training time. This project can help select an appropriate AE for a data set to reduce

data dimensionality, thus reducing the computing time of SOM.

Figure 1. The architecture of an autoencoder (the shape of flowcharts does not

represent the dimension variation)

In this research, I implemented five types of AEs which are basic Autoencoder

(AE), Sparse Autoencoder (SAE), Contractive Autoencoder (CAE), Denoising

Autoencoder (DAE), and Convolutional Autoencoder (ConvAE). I fed the SOM with

the encoded data extracted from the five types of AEs and evaluated the performance

in three different data sets. I selected a synthetic data set called ‘dim064’, a real-word

data set named ‘Landsat Satellite’, and a subset of the ‘MNIST’ handwritten digits

data set. Experiments on various data sets can help answer the question if the selection

of the AEs in conjunction with SOMs is data-dependent or not. The performance

evaluation methods of the SOM are based on the quality measures proposed by L.

Hamel [9], which is based on map embedding accuracy and estimated topographic

accuracy.

The remaining chapters of this thesis are organized as follows:

3

Chapter 2 Literature Review: introduce the theory and relevant research of

SOMs, variations of AEs, and Deep Neural Map based on various literature.

Chapter 3 Methodology: explain the experiment design, dataset selection,

evaluation methods, and model implementation details.

Chapter 4 Results: show the experiment results, compare and evaluate the

performance of each model.

Chapter 5 Conclusion: summarize the results I obtained, propose for future

work.

4

CHAPTER 2

Literature Review

2.1 Self-Organizing Map

A kind of artificial neural network created by Teuvo Kohonen [2], the Self-

Organizing Map (SOM), is an unsupervised learning algorithm that is mainly used for

the visualization of high-dimensional data. Usually, it produces a two-dimensional

lattice of nodes (called a map) to represent the high-dimensional input data while

preserving the topological relationships of the input [2], and therefore it is utilized in

dimensionality reduction. The convergence of the SOM algorithm has been proved by

Y. Cheng [10], the model will converge after reasonably long iterations [2].

The basic SOM algorithm can be summarized as follows [11]:

1) Selective step: initialize each node’s weight vectors randomly, select a training

data vector 𝐱𝑘 from the input space.

2) Competitive step: find the best matching neuron based on the Euclidean

distance between the data vector 𝐱𝑘 and the neurons:

𝑐 = argmin𝑖(‖𝐦𝑖 − 𝐱𝑘‖) (1)

where 𝑚𝑖 is a neuron indexed by 𝑖 and 𝑐 denotes the index of the best matching

neuron 𝐦𝑐 on the map.

3) Update step: update the winning neuron’s neighborhood using the following

rule:

𝐦𝑖 ← 𝐦𝒊 − 𝜂(𝐦𝑖 − 𝐱𝑘)ℎ(𝑐, 𝑖) (2)

5

where 𝜂(𝐦𝑖 − 𝐱𝑘) denotes the difference between the neuron and the training

instance scaled by the learning rate 𝜂 (0 < 𝜂 < 1), ℎ(𝑐, 𝑖) denotes the following loss

function:

ℎ(𝑐, 𝑖) = {
1 𝑖𝑓 𝑖 ∈ Γ(𝑐),
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (3)

where Γ(𝑐) is the neighborhood of the best matching neuron 𝑚𝑐.

Repeat from the selective step for 𝑁 iterations until the model converges. For a

large high-dimensional data set, 𝑁 could be a large number, however, the basic SOM

does not show a high performance after reasonably long iterations [11].

2.1.1 Vectorized SOM Training

Vectorized SOM training (VSOM) proposed by L. Hamel [11] is an efficient

implementation of stochastic training for SOMs, which replaces all iterative constructs

with vector and matrix operations. It is a single threaded algorithm, providing

substantial performance increases over the basic SOM algorithm (up to 60 times

faster)[11]. Because R does not support multi-threading well, the VSOM is well suited

as a replacement for iterative stochastic training of SOM in R [11]. The VSOM

implementation is available in R based POPSOM package [12].

2.2 Autoencoder

The origin of the autoencoder (AE) is not clear and the terminology may change

over time. J. Schmudhuber [13] indicates that perhaps the first work to study potential

benefits of unsupervised learning based pre-training was published by Dana H. Ballard

[14] in 1987, which proposed unsupervised AE hierarchies. According to the

information provided in [15], I summarize the AE as following.

6

An AE is a kind of artificial neural network that is mainly used for feature

extraction and dimensionality reduction. It is composed of two parts, an encoder and a

decoder, which aims to reconstruct the original input. The encoder maps the input into

a hidden layer representation (or called code), and then the decoder reconstructs the

input from the hidden layer representation.

An autoencoder could be undercomplete or overcomplete. The one with code

dimension less than the input dimension is called undercomplete, while the one with

code dimension greater than the input dimension is called overcomplete.

Regularization can prevent the overcomplete autoencoder from only copying the input

to the output without learning anything useful [15], such as sparse autoencoder,

denoising autoencoder, and contractive autoencoder.

2.2.1 Sparse Autoencoder

In 1997, Olshausen and Field [16] indicated that sparse coding with an

overcomplete basis set leads to interesting interactions among the code elements

because sparsification weeds out those basis functions not needed to describe a given

image structure. Hence, sparse coding is a good candidate for the data set whose input

data contain much noise [17].

Sparse autoencoder (SAE) is a kind of overcomplete autoencoder that includes

more hidden nodes than input, but only a small number of hidden nodes are activated

at once [18]. The training criterion of an SAE involves a sparsity penalty Ω(𝒉) on the

code layer 𝒉, in addition to the reconstruction error L, the objective function is as

following [15]:

7

𝐿 (𝑥, 𝑔(𝑓(𝑥))) + Ω(𝒉) (4)

where 𝑓(𝑥) denotes the encoder output, 𝑔(𝒉) denotes the decoder output, we have

𝒉 = (ℎ1, ℎ2, … , ℎ𝑛) = 𝑓(𝑥). The sparsity penalty Ω(𝒉) can be formulated in different

ways, and one approach is applying L1 regularization term on the activation and

scaling by a tuning hyperparameter 𝜆 [15]:

Ω(𝒉) = 𝜆 ∑|ℎ𝑖|

𝑖

 (5)

 Recently, an autoencoder with linear activation function called K-Sparse

Autoencoder [19] was proposed in 2013, in which only the k-highest activities are

kept in hidden layers. It achieves high speed on the encoding stage and well-suits to

large problem sizes[19].

2.2.2 Denoising Autoencoder

Differently from SAE that adds a penalty to the loss function, the denoising

autoencoder (DAE) achieves a representation by changing the reconstruction error

term of the loss function [15]. The DAE takes corrupted input data and is trained to

predict the original uncorrupted data as output [15], therefore the input and output for

a DAE are no longer the same. Figure 2 shows the architecture of a DAE:

Figure 2. The DAE architecture. Reproduced from ref [20]

8

the initial input 𝑥 is corrupted into 𝑥 by stochastic mapping 𝑥 ~𝑞𝒟(𝑥|𝑥), the encoder

then maps it to a hidden representation ℎ = 𝑓𝜃(𝑥) from which we reconstruct the 𝑧 =

 𝑔𝜃′(ℎ), and the reconstruction error is measured by loss 𝐿(𝑥, 𝑧) [21]. In order to let

reconstruction 𝑧 as close as possible to the clean input 𝑥, the parameters 𝜃 and 𝜃′ are

trained to minimize the average reconstruction error over the training set [21]. Note

that the corruption process 𝑞𝒟(𝑥|𝑥) could be any types, such as Gaussian noise,

Masking noise, and Salt-and-pepper noise [21].

2.2.3 Contractive Autoencoder

The contractive autoencoder (CAE) aims to resist perturbations of the input and is

encouraged to contract the input neighborhood to a smaller output neighborhood [15].

CAE adds a regularizer penalty ‖𝐽𝑓(𝑥)‖
𝐹

2
 (the Frobenius norm of the Jacobian matrix

𝐽𝑓(𝑥)) to the reconstruction cost function to encourage robustness of the

representation 𝑓(𝑥) [22]:

‖𝐽𝑓(𝑥)‖
𝐹

2
= ∑ (

𝜕ℎ𝑗(𝑥)

𝜕𝑥𝑖
)

2

𝑖𝑗

 (6)

where ℎ is the hidden representation, the penalty is the sum of squares of all partial

derivatives of the extracted features ℎ(𝑥) with respect to the input 𝑥 [22]. Similar as

SAE, the objective function of the CAE has the following form:

L (𝑥, 𝑔(𝑓(𝑥))) + 𝜆‖𝐽𝑓(𝑥)‖
𝐹

2
 (7)

By comparing CAEs with DAEs, we can see that CAEs encourage robustness of

representation 𝑓(𝑥), but DAEs encourage robustness of reconstruction 𝑔(𝑓(𝑥)) [22].

In 2014, Alain and Bengio [23] showed that in the limit of small Gaussian input noise

9

DAEs make the reconstruction function resistant to finite-sized perturbations of the

input, but CAEs make the reconstruction function resistant to infinitesimal

perturbations of the input [15].

2.2.4 Convolutional Autoencoder

Different from basic autoencoders, a convolutional autoencoder (ConvAE) is built

with convolutional layers rather than fully connected layers, hence it is efficient for

image data sets. To exploit the spatial structure of images, the convolutional

autoencoder is defined as follow [24]:

𝑓𝑊(𝑥) = 𝜎(𝑥 ∗ 𝑊) = ℎ

𝑔𝑈(ℎ) = 𝜎(ℎ ∗ 𝑈) (8)

where 𝑓𝑊(𝑥) denotes the encoder output, 𝑔𝑈(ℎ) denotes the decoder output, 𝑥 and the

embedded code ℎ are matrices or tensors, 𝜎 is the activation function, and ∗ is

convolution operator. The object is to minimize the mean squared errors between the

input and output over all samples [24]:

min
𝑊,𝑈

1

𝑛
∑‖𝑔𝑈(𝑓𝑊(𝑥𝑖)) − 𝑥𝑖‖2

2
𝑛

𝑖=1

 (9)

In recent research, a Fully Convolutional Autoencoder (FCAE) [25] was proposed

in 2017 which can be trained in an end-to-end manner. It is composed of convolution

(de-convolution) layers and pooling (un-pooling) layers, plus adding batch

normalization layers to each of the convolution-type layers. Different from the

traditional ConvAEs, the FCAE could avoid the tedious and time-consuming layer-

wise pretraining stage [25].

10

2.3 Deep Neural Map

A new Deep Neural Maps (DNMs) model designed by Mehran Pesteie, Purang

Abolmaesumi and Robert R. Rohling [4] in 2018 gives excellent performance in high-

dimensional data visualization, which uses SOM models in conjunction with deep

convolutional AEs shown in Figure 3. The result shows that the DNM has separated

each class of input data and mapped it to a particular position on a lattice successfully

[4]. D. Rajashekar [3] proposed an Autoencoder based Self Organizing Map

(AESOM) framework, which uses an AE that contains two hidden layers. It shows

improvements in data representation and improves detection rates from encoding and

reduces the feature space of the input [3].

Figure 3. The DNM architecture. Reproduced from ref [4]

11

CHAPTER 3

Methodology

3.1 Experiment Design

In this research, the experiment is mainly divided into two parts: 1) implement the

AEs and SOMs (build five AEs with Keras[26] in TensorFlow[27] library and

implement SOMs with the R-based POPSOM library[12]), 2) evaluate the

performance. In this chapter, I will introduce the evaluation methods and

implementation process in detail.

3.1.1 Model Structure

Based on the DNM model, the overall model structure is shown in Figure 4. First,

I input the original data to each of the five types of AEs (basic AE, SAE, DAE, CAE,

ConvAE), then extract the encoded data (embedding) and input it to SOMs. I also

input the original data to SOMs as a contrast experiment. Moreover, I measure the

reconstruction error between the input and the reconstructed input and evaluate the

quality of SOMs.

Input Encoder Embedding Decoder
Reconstructed

Input

SOM

AutoEncoder

(AE, SAE, DAE, CAE, Convolutional AE)

Figure 4. A Variant of DNM model architecture

12

3.1.2 Data Set Selection

In this project, the task of AEs is reducing dimensionality and extracting features,

and the task of SOMs is clustering the input data. For this purpose, the ideal data set

for this project is the one with high dimensionality and precise classification. To

compare and to evaluate the performance of AEs in conjunction with SOMs in various

circumstances, three different types (synthetic, real-world, image) of data sets were

selected.

1) The ‘dim064’ [28] [29] is a 64-dimensional synthetic data set with 1024

observations that well separated in 16 Gaussian clusters (Figure 5). I split the data set

with a ratio of 0.4, namely 60% data for training (614 instances) and 40% data for

testing (410 instances).

Figure 5. The head five rows of ‘dim064’ data set

2) The ‘Landsat Satellite’ from UCI machine learning repository [30] is a real-

world data set with 6435 instances and 36 attributes that categorized in 6 classes

(Figure 6). The data set consists of the multi-spectral values of pixels in 3 by 3

neighborhoods in a satellite image, and the classification associated with the central

13

pixel in each neighborhood. The original image cannot be reconstructed because the

data is given in random order and the certain lines of data have been removed. The 36

attributes (4 spectral bands multiply by 9 pixels in neighborhood) are numerical in the

range 0 to 255, the 6 classes of pixels are coded as numbers (1: red soil, 2: cotton crop,

3: grey soil, 4: damp grey soil, 5: soil with vegetation stubble, and 7: very damp grey

soil). The training set contains 4435 instances, and the test set contains 2000 instances.

Figure 6. The head five rows of ‘Landsat Satellite’ data set

3) The ‘MNIST’ database [31]is a large database of handwritten digits that is

widely used for machine learning. It consists of 70,000 (60,000 for training, 10,000 for

testing) grey-scale images of handwritten digits (‘0’ – ‘9’) whose size is 28 by 28

pixels. I selected 10,000 examples from the training set and 2,000 examples from the

test set to make a subset of MNIST database that as my third data set.

I converted the original image into 28 by 28 2D-array and scaled the value of

each cell between 0 and 1, and each cell represents the single pixel of the image.

Before feeding to the AEs (except ConvAEs), the 2D array was flattened into a 1D

array, hence the dimension of the data set is 784 (28 by 28).

14

3.2 Evaluation Methods

3.2.1 Performance Evaluation of AEs

The evaluation process of AEs is based on the loss error (reconstruction error). I

plot the loss functions of training data and validation data for each type of AEs and

compare the mean and minimum value of them. For image data sets, I also plot the

original input images and the decoded images to show visible reconstruction results.

Additionally, the evaluation results of SOMs also indicate the quality of AEs that

whether the encoders extract useful features.

3.2.2 Performance Evaluation of SOMs

Within this research, the evaluation methods of SOMs are based on the SOM

quality measures presented by L. Hamel [9], which is an efficient statistical approach

measures both the embedding and the topological quality of a SOM.

1) Embedding Accuracy

The motivation for the map embedding accuracy is that [9], ‘A SOM is

completely embedded if its neurons appear to be drawn from the same distribution as

the training instances.’ That features are embedded means that their mean and variance

are adequately modeled by the neurons in the SOM. The embedding accuracy (𝑒𝑎) for

𝑑 features are defined as following:

𝑒𝑎 =
1

𝑑
∑ 𝜌𝑖

𝑑

𝑖=1

, (10)

where

𝜌𝑖 = {
1 if feature 𝑖 is embedded,
0 otherwise.

 (11)

15

A map is fully embedded if the embedding accuracy equals 1.

2) Estimated Topographic Accuracy

The topographic error [32] is almost the simplest measure of the topological

quality of a map which is defined as:

𝑡𝑒 =
1

𝑛
∑ 𝑒𝑟𝑟(𝑥𝑖)

𝑛

𝑖=1

 (12)

where

𝑒𝑟𝑟(𝑥𝑖) = {
1 if 𝑏𝑚𝑢(𝑥𝑖) and 2𝑏𝑚𝑢(𝑥𝑖)are not neighbors,
0 otherwise.

𝑛 is the number of training instances, 𝑥𝑖 denotes the 𝑖th training vector on the map,

𝑏𝑚𝑢(𝑥𝑖) and 2𝑏𝑚𝑢(𝑥𝑖) are the best matching unit and the second-best matching unit

for 𝑥𝑖. The estimated topographic accuracy [9] can be defined as,

𝑡𝑎′ = 1 −
1

𝑠
 ∑ 𝑒𝑟𝑟(𝑥𝑖)

𝑠

𝑖=1

 (13)

where 𝑠 is the size of a sample 𝑆 of the training data. L. Hamel indicated that we can

get accurate values for 𝑡𝑎′ with very small samples so that the algorithm is more

efficient than conventional topographic accuracy (1 - 𝑡𝑒). We say a map is fully

organized if the topographic accuracy close to 1.

3) Convergence Accuracy

Convergence accuracy is an SOM quality assessment which is implemented in the

R-based POPSOM package [12] [33]. It is defined as,

𝑐𝑎 =
1

2
 𝑒𝑎 +

1

2
 𝑡𝑎′ (14)

16

The convergence accuracy is a linear combination of the embedding accuracy and

the estimated topographic accuracy, which indicates the model performance from both

the training data set and the map neurons. It is the primary approach to evaluate and

compare the quality of SOMs in this research.

3.3 Implementation

The five types of AEs were implemented in Python with the TensorFlow Keras

framework. The SOMs were built in R with the POPSOM package.

3.3.1 Basic AE

I implemented a single fully-connected layer as encoder and as decoder. The

parameters of the basic AE for each data set are shown in Table 1, Table 2, and Table

3. The architecture of the basic AE for each data set are shown in Figure 7, Figure 8,

and Figure 9.

1) dim064 data set

Table 1. Parameters of basic AE in ‘dim064’

Encoding Dimensionality 12

Encoder Activation relu

Decoder Activation sigmoid

Optimizer adam

Loss mean squared error

17

Figure 7. Architecture of basic AE in ‘dim064’

2) Landsat Satellite data set

Table 2. Parameters of basic AE in ‘Landsat Satellite’

Encoding Dimensionality 8

Encoder Activation relu

Decoder Activation sigmoid

Optimizer adam

Loss mean squared error

Figure 8. Architecture of basic AE in ‘Landsat Satellite’

18

3) Subset of MNIST data set

Table 3. Parameters of basic AE in ‘MNIST’

Encoding Dimensionality 64

Encoder Activation relu

Decoder Activation sigmoid

Optimizer adadelta

Loss binary cross entropy

Figure 9. Architecture of basic AE in ‘MNIST’

3.3.2 SAE

The SAE adds an L1 regularizer to the encoded layer base on the basic AE. Both

the parameters (Table 1, Table 2, Table 3) and architecture (Figure 7, Figure 8, Figure

9) of SAE for each data set are the same as the basic AE.

3.3.3 CAE

The CAE uses the same parameters (Table 1, Table 2, Table 3) and architecture

(Figure 7, Figure 8, Figure 9) as the basic AE as well, except that a different loss

function is applied. According to the objective function (Equation 7) of the CAE, I

implemented a distinct loss function by expanding the Equation 6 as,

19

‖𝐽𝑓(𝑥)‖
𝐹

2
= ∑ (

𝜕ℎ𝑗(𝑥)

𝜕𝑥𝑖
)

2

𝑖𝑗

= ∑[𝑓𝑗(1 − 𝑓𝑗)]
2

𝑗

 ∑(𝑊𝑗𝑖
𝑇)

2

𝑖

(15)

then translated the equation to Python code and got a contractive loss function [34].

3.3.4 DAE

I set the noise factor to be 0.5 to create noisy input. For ‘dim064’ and ‘Landsat

Satellite’ data sets, both the encoded layer and the decoded layer are still single fully-

connected layers, and the parameters are the same as before. For the subset of MNIST

data set, I implemented a Denoising Convolutional Autoencoder (DCAE), the

architecture is shown in Figure 10. Before feeding to the network, I reshaped each

input into size 28 × 28 × 1.

The encoder consists of three 2D convolutional layers followed by down-

sampling (max-pooling) layers (pooling size 2 × 2) and a flatten layer (encoded

layer). The first two convolutional layers have 32 filters and the third one has 4 filters

of size 3 × 3. The output of the encoded layer is 64 dimensional.

The decoder consists of four 2D convolutional layers followed by three up-

sampling layers (size 2 × 2), the last convolutional layer is the decoded layer. The first

convolutional layer has 8 filters, the following two convolutional layers have 32

filters, and the decoded layer has 1 filter of size 3 × 3.

20

Figure 10. Architecture of DCAE in ‘MNIST’

3.3.4 ConvAE

For the ‘dim064’ and the ‘Landsat Satellite’ data sets, I utilized 1D convolutional

layers, 1D max-pooling layers, and 1D up-sampling layers to build the models. The

architectures of convolutional AEs for these two data sets are shown in Figure 11 and

Figure 12. Both architectures consist of the same types of neural network layers and

are adapted to the input shapes of the data, which causes some differences in

intermediate layers between the two.

21

Figure 11. Architecture of ConvAE in ‘dim064’

22

Figure 12. Architecture of ConvAE in ‘Landsat Satellite’

For the subset of the MNIST data set, the architecture of ConvAE is the same as

DCAE. Differently, input the original data to the network rather than the noisy data.

3.3.5 SOM

Before feeding the SOM with the encoded data extracted from five AEs, I drop

the columns which are consisted of all zeros, because they contain no information for

the clustering task. For the ‘dim064’ data set, I implemented a 20 × 15 map that has

300 neurons in total. For the ‘Landsat Satellite’ data set, I implemented a 40 × 35

map that has 1,400 neurons in total. For the subset of the ‘MNIST’ data set, I

implemented a 40 × 40 map that has 1,600 neurons in total.

23

CHAPTER 4

Results

In this chapter, I will use the abbreviations shown in Table 4 to represent each

model.

Table 4. Model abbreviation

Model Abbreviation Input data of SOM encoded by

AE_SOM Basic AE

SAE_SOM SAE

CAE_SOM CAE

DAE_SOM DAE

DCAE_SOM DCAE

ConvAE_SOM ConvAE

4.1 ‘dim064’ Experiment Results

4.1.1 Loss of AEs

After 200 epochs, the training loss and validation loss of each model are shown in

Figure 13. All the models were trained well. For the DAE and ConvAE, the

generalization of the models could not be further improved due to that the validation

loss became saturated after approximately 150 epochs.

24

Figure 13. Training loss and validation loss of five models in ‘dim064’

4.1.2 SOM Models Results

I trained the SOM models from 10 to 400,000 (10, 100, 1000, 10,000, 50,000,

100,000, 200,000, 400,000) iterations for 5 times, plotted the convergence accuracy,

embedding accuracy, and estimated topographic accuracy of each model, shown in

Figure 14 and Figure 15. I scaled the x axis (iterations) as log base 2.

25

Figure 14. SOM, AE_SOM, SAE_SOM model quality measures in ‘dim064’

26

Figure 15. CAE_SOM, DAE_SOM, ConvAE_SOM model quality measures in

‘dim064’

For the original data, the convergence accuracy varies around 0.88 after 10,000

iterations, both the embedding accuracy and the estimated topographic accuracy have

27

oscillations after 10,000 iterations. The DAE_SOM shows very similar results as the

SOM fed by original data.

For the AE_SOM, the convergence accuracy varies around 0.75, the embedding

accuracy become oscillatory after 50,000 iterations, and the estimated topographic

accuracy shows a downtrend, which indicates that the performance could not be better

with more extended training. The embedding accuracy of SAE_SOM shows a similar

trend as AE_SOM but with higher values, which up to 1, and the highest value of

convergence accuracy is very close to 1. An appropriate iteration could help get better

results for this model.

The CAE_SOM shows good results after 50,000 iterations. The embedding

accuracy reaches the maximum 1, which shows that the neurons on the maps are

perfectly drawn from the underlying distribution of training instances. The

ConvAE_SOM also shows good embedding accuracy after 100,000 iterations, but the

estimated topographic accuracy varies around 0.88 after 100 iterations and could not

be further improved.

By comparison, CAE_SOM is the best, followed by ConvAE_SOM. This

indicates that data have a property that they are insensitive to small perturbation so

that CAE best captures their intrinsic structure. Except for the basic AE_SOM, using

encoded data yields better results than using original data. Moreover, the encoding

brings data to a lower dimensional representation, therefore it makes computing SOM

more efficient.

Overall, all these models perform quite well in this dataset. The reason could be

that synthetic datasets have a very good underlying clustering structure. Each feature

28

in the data is equally important. The number of each category is averagely distributed

among the data set. Little noise is persistent in the data. Thus, it is much easier for

SOM to learn the actual distribution of training data even without encoding.

4.1.3 Clustering Result Representation

The starburst representation of the model (Figure 16) gives us a visible clustering

result with class labels. The clusters are identified by light color (yellow) and cluster

boundaries are identified by darker colors (red) [11]. The starburst lines help identify

the center of each cluster, that all nodes are connected to their centroid node [33]. I

plot the heat maps to confirm that those quantities (embedding accuracy, estimated

topographic accuracy, convergence accuracy) when meeting certain criteria provide a

good measure that SOM learns the underlying structure.

Since the CAE_SOM model achieved the best result, I implemented a 20 × 15

CAE_SOM compared with the SOM with unencoded data. I trained the models with

200,000 iterations and output the starburst representations of clusters, shown in Figure

16 and Figure 17.

 Visibly, both maps separate the data into 14 clusters while two classes (with

label 6 and label 7) are mis-clustered, and the locations of clusters distribute similarly

on the maps. Overall, the clustering structure is almost the same, and CAE_SOM

shows an excellent clustering result. Therefore, the encoded data has a similar

structure to the original data, and both structures are successfully discovered by the

SOM. It also suggests that we can trust the encoded data as the input of the SOM.

29

Figure 16. Starburst representation of CAE_SOM in ‘dim064’

Figure 17. Starburst representation of SOM with unencoded data in ‘dim064’

30

4.2 ‘Landsat Satellite’ Experiment Results

4.2.1 Loss of AEs

As seen from Figure 18, all the models were trained well after 200 epochs. For

the DAE, the generalization of the models could not be further improved due to that

the validation loss became saturated after approximately 175 epochs.

Figure 18. Training loss and validation loss of five models in ‘Landsat Satellite’

4.2.2 SOM Models Results

I trained the SOM models from 10 to 400,000 (10, 100, 1000, 10,000, 50,000,

100,000, 200,000, 300,000, 400,000) iterations for 5 times, plotted the convergence

31

accuracy, embedding accuracy, and estimated topographic accuracy of each model,

shown in Figure 19 and Figure 20. I scaled the x axis as log base 2.

Figure 19. SOM, AE_SOM, SAE_SOM model quality measures in ‘Landsat Satellite’

32

Figure 20. CAE_SOM, DAE_SOM, ConvAE_SOM model quality measures in

‘Landsat Satellite’

All six models show similar results of estimate topographic accuracy, which

varies around 0.75 and could not be further improved after roughly 1000 epochs.

Moreover, they all show a consistently increasing trend in embedding accuracy with

33

increasing training iterations. In rare cases, the model fed with encoded data could get

a peak value of embedding accuracy at 100,000 iterations except for Conv_SOM.

Overall, the embedding accuracy of the AE_SOM model is below 0.5, which is

the worst here. SAE_SOM and CAE_SOM only have a slightly better performance

against AE_SOM. On the other hand, Conv_SOM and DAE_SOM have a more

noticeable performance improvement after sufficient iterations. The reasons that

Conv_SOM and DAE_SOM have a better performance could be due to that spectral

data are extracted from images which contain observational noises. ConvAE is most

suited to retrieve information in images, while DAE helps improve model robustness

against noise.

4.2.3 Clustering Result Representation

Figure 21. Starburst representation of ConvAE_SOM in ‘Landsat Satellite’

34

Figure 22. Starburst representation of SOM with unencoded data in ‘Landsat Satellite’

I implemented a 40 × 35 ConvAE_SOM compared with the SOM with

unencoded data. I trained the models with 400,000 iterations. From the starburst

representations shown in Figure 21 and Figure 22, the number of the identified

clusters is almost the same and the visible starburst lines span in a similar way, which

shows that the clustering structure is nearly the same. Therefore, the encoded data has

a similar structure to the original data, and both structures are successfully discovered

by the SOM. It also suggests that we can trust the encoded data as the input of the

SOM.

35

4.3 ‘MNIST’ Experiment Results

4.3.1 Loss of AEs

I plotted the loss and visible reconstruction results of each model, which are

shown in Figure 23 – Figure 27.

Figure 23. Loss of AE and reconstruction result

Figure 24. Loss of SAE and reconstruction result

36

Figure 25. Loss of CAE and reconstruction result

Figure 26. Loss of DCAE and reconstruction result

37

Figure 27. Loss of ConvAE and reconstruction result

The training loss and validation loss of each model show that all the models were

trained well after 100 epochs. All the AEs reconstruct the original input. Judging from

the visible results, DCAE and ConvAE did a better job.

4.3.2 SOM Models Results

Similarly, I plot the convergence accuracy, embedding accuracy, and estimated

topographic accuracy of each model (Figure 28, Figure 29). I scaled the x-axis as log

base 2.

38

Figure 28. SOM, AE_SOM, SAE_SOM model quality measures in ‘MNIST’

39

Figure 29. CAE_SOM, DCAE_SOM, ConvAE_SOM model quality measures in

‘MNIST’

To achieve better embedding accuracy, I chose a larger map size, which contains

1600 neurons. As a result, the topographic accuracy in all six models all exhibits a flat

trend starting from the small number of iterations. The best clustering results are

achieved by using ConvAE. It is not surprising that such AE performs best since

40

convolutional operators capture the local features in images, which are the most

important and informative ones for identification.

Generally speaking, to cluster MINST dataset by SOM is challenging as the data

have high dimensionality and consist of plenty of zeros or near-zeros. This causes

most of the features, namely the pixel values, which are not significant. While most

AEs (except ConvAE) do not show significant improvement in clustering, they do

provide a low dimensional representation containing intrinsic features and help to

reduce training time in SOM.

4.3.3 Clustering Result Representation

Figure 30. Starburst representation of ConvAE_SOM in ‘MNIST’

41

Figure 31. Starburst representation of SOM with unencoded data in ‘MNIST’

I implemented a 30 × 30 ConvAE_SOM trained with 100,000 iterations. In

Figure 30, although the clustering results are not as good as the other two data sets, the

model still achieved a reasonable cluster of some easily distinguishable digits.

Compared with the starburst representation shown in Figure 31, the ConvAE_SOM

shows a close clustering structure as the SOM with unencoded data because the

number of the identified clusters are almost the same and the visible starburst lines

span similarly. It indicates that the encoded data has a similar structure to the original

data, and both structures are successfully discovered by the SOM. It also suggests that

we can trust the encoded data as the input of the SOM.

42

CHAPTER 5

Conclusion

The objective of this research is to find answers for the following two questions,

1) for one data set, what kind of AE performs best in improving the performance of

the underlying SOM, 2) whether the selection of AEs in conjunction with SOMs is

data-dependent or not. According to the experiment results, we can see that nearly all

AEs at least improve the performance of SOM. They also bring original data to a

lower dimension representation, which let the training process become efficient. The

CAE performed excellently in the synthetic data set. The ConvAE shows an

outstanding performance in image-related data set. The DAE works well with the real-

word data with noise. The SAE did not show good results in the three chosen data sets,

which may be due to that data do not have the sparse property. Hence, the selection of

the AEs depends on the property of data, based on the features of a data set to select an

appropriate AE could help the SOM obtain a better clustering result.

Interestingly, many embedding accuracy figures have a peak value after a certain

number of iterations. This could arise from that the neurons start to learn a finer-scale

cluster; therefore, the embedding accuracy drops down a little. I suspect it will rise

again until adequately learning an even finer scale in the future. To the end, each

neuron is a cluster itself and the embedding accuracy approaches 1.

43

5.1 Future Work

Firstly, it is worth studying when the peak value of embedding accuracy comes

out, which may help train a model with appropriate training iterations. For now, we

could see that the embedding accuracy oscillates after the peak value, but I do not

know the definite trend in the future. Training the model with much more iterations in

the featured study will help discover the embedding accuracy variate trend and find

the relationships between the peak value and training iterations.

Secondly, it is suggested to compare the SOM performance by using different

dimensionality encoded data as input. In this research, I only encoded the original data

into one type of dimensionality. Test different encoding dimensionality to see whether

the encoding degree will affect the SOM clustering result could yield more interesting

insight.

Additionally, there are still some other variations of AEs such as variational

autoencoder and stacked autoencoder, which could be emphasized in the future study.

44

LIST OF REFERENCE

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with

Neural Networks,” Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006.

[2] T. Kohonen, Self-Organizing Maps, 3rd ed. Berlin Heidelberg: Springer-Verlag,

2001.

[3] D. Rajashekar, “One-class learning with an Autoencoder Based Self Organizing

Map,” Mar. 2017.

[4] M. Pesteie, P. Abolmaesumi, and R. Rohling, “Deep Neural Maps,”

ArXiv181007291 Cs Stat, Oct. 2018.

[5] K. S. Pollard and M. J. van der Laan, “Cluster Analysis of Genomic Data,” in

Bioinformatics and Computational Biology Solutions Using R and Bioconductor,

R. Gentleman, V. J. Carey, W. Huber, R. A. Irizarry, and S. Dudoit, Eds. New

York, NY: Springer New York, 2005, pp. 209–228.

[6] K. W. Govek, V. S. Yamajala, and P. G. Camara, “Clustering-independent

analysis of genomic data using spectral simplicial theory,” PLOS Comput. Biol.,

vol. 15, no. 11, p. e1007509, Nov. 2019.

[7] W. Jang and M. Hendry, “Cluster analysis of massive datasets in astronomy,” Stat.

Comput., vol. 17, no. 3, pp. 253–262, Sep. 2007.

[8] Y. Zhang and Y. Zhao, “Automated Clustering Algorithms for Classification of

Astronomical Objects,” Astron. Astrophys., vol. 422, no. 3, pp. 1113–1121, Aug.

2004.

45

[9] L. Hamel, “SOM Quality Measures: An Efficient Statistical Approach,” in

Advances in Self-Organizing Maps and Learning Vector Quantization, Cham,

2016, pp. 49–59.

[10] Y. Cheng, “Convergence and Ordering of Kohonen’s Batch Map,” Neural

Comput., vol. 9, no. 8, pp. 1667–1676, Nov. 1997.

[11] L. Hamel, “VSOM: Efficient, Stochastic Self-organizing Map Training,” in

Intelligent Systems and Applications, vol. 869, K. Arai, S. Kapoor, and R. Bhatia,

Eds. Cham: Springer International Publishing, 2019, pp. 805–821.

[12] L. Hamel, B. Ott, G. Breard, R. Tatoian, and V. Gopu, popsom: Functions for

Constructing and Evaluating Self-Organizing Maps. 2019.

[13] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Neural

Netw., vol. 61, pp. 85–117, Jan. 2015.

[14] D. H. Ballard, “Modular Learning in Neural Networks,” in AAAI, 1987.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press,

2016.

[16] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis

set: A strategy employed by V1?,” Vision Res., vol. 37, no. 23, pp. 3311–3325,

Dec. 1997.

[17] H. Lee, Unsupervised feature learning via sparse hierarchical representations.

2010.

[18] P. Domingos, The master algorithm: How the quest for the ultimate learning

machine will remake our world. New York, NY, US: Basic Books, 2015.

46

[19] A. Makhzani and B. Frey, “k-Sparse Autoencoders,” ArXiv13125663 Cs, Dec.

2013.

[20] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” in ICML, 2008.

[21] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked

Denoising Autoencoders: Learning Useful Representations in a Deep Network

with a Local Denoising Criterion,” J Mach Learn Res, vol. 11, pp. 3371–3408,

Dec. 2010.

[22] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive Auto-

Encoders: Explicit Invariance During Feature Extraction,” in ICML, 2011.

[23] G. Alain and Y. Bengio, “What Regularized Auto-encoders Learn from the

Data-generating Distribution,” J Mach Learn Res, vol. 15, no. 1, pp. 3563–3593,

Jan. 2014.

[24] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep Clustering with Convolutional

Autoencoders,” in Neural Information Processing, 2017, pp. 373–382.

[25] F. Li, H. Qiao, B. Zhang, and X. Xi, “Discriminatively Boosted Image

Clustering with Fully Convolutional Auto-Encoders,” ArXiv170307980 Cs, Mar.

2017.

[26] F. Chollet, Keras, GitHub. https://github.com/fchollet/keras. 2015.

[27] M. Abadi et al., “TensorFlow: A System for Large-scale Machine Learning,”

in Proceedings of the 12th USENIX Conference on Operating Systems Design and

Implementation, Berkeley, CA, USA, 2016, pp. 265–283.

47

[28] P. Fränti and S. Sieranoja, “K-means properties on six clustering benchmark

datasets,” Appl. Intell., vol. 48, no. 12, pp. 4743–4759, Dec. 2018.

[29] P. Franti, O. Virmajoki, and V. Hautamaki, “Fast Agglomerative Clustering

Using a k-Nearest Neighbor Graph,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

28, no. 11, pp. 1875–1881, Nov. 2006.

[30] D. Dua and E. Karra Taniskidou, “‘UCI Machine Learning Repository,’ Irvine,

CA: University of California, School of Information and Computer Science,”

2019. [Online]. Available: https://archive.ics.uci.edu/ml/citation_policy.html.

[31] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online].

Available: http://yann.lecun.com/exdb/mnist/.

[32] K. Kiviluoto, “Topology preservation in self-organizing maps,” in Proceedings

of International Conference on Neural Networks (ICNN’96), 1996, vol. 1, pp.

294–299 vol.1.

[33] L. Yuan, “Implementation of Self-Organizing Maps with Python,” Open

Access Masters Theses, Jan. 2018.

[34] A. kristiadi, “Deriving Contractive Autoencoder and Implementing it in Keras

- Agustinus Kristiadi’s Blog.” [Online]. Available:

http://wiseodd.github.io/techblog/2016/12/05/contractive-autoencoder/.

48

BIBLIOGRAPHY

 “About Keras Models - Keras Documentation.” Accessed June 10, 2019.

https://keras.io/models/about-keras-models/.

Ackermann, Nils. “Introduction to 1D Convolutional Neural Networks in Keras for Time

Sequences.” Accessed June 18, 2019. https://blog.goodaudience.com/introduction-to-

1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf.

Alain, Guillaume, and Yoshua Bengio. “What Regularized Auto-Encoders Learn from the

Data-Generating Distribution.” J. Mach. Learn. Res. (January 2014): 3563–3593.

Baldi, Pierre. “Autoencoders, Unsupervised Learning, and Deep Architectures,” 2012, 14.

Ballard, Dana H. “Modular Learning in Neural Networks.” In AAAI, 1987.

Breard, Gregory. “Evaluating Self-Organizing Map Quality Measures as Convergence

Criteria.” Open Access Master’s Theses, January 1, 2017.

Brown, David H. “Cartogram Data Projection for Self-Organizing Maps.” Dissertations

and Master’s Theses (Campus Access), January 1, 2012, 1–101.

“Building Autoencoders in Keras.” Accessed June 10, 2019. https://blog.keras.io/building-

autoencoders-in-keras.html.

Cheng, Yizong. “Convergence and Ordering of Kohonen’s Batch Map.” Neural

Computation 9, no. 8 (November 1, 1997): 1667–76.

Cheng, Zhengxue, Heming Sun, Masaru Takeuchi, and Jiro Katto. “Deep Convolutional

AutoEncoder-Based Lossy Image Compression.” ArXiv:1804.09535 [Cs], April 25,

2018.

DataCamp Community. “Keras Autoencoders: Beginner Tutorial,” Accessed June 9, 2019.

https://www.datacamp.com/community/tutorials/autoencoder-keras-tutorial.

https://keras.io/models/about-keras-models/
https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf
https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://www.datacamp.com/community/tutorials/autoencoder-keras-tutorial

49

Domingos, Pedro. The Master Algorithm: How the Quest for the Ultimate Learning

Machine Will Remake Our World. Basic Books, 2015.

Franti, P., O. Virmajoki, and V. Hautamaki. “Fast Agglomerative Clustering Using a K-

Nearest Neighbor Graph.” IEEE Transactions on Pattern Analysis and Machine

Intelligence 28, no. 11 (November 2006): 1875–81.

Fränti, Pasi, and Sami Sieranoja. “K-Means Properties on Six Clustering Benchmark

Datasets.” Applied Intelligence 48, no. 12 (December 1, 2018): 4743–59.

GitHub. “Wiseodd/Hipsternet.” Accessed September 5, 2019.

https://github.com/wiseodd/hipsternet.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press,

2016.

Guo, Xifeng, Xinwang Liu, En Zhu, and Jianping Yin. “Deep Clustering with

Convolutional Autoencoders.” In ICONIP, 2017.

Hamel, Lutz, Benjamin Ott, Gregory Breard, Robert Tatoian, and Vishakh Gopu. Popsom:

Functions for Constructing and Evaluating Self-Organizing Maps (version 4.2.1),

2019.

Hamel, Lutz. “SOM Quality Measures: An Efficient Statistical Approach.” In Advances in

Self-Organizing Maps and Learning Vector Quantization, 2016, 49–59.

Hamel, Lutz. “VSOM: Efficient, Stochastic Self-Organizing Map Training.” In Intelligent

Systems and Applications, 2019.

Hinton, G. E., and R. R. Salakhutdinov. “Reducing the Dimensionality of Data with Neural

Networks.” Science 313, no. 5786 (July 28, 2006): 504–7.

https://github.com/wiseodd/hipsternet

50

Khandelwal, Renu. “Deep Autoencoder Using Keras.”. Accessed June 9, 2019.

https://medium.com/datadriveninvestor/deep-autoencoder-using-keras-b77cd3e8be95.

Kiviluoto, K. “Topology Preservation in Self-Organizing Maps.” In Proceedings of

International Conference on Neural Networks (ICNN’96), 1:294–99 vol.1, 1996.

Kohonen, Teuvo. Self-Organizing Maps. 3rd ed. Springer Series in Information Sciences.

Berlin Heidelberg: Springer-Verlag, 2001.

LeCun, Y., and C. Cortes. “MNIST Handwritten Digit Database,” 2010. Accessed June 15.

http://yann.lecun.com/exdb/mnist/.

Lee, Honglak. Unsupervised Feature Learning via Sparse Hierarchical Representations,

2010.

Li, Fengfu, Hong Qiao, Bo Zhang, and Xuanyang Xi. “Discriminatively Boosted Image

Clustering with Fully Convolutional Auto-Encoders.” ArXiv:1703.07980 [Cs], March

23, 2017.

Makhzani, Alireza, and Brendan Frey. “K-Sparse Autoencoders.” ArXiv:1312.5663 [Cs],

December 19, 2013.

Olshausen, Bruno A., and David J. Field. “Sparse Coding with an Overcomplete Basis Set:

A Strategy Employed by V1?” Vision Research 37 (December 1, 1997): 3311–25.

Ott, Benjamin H. “A Convergence Criterion for Self-Organizing Maps.” Dissertations and

Master’s Theses (Campus Access), January 1, 2012, 1–70.

Pesteie, Mehran, Purang Abolmaesumi, and Robert Rohling. “Deep Neural Maps.” 2018.

Rajashekar, Deepthi. “One-Class Learning with an Autoencoder Based Self Organizing

Map,” March 27, 2017.

https://medium.com/datadriveninvestor/deep-autoencoder-using-keras-b77cd3e8be95
http://yann.lecun.com/exdb/mnist/

51

Rifai, Salah, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.

“Contractive Auto-Encoders: Explicit Invariance During Feature Extraction.” In

ICML, 2011.

Schmidhuber, Juergen. “Deep Learning in Neural Networks: An Overview.” Neural

Networks 61 (January 2015): 85–117.

Tatoian, Robert, and Lutz Hamel. “Self-Organizing Map Convergence:” International

Journal of Service Science, Management, Engineering, and Technology 9, no. 2 (April

2018): 61–84.

“UCI Machine Learning Repository: Statlog (Landsat Satellite) Data Set.” Accessed

September 21, 2019.

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29.

Vincent, Pascal, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

“Extracting and Composing Robust Features with Denoising Autoencoders.” 1096–

1103. Helsinki, Finland: ACM Press, 2008.

Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine

Manzagol. “Stacked Denoising Autoencoders: Learning Useful Representations in a

Deep Network with a Local Denoising Criterion.” J. Mach. Learn. Res. 11 (December

2010): 3371–3408.

Yuan, Li. “Implementation of Self-Organizing Maps with Python.” Open Access Master’s

Theses, January 1, 2018.

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	Introduction
	CHAPTER 2
	Literature Review
	2.1 Self-Organizing Map
	2.1.1 Vectorized SOM Training

	2.2 Autoencoder
	2.2.1 Sparse Autoencoder
	2.2.2 Denoising Autoencoder
	2.2.3 Contractive Autoencoder
	2.2.4 Convolutional Autoencoder

	2.3 Deep Neural Map

	CHAPTER 3
	Methodology
	3.1 Experiment Design
	3.1.1 Model Structure
	3.1.2 Data Set Selection

	3.2 Evaluation Methods
	3.2.1 Performance Evaluation of AEs
	3.2.2 Performance Evaluation of SOMs

	3.3 Implementation
	3.3.1 Basic AE
	3.3.2 SAE
	3.3.3 CAE
	3.3.4 DAE
	3.3.4 ConvAE
	3.3.5 SOM

	CHAPTER 4
	Results
	4.1 ‘dim064’ Experiment Results
	4.1.1 Loss of AEs
	4.1.2 SOM Models Results
	4.1.3 Clustering Result Representation

	4.2 ‘Landsat Satellite’ Experiment Results
	4.2.1 Loss of AEs
	4.2.2 SOM Models Results
	4.2.3 Clustering Result Representation

	4.3 ‘MNIST’ Experiment Results
	4.3.1 Loss of AEs
	4.3.2 SOM Models Results
	4.3.3 Clustering Result Representation

	CHAPTER 5
	Conclusion
	5.1 Future Work

	LIST OF REFERENCE
	BIBLIOGRAPHY

