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ABSTRACT 

 

As a member of Artificial Neural Networks, Self-Organizing Maps (SOMs) have 

been well researched since 1980s, and have been implemented in C, Fortran, R [1] and 

Python [2]. Python is an efficient high-level language widely used in the machine 

learning field for years, but most of the SOM-related packages which are written in 

Python only perform model construction and visualization. However, the POPSOM 

package, written in R, is capable of performing functionality beyond model construc-

tion and visualization, such as evaluating the model’s quality with statistical methods 

and plotting marginal probability distributions of the neurons. In order to give the Py-

thon user the POPSOM package’s advantages, it is important to migrate the POPSOM 

package to be Python-based. This study shows the details of this implementation.  

There are three major tasks for the implementation: 1) Migrate the POPSOM 

package from R to Python; 2) Refactor the source code from procedural programming 

paradigm to object-oriented programming paradigm; 3) Improve the package by add-

ing normalization options to the model construction function. In addition to construct-

ing the model in Python, Fortran is also embedded to accelerate the speed of model 

construction significantly in this project.  

The final program has been completed, and it is necessary to guarantee the cor-

rectness of the program. The best way to achieve this goal is to compare the output of 

the Python-based program to the output generated by the R-based program. For the 

model construction function, the SOM algorithm initializes the weight vector of the 

neurons randomly at the very beginning, and then selects the input vectors randomly 



 

 

during the training. Due to these two random factors, one cannot expect the same input 

(data set) will result in exactly the same output (neurons). Instead, to give evidence 

that the Python program is working properly, there are two solutions that have been 

proposed and applied in this project: 1) measuring the average difference of vectors 

between two neurons which have been generated by the R and Python functions re-

spectively; 2) measuring the ratio of the variances and the difference of features’ mean 

for the two neurons. Besides the model construction, model visualization and other 

functions which take neurons as their input should return the same results by feeding 

the same input (neurons). The detail of above verification will be represented in the 

following chapters. 
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CHAPTER 1 

 

Introduction 

 

Dimensionality reduction has been an important topic within the data analysis 

community for some time. Several solutions have been proposed by researchers, one 

of which is Principal Component Analysis (PCA), a statistical procedure based on or-

thogonal transformation. It has been used as a tool in exploratory data analysis and the 

creation of predictive models. In the 1980s, another approach for dimensionality re-

duction was proposed by T. Kohonen [3] known as Self-Organizing Maps (SOMs), a 

type of neural network for the visualization of high-dimensional data. Typically, the 

SOM graphic represents [4] the high-dimensional input data with a 2-D grid map. This 

type of map preserves the topology and neighborhood relationship of the input space 

[5]. Additionally, indicated by [3], the convergence of the model is guaranteed after a 

certain amount of iterations.  

The SOM algorithm has been implemented by C, R, Fortran and Python [6]-[8]. 

To date, there are more than 100 packages available on the GitHub community. Alt-

hough the number of packages is sufficient and continually increasing, the functionali-

ties that are provided by these packages are quite similar. Most of these packages only 

focus on model construction and model visualization. Few of them touch on the aspect 

of evaluating the model’s quality. POPSOM, an R package [8] developed and main-

tained by Dr. Lutz Hamel and his former students, not only provides the model con-

struction and model visualization as other packages, but also provides a set of func-
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tions for evaluating the model’s quality and visualizing the marginal probability distri-

bution of each feature. The purpose of this project is to migrate the POPSOM package 

from R to Python so that researchers in the Python community may utilize it in their 

research.  

A Self-Organizing Map (SOM) is a specific type of Artificial Neural Network 

whose purpose is to reduce the dimension of the input space. The resulting map is a 

graphical representation easily interpreted by the end user [4]. From a practical point 

of view, the SOM’s program package should include at least the following three main 

functions: 1) model construction, 2) model evaluation, and 3) model visualization.   

As the most important part of the SOM, the model construction algorithm has 

been proposed by [3].  The basic idea of this algorithm is described in the following 

two major steps: 

1) Initiate the weight vector (or neuron) randomly. 

2) Update the weight vector using the following formula with a certain number 

of iterations.  

𝑚𝑖(𝑡 + 1) =  𝑚𝑖(𝑡) +  ℎ𝑐𝑖[(𝑥(𝑡) − 𝑚𝑖(𝑡)]  (1) 

hci(t):  neighborhood function, when t → 0, hci(t) → 0 

 ℎ𝑐𝑖(𝑡) = {
 𝛼(𝑡),   𝑖 ∈ 𝑁𝑐
0,          𝑖 ∈ 𝑁𝑐

  (2) 

   Nc: neighborhood set 

   𝛼(𝑡): learning-rate factor which can be linear, exponential or inversely     

             proportional. 
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Secondly, the model evaluation function is designed to help users determine the 

appropriateness of the model after each training. Many quality measures have been 

proposed to evaluate the quality of the resulting map [4]. Most of them either focus on 

one aspect of a SOM or on the computational expense [9]. In 2017, Dr. Lutz Hamel 

proposed an efficient statistical approach [9] to measure both the map embedding ac-

curacy (or convergence) and the estimated topographic accuracy of the model. This 

approach has been since implemented in the R-based POPSOM package [8].  

Most of packages available on GitHub only represent the resulting maps as heat 

maps, while the R-based POPSOM package provides users with three kinds of graph-

ical reports: 1) the significance of each feature with respect to the self-organizing map 

model (Figure 1), 2) the starburst representation of the SOM model (Figure 2), and 3) 

the marginal probability distribution of the neurons and data (Figure 3).  

 

Figure 1. The significance of Iris dataset's individual features with respect to the self 

      organizing map model. 
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Figure 2. The starburst representation of the Self-Organizing Maps Model for Iris  

         dataset. The centers of the starbursts are the centers of the clusters. 

 

 

 

 

Figure 3. Density plots showing the marginal probability distributions of Iris data set’s  

               dimensions overlaid with the neuron density for each dimension respectively.   
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As a kind of pre-processing method, standard normalization is not necessary for 

the model training, but it may improve the map embedding accuracy [3] within the 

SOM algorithm.  

The R-based POPSOM package has been developed and maintained since 2013. 

The latest version is 4.2, updated last on May, 31st 2017 [8]. R users are able to ex-

plore their data in a more detailed fashion using various aspects of the POPSOM 

package. Unfortunately, Python users are currently limited to model construction and 

visualization without the benefit of evaluating the model quality in regard to precise 

convergence characteristics. To benefit the researchers within the Python community, 

this project’s purpose is to migrate the POPSOM package from R-based to Python-

based usage.  

Both R and Python are widely used in data analysis, and they have a few func-

tions that share similar features. For this project, to successfully migrate the package 

from R to Python, three features need to be migrated: 1) naming rules, 2) mathemati-

cal and statistical functions and 3) data manipulation. Most of the functions in R al-

ready have counterparts in Python, but there are still some functions that are only 

available in R, such as t.test (produces a variety of t-tests), var.test (performs an F-test 

to compare the variances of two samples) and smooth_2d (performs kernel smoother 

for irregular 2-D data). To migrate these functions, they must be rewritten in Python 

from scratch. 

Migrating all of the functionalities in the package from R to Python has been the 

basic goal of this project. Besides preserving all the functionalities of the R-based 

package, the following improvements have also been made: 1) refactoring the proce-
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dural programming paradigm to object-oriented programming paradigm, 2) addition of 

normalization as an optional argument for model initialization (or instantiation), and 3) 

Fortran embeddedness as another option for model training. 

Finally, the Fisher/Anderson Iris data set [10] and Wheat Seed data set [11] from 

the UCI machine learning repository were utilized to evaluate the correctness of the 

Python-based package. The reasoning stands that if the same input data is imputed into 

both the R-based and Python-based packages and if the Python-based package is 

working correctly, then both packages will return the same outcome. Since the SOM 

algorithm initializes the weight vector randomly [3] at the beginning of model training 

and selects the vector randomly during the training, even the same input data set will 

return a different outcome (neurons) for a different training by one package. Thus, it is 

not feasible to evaluate the correctness of the Python program by measuring the differ-

ence in the two neurons directly. In order to achieve this goal, two statistical meas-

urements have been proposed and applied in this project. 1) When measuring the aver-

age difference of vectors between the two neurons, the result should be closed to 0 at 

the end of the training if the two neurons are drawn from the same input data space. 2) 

The ratio of the variances and the difference of features’ means for both neurons are 

evaluated. The ratio of the variances should be approximately equal to 1 and the dif-

ference of features’ means should be close to 0.  Each of these respective values 

should fall within the chosen computed confidence interval as appropriate if the two 

neurons are drawn from the same input data space. Besides the model construction, 

model visualization and other functions which take neurons as their input should re-

turn the same results as well by feeding the same neurons. 
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CHAPTER 2 

 

Literature Review 

 

2.1 Self-Organizing Maps 

Since the dawn of the data era, more and more efficient data analysis technologies 

have been researched, proposed and applied at a very fast pace, especially tools for 

statistical analysis for high-dimensional data (data with multiple features). Self-

Organizing Maps (SOMs) proposed by [3] are considered effective tools for the visu-

alization of high-dimensional data [3]. The SOM algorithm is used to compress the 

information to produce a similarity graph while preserving the topologic relationship 

of the input data space. The convergence of the SOM has been previously discussed 

and guaranteed [3].  

The basic SOM model construction algorithm can be interpreted as follows:  

1)  Create and initialize a matrix (weight vector) randomly to hold the neurons. If 

the matrix can be initialized with order and roughly compiles with the input density 

function, the map will converge quickly [3];  

2)  Read the input data space. For each observation (instance), use the optimum 

fit approach, which is based on the Euclidean distance 

c = 𝑎𝑟𝑔min
𝑖

|| x – 𝑚𝑖 ||                                                      (3) 

to find the neuron which best matches this observation. Let x denote the training vec-

tor from the observation and 𝑚𝑖 denote a single neuron in the matrix. Update that neu-

ron to resemble that observation using the following equation: 
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𝑚𝑖(𝑡 + 1) =  𝑚𝑖(𝑡) +  ℎ𝑐𝑖(𝑡)[𝑥(𝑡} − 𝑚𝑖(𝑡)]                               (4) 

𝑚𝑖(𝑡): the weight vector before the neuron is updated. 

𝑚𝑖(𝑡 + 1): the weight vector after the neuron is updated. 

𝑥(𝑡): the training vector from the observation. 

ℎ𝑐𝑖(𝑡): the neighborhood function (a smoothing kernel defined over the lattice  

          points), defined though the following equation: 

 ℎ𝑐𝑖(𝑡) = {
 𝛼(𝑡),   𝑖 ∈ 𝑁𝑐

0,          𝑖 ∈ 𝑁𝑐
                                                                (5)         

𝑁𝑐: the neighborhood set, which decreases with time. 

𝛼(𝑡): the learning-rate factor which can be linear, exponential or inversely     

   proportional. It is a monotonically decreasing function of time (t). 

 3)  Update the immediate neighborhood of that neuron accordingly (Figure 4).  

 

Figure 4. Neighborhoods (Nc) for a rectangular matrix of cluster units: Nc = 0 in black  

     brackets, Nc = 1 in red, and Nc = 2 in blue. 
 

 

As proposed by Cheng [12], after running this algorithm with a sufficient number 

of iterations, the map will ultimately converge. However, it is difficult for users to de-
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termine how many iterations are sufficient. Another practice measure is evaluating the 

map’s quality, which can help users determine the optimal number of iterations.  

 

2.2 Evaluation of the Quality of the Map 

It is necessary to ensure that the model obtained from training is already well-

converged and reliable. In other words, the quality of the SOMs need to be measured 

first before any further operation, such as visualization, is employed. Recently, many 

different quality measures of SOMs have been proposed and argued [13], [14]. How-

ever, most of them either measure only one aspect of a SOM or are computationally 

expensive. Some include both of these drawbacks [9]. Based on map embedding accu-

racy and estimated topographic accuracy, Dr. Hamel proposed a population-based [15] 

computationally efficient statistical approach [9] to evaluate the quality of a SOM 

model. This approach is based on two populations (one from the training data set and 

the other from the neuron of the map) and evaluates the quality of a SOM by the 

measure (or magnitude) of the convergence index, which is the linear combination of 

the map embedding accuracy (convergence) and the estimated topographic accuracy.  

The map embedding accuracy, derived from the theory proposed by Yin and Alli-

son [12], is limited in that the neurons of a SOM will converge on the probability dis-

tribution of the training data [12].  

𝑒𝑎 =  
1

𝑑
∑ 𝜌𝑖

𝑑

𝑖=1

 

where  

𝜌𝑖 = {
1   if feature i is embeded,
0   otherwise,                       
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The computational complexity of the embedding accuracy is 

𝑂((𝑛 + 𝑚) × 𝑑) 

where n is the number of observations in the training data, m is the number of neurons, 

and d is the number of features in the training data. Without any exponential function, 

the above equation indicates this computation is efficient in most cases (where 𝑑 ≪

𝑛, 𝑎𝑛𝑑 𝑑 ≪ 𝑚). Although the embedding accuracy measures the same thing as quan-

tization error, it confers the advantage of indicating when statistically there is no dif-

ference between two populations (training data and neurons). 

Topographic error [9] can be defined as:  

𝑡𝑒 =  
1

𝑛
∑ 𝑒𝑟𝑟(𝑥𝑖)

𝑛

𝑖=0

 

Where 

𝑒𝑟𝑟(𝑥𝑖) = {
1  if 𝑏𝑚𝑢(𝑥𝑖) and 2𝑏𝑚𝑢(𝑥𝑖) are not neighbors.

  0  otherwise,                                                                  
 

where n is the number of observations in the training data, 𝑥𝑖 is the ith observation in 

the training data, and 𝑏𝑚𝑢(𝑥𝑖) and 2𝑏𝑚𝑢(𝑥𝑖) (bmu stands for the best matching unit) 

represent the best-matching and second best-matching unit for the training vector  𝑥𝑖. 

Accordingly, the topographic accuracy could be defined as: 

𝑡𝑎 = 1 − 𝑡𝑒 

Computing the topographic accuracy is a time-consuming task, especially for a large 

data set. To make this computation more efficient and practical, Dr. Hamel proposed 

utilizing a sample of the training data, a smaller subset of all the training data, to esti-

mate the topographic error.  
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𝑡𝑒′ =  
1

𝑠
∑ 𝑒𝑟𝑟(𝑥𝑖)

𝑠

𝑖=0

 

The estimated topographic accuracy [9] is defined as follows: 

𝑡𝑎′ = 1 − 𝑡𝑒′ 

The values of the map embedding accuracy and estimated topographic accuracy are 

numbers between 0 and 1. If the value is equal to 1, then one can interpret that the map 

has converged well or is fully organized. Dr. Hamel proposed to use the convergence 

index as defined by: 

𝑐𝑖𝑥 =  
1

2
 𝑒𝑎 +  

1

2
 𝑡𝑎′ 

which is a linear combination of the map embedding accuracy and estimated topo-

graphic accuracy to evaluate the quality of a SOM model. This approach has been im-

plemented in the R-based POPSOM package [8].  

 

2.3 R-based POPSOM Package 

The R-based POPSOM package [8] has been developed and maintained by Dr. 

Hamel and his former students since 2013. The latest version of this package is 4.2 

updated most recently on 5/31/2017. This package involves model construction, model 

evaluation and model visualization. Logically, these three functions should be execut-

ed sequentially.  

map.build is the entrance of the POPSOM package. The input of this function is 

the training data (or input space) in the form of a dataframe [16]. Each row of the 

training data is an unlabeled training observation (or instance), and each column pre-



 

12 

 

sents a feature of the observation. After a round of training, this function will generate 

an object called “map” with the following structure: 

Table 1. The structure of the “map” object. 

 

Both neurons and visual fields are outcomes of the model training (map.build 

function), and the rest of the arguments are input parameters of this function. All of 

the input parameters are free to be adjusted within a reasonable scale by the end users.  

map.convergence is the function utilized for evaluating the quality of a SOM 

model. The outcome of this function is the linear combination of map embedding ac-

curacy and estimated topographic accuracy, or two convergence components separate-

ly. The input of this function is the “map” object that is generated by map.build. There 

are two measurement options for evaluating the map embedding accuracy in this ap-

Name Description 

Data Input data space, in form of a dataframe 

labels Label for each observation of input data. 

xdim Dimension of the map. (default = 10) 

ydim Dimension of the map. (default = 5) 

alpha Learning rate, a positive real number. (default =0.3) 

Train Number of training iteration. (default = 1000) 

algorithm Selection of training engine. (default = “vsom”) 

neurons Neuron of the map, the outcome of training. 

visual The list of best match neuron for each observation. 
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proach.  One is ks-test (Kolmogorov-Smirnov convergence test) and the other is a 

combination of the variance test and mean test.  

map.starburst is used to compute and display the starburst representation of the 

SOM model. The heat map and the connected component lines generated by this func-

tion help the end user visualize the clusters in the map and the relationships between 

grids.  

map.significance computes the relative significance of each feature with respect 

to the SOM model and graphically reports it. The purpose of developing this function 

is to help the end user in making the decision as to whether or not it is necessary to 

normalize the original input data space before training.  

map.marginal plots one single dimension’s marginal probability distribution of  

the map’s neurons and the input data space. That is another aspect of the convergence 

of two populations.  

The remaining functions within the POPSOM package are follows: 

Name Description 

map.embed Evaluates how well the map models the underlying training data 

distribution. 

map.embed.ks Reports the embedding accuracy using Kolmogorov-Smirnov con-

vergence test. 

map.embed.vm Reports the embedding accuracy using the variance and mean tests. 

map.topo Reports the estimated topographic accuracy. 

map.projection Generates a table with the association of the labels with map coor-

dinates. 
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Table 2. Description of functions in the R-based POPSOM package. 

 

2.4 Other Python-based SOMs packages 

As of the writing this paper, there are 113 Python-based self-organizing map re-

lated repositories available on GitHub.  

Rank Repository Name Star Folk 

1 JustGlowing/minisom 129 43 

2 spiglerg/Kohonen_SOM_Tensorflow 32 11 

3 mpatacchiola/pyERA 22 12 

4 erogol/RSOM 21 4 

5 hamilton/SelfOrganizingMaps 20 1 

6 stephantul/somber 17 4 

7 ramarlina/som 14 8 

8 jlauron/Kohonen 13 15 

9 PragmaticLab/spark-som 7 1 

10 jgabriellima/self_organization_map 5 0 

Table 3. Top 10 most popular (most “Star”) Python-based Self-Organizing Maps  

                   repositories on GitHub (as of 01/22/2018). 

 

The top 6 packages with the highest Star value have been selected (“Star” indi-

cates how many people keep track of this repository and reflects the popularity of the 

repository) for benchmark analysis.  

1) minisom:   

URL: https://github.com/JustGlowing/minisom 

Pros: implements both stochastic training and batch training. 

map.neuron Returns the contents of a neuron at (x,y) on the map as a vector. 

map.normalize Normalizes the input data space. 

https://github.com/JustGlowing/minisom
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 Provides multiple map visualization options for the users. 

 

2) Kohonen_SOM_Tensorflow: 

URL:  

https://github.com/spiglerg/Kohonen_SOM_Tensorflow/blob/master/som.py 

Pros: exploits TensorFlow [17] (a package released by Google) for model  

training.  

 

3) pyERA 

URL: https://github.com/mpatacchiola/pyERA 

Pros: Provides an example of a SOM in which the model been applied in the  

real world. 

 

4) RSOM 

URL: https://github.com/erogol/RSOM 

Pros: Implements an extension version of SOM. 

 

5) SelfOrganizingMaps 

URL: https://github.com/hamilton/SelfOrganizingMaps 

Pros: Provides 3-D visualization of the SOM model.  

 

6) somber 

URL: https://github.com/stephantul/somber 

https://github.com/spiglerg/Kohonen_SOM_Tensorflow/blob/master/som.py
https://github.com/mpatacchiola/pyERA
https://github.com/erogol/RSOM
https://github.com/hamilton/SelfOrganizingMaps
https://github.com/stephantul/somber
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Pros: Evaluates the quality of a SOM model using topographic accuracy.  

 

Beyond the above listed packages, the others available are either not up to date or 

not popular within the user community or both. All 6 of the aforementioned most pop-

ular packages analyzed provide model construction and visualization. The “somber” 

package is the only package that has a function to measure the quality of the SOM 

model using topographic accuracy. However, the approach is very time consuming [9]. 

None of the packages include map embedding accuracy. It should be mentioned that 

all of the source codes of these packages are organized in an object-oriented pro-

gramming paradigm.  
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CHAPTER 3 

 

Methodology 

 

3.1 Migration of POPSOM Package from R to Python 

Migrating the source code of the POPSOM package from R to Python is the first 

step in implementing the SOM in Python. The goal of migration is to preserve all the 

functionalities during the entire process. There are three kinds of objects that need to 

be taken into account: 1) naming rules, 2) mathematical and statistical functions, and 

3) data manipulation.  

 

3.1.1 Naming Rules 

In R, period separated (.) is allowed as a part of a variable’s or function’s name 

which is unique to the R language. For Python, the period separated within the names 

of variables or functions needs to be changed into another acceptable sign such as un-

derscore (_). 

Both the left arrow sign (←) and the equals sign (=) are acceptable assignment 

operators in R. The left arrow sign, which is not an acceptable assignment operator in 

Python, has been applied widely within the R-based POPSOM package. Thus, each of 

these left arrow signs be substituted by the equals sign in Python.  

Finally, both R and Python are case sensitive languages. Generally, the reserved 

words in Python [2] are in lower case except “True”, “False”, and “None”, which are 
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capitalized with their first letter. All letters of these three reserved words are upper 

case in R [16].  

R Python 

NULL None 

TRUE True 

FALSE False 

Table 4. Three reserved words in R and Python. 

 

3.1.2 Mathematical and Statistical Functions 

Beyond the basic arithmetic operations addition (+), subtraction (-), multiplication 

(×), and division (÷), other mathematical and statistical operators in R and Python are 

coded differently. In R, most of the mathematical and statistical operators use either 

built-in functions [18] or a combination of operators (which start and end with the per-

centage sign (%)). In Python, most of these functions are supported by a third-party 

package such as math package or numpy package or both.  

Function R Python 

Matrix Multiplication %*% numpy.dot(x,y) 

Outer product %o% numpy.outer(x,y) 

Modulo %% % 

Integer Division %/% // 

Log log(x) math.log(x[,base]) 

Sum sum(x) math.fsum(x) 

Square Root sqrt(x) math.sqrt(x) 
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Mean mean(x) numpy.mean(x) 

Median median(x) numpy.median(x) 

Ceiling ceil(x) numpy.ceil(x) 

Table 5. Examples of mathematical and statistical functions in R and Python. 

 

3.1.3 Data Manipulation 

Both R and Python provide powerful data manipulation functions for data analy-

sis and research. R uses built-in functions to manipulate data, where as Python is pow-

ered by third-party repositories (e.g. numpy).  

Functions R Python 

Sorting Data sort(x) numpy.sort(x) 

Ranked Position order(x) numpy.argsort(x) 

Means of Column colMeans(x) numpy.true_divide(x) 

Replicate Elements rep(x,n) numpy.linspace(x,x,n) 

Table 6. Examples of data manipulation functions in R and Python. 

 

3.2 Rewriting Functions  

Although most of the mathematical and statistical functions in the R-based POP-

SOM package have counterparts in Python or third-party Python libraries, there are 

three specific statistical functions in the R-based POPSOM package that are not avail-

able in any Python built-in or third-party libraries. Hence, these functions needed to be 

constructed in Python from scratch.  
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3.2.1 Variety of T-test 

“t.test” [19], which performs a variety of t-tests, has been applied in the R-based 

POPSOM package to test the difference between the means of two data sets. One of 

the data sets comes from an input data sample, while the other one comes from the 

map. In Python, t-tests are implemented by utilizing the mean function (returns arith-

metic mean along specific axis) from the numpy [20] package and DescrStatsW (re-

turns descriptive statistics and tests with weights) and CompareMeans (returns a class 

for two sample comparison) from the statemodels [21] package. The source code of 

this function is presented in the appendix.  

 

3.2.2 F-test 

“var.test” [22] performs an F-test to test the ratio of variances of two data sets 

from an input data space and the map respectively in R. An F-test is implemented in 

Python with the help of the variance function (returns the sample variance of data) 

from the statistics package [23] and ppf (percent point function) from the scipy [24] 

package.  

 

3.2.3 Kernel Smoother for Irregular 2-D Data 

“smooth.2d” [25] is utilized to approximate the Nadaraya-Watson kernel smooth-

er for irregular 2-D data. This function is implemented in Python by utilizing the ecu-

lidean_distances function from the sklearn [26] package and the fft (Discrete Fourier 

Transform) function from the numpy [20] package.  
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3.3 Programming Paradigm Refactoring 

The formal object-oriented programming concept was introduced in the mid-

1960s [27]. Many of the modern programming languages are multi-paradigm pro-

gramming languages that support the object-oriented programming paradigm. Python 

is one of them. In the R-based POPSOM package, “map” has been defined as a class, 

and all the hyper-parameters, input arguments, and neurons are member variables of 

the class. However, all the methods are independent functions that take “map” as one 

of the arguments. In order to build a pure object-oriented programming package (con-

vert all the independent methods into member methods of the class), the Python-based 

POPSOM package was refactored from a procedural programming paradigm to an ob-

ject-oriented programming paradigm (Figure 5). After refactoring, the whole package 

was defined as a class. All of the input hyper-parameters, input arguments, and neu-

rons are still member variables of the class, the same as in the R-based packages. 

 

Figure 5. Comparison of the source code appearance of a procedural programming 

                   paradigm and an object-oriented programming paradigm. 
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All independent methods become member methods of the “map” class. Python 

reserved method “__init__” was used as a constructor for the instance, and the 

map.build name was changed to fit as it has been used as a conventional function 

name for training the model (or instance) within the Python community.  

 

3.4 Normalization 

Different from PCA (Principle Component Analysis) [28], normalization is not 

necessary in the SOM algorithm, but it may improve numerical accuracy as proposed 

by [3]. A good rule of thumb, however, is for the end user to utilize the significance 

function to graphically report the significance of each feature in order to facilitate 

making a decision as to whether or not the original input data need to be normalized 

before training.  

The normalization method has been developed and reserved in the R-based POP-

SOM package, but has never been applied to the model training. In the Python-base 

package, not only is the normalization method implemented, but it is also applied to 

the model training by adding one more argument (option) in the model initialization 

function (“__init__”).  
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Figure 6  The significance levels of the Iris dataset features. Left figure plots the  

          significance without data normalization. Right figure plots the            

          significance with data normalization.  

 

 

3.5 Embed Fortran for Training 

There are three programming languages utilized for model training in the R-based 

POPSOM package: C, R and Fortran. As a kind of imperative programming language, 

Fortran is especially suited to numeric computation and scientific computing [28]. 

Hence, in addition to Python, one more training algorithm is also implemented in 

Fortran in this project.  

Several solutions for embedding Fortran in Python have been proposed and dis-

cussed. Two of them are highly recommended. The first is to write an extension mod-

ule, then to import into Python using the import command. The suffixes of extension 

modules are different in Windows (pyd) and Unix (so). The second is calling a shared-

library subroutine directly from Python using the ctypes modules. It requires the code 

to be wrapped as a shared library. After comparison (more successful stories have 

been reported), the first solution is utilized in this project.  

The laptop used is running Windows 10 Home edition, x64-based processor, 8GB 

RAM. The version of Python is 3.6.0. The following discussions are all based on this 

development environment only.  
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Generally, there are five steps involved for the Fortran embedding: 

1. Install MinGW-64 

MinGW (Minimalist GNU for Windows) is a software development en-

vironment for creating Microsoft Windows applications. MinGW-64 is an 

improved version of MinGW which supports both 32-bit and 64-bit proces-

sors. Installation is a little tricky. All of the following configurations are only 

applied to the specific version of Python 3.6.0.  

Version Architecture Threads Exception Build Version 

6.4 x86_64 posix seh 0 

Table 7. Configurations for installing MinGW-64 on Windows 10. 

 

After successful installation, there are two more tasks: 

1) Add the MinGW-64 bin path to the system path: 

c:\mingw\mingw64\bin 

2) Create a configuration file (named “distutils.cfg”) to connect Python with 

MinGW-64: 

[build] 

Compiler = mingw32 

 

2. Install F2PY 

F2PY is a third-party Python package [29] which enables a Python script 

to call a compiled Fortran extension module. F2PY is part of the numpy pack-
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age. Since numpy is already installed, there is no need to install F2PY for this 

project.   

 

3. Install GFortran 

GFortran (or GNU Fortran) is the abbreviation for the GNU Fortran Com-

piler.  It is used to compile a source file (.f90) to an object file (extension mod-

ule).  

 

4. Compile the Fortran-extension module. 

The standard Python build system numpy.distutils supports compiling 

Fortran-extensions (.f90 file to .pyd file). A small Python program (Figure 7) 

named “build.py” has been created to generate the extension module. 

 
Figure 7. Source Code of “build.py” program 

 

Next, execute the command: python build.py build. It will generate a file 

named “vsom.pyd” which can be loaded directly.  

 

5. Test the extension file 

Execute the following command in Python prompt: 

>>>import vsom 
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If there is no error message prompt, then the extension module has been 

loaded successfully.  

 

3.6 Speed Comparison between Python and Fortran 

A comparison of the execution speeds of running the same model-training algo-

rithm upon the same data set in Python and Fortran with the same number of iterations 

are of interest.  The results are as follows:  

Iteration Python (in seconds) Fortran (in seconds) 

5000 2.158 0.055 

10000 4.204 0.05 

15000 6.632 0.06 

20000 8.938 0.06 

25000 11.811 0.062 

30000 12.504 0.077 

35000 14.787 0.076 

40000 16.503 0.082 

45000 17.645 0.122 

50000 19.559 0.099 

Table 8. Speed comparison of Python versus Fortran (as the number of iterations     

               increases linearly). 
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Figure 8. Speed comparison of Python versus Fortran (as the number of iterations 

                increases linearly). 

 

 

Iteration Python (in seconds) Fortran (in seconds) 

1000 0.44 0.05 

10000 3.91 0.06 

100000 41.1 0.17 

1000000 432.3 1.26 

10000000 ☹ 12.4 

Table 9. Speed comparison of Python versus Fortran (as the number of iterations  

              increases exponentially). 
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Figure 9. Speed comparison of Python versus Fortran (as the number of iterations  

                increases exponentially). 

 

Based on the above speed comparisons, it is obvious that Fortran is much more 

efficient than Python in numerical computations.  Table 10 reports the processing time 

(in seconds) for training the iris flower data set [10] and wheat seed data set [11] until 

the maps fully converged using Python and Fortran respectively.   

Data Set Iris Flower Wheat Seed 

Observation 150 210 

Feature 4 7 

Iteration 1000 2000 

Map Dimension 10 * 5 15 * 10 

 Python Fortran Python Fortran 

Convergence Index 0.939 0.959 0.97 0.89 

Time (Seconds) 0.459 0.041 1.05 0.08 
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Table 10. The processing time (in seconds) for training Iris Flower data and Wheat 

    Seed data using Python and Fortran. 
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CHAPTER 4 

 

RESULTS 

 

4.1 Experiment Design 

Since this project is inspired and based on the R-based POPSOM package, the en-

tire implementation of the Python-based package can be divided into migrating the R-

based package to Python-based and refactoring the source code from a procedural 

programming paradigm to an object-oriented programming paradigm. After the Py-

thon-based package was complete, it was determined that the best way to evaluate the 

correctness and quality of the Python-based package was to compare the outcome of 

each function with the outcome from the R-base package. Most functions in the pack-

age run with a non-random algorithm. Hence, it is expected that the same input would 

generate the same outcome, such as reporting the significance of each feature and plot-

ting the marginal probability distribution of neurons and input data. On the other hand, 

some algorithms run with random factors, in particular the model-training algorithm.  

 

4.1.1 Data Set Selection 

As a kind of unsupervised learning algorithm, the major task of Self-Organizing 

Maps is clustering the input data. Thus, the label of the observation is not necessary in 

the algorithm, but it will help the end user to interpret the map. The ideal data for this 

project is intuitive, easily interpreted and clustered (or categorized) by human beings 

(although professional knowledge may be required in some cases). The data should 
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have at least three-dimensional measurements (two-dimensional data can be presented 

by 2-D map without any learning). To evaluate the quality and capability of the Py-

thon-based package, two different data sets with different magnitudes of measure-

ments and observations for the experiment were selected.  

The Iris flower data set [10] (sometimes called Fisher’s or Anderson’s data set) 

introduced by Ronald Fisher in 1930s has been widely used as a “toy”/test data set 

within the machine learning and statistics communities. There are 150 observations (or 

instances) that are categorized into three species distributed evenly within the data set. 

This data set has four measurements (or attributes): the sepal length, the sepal width, 

the petal length and the petal width, all of which are measured on the same scale (in 

centimeters). The Iris data set has been embedded in R (Figure 10) and can be ac-

cessed directly.  

 

Figure 10. Accessing the Iris data set in R 

 

The Iris data set has been embedded in the scikit-learn Python package. Before 

accessing this data set in Python, the sklearn package needs to be imported at the very 

beginning of the source code. In order to represent it as a data frame (Figure 11), 

which is friendlier to the end user, the pandas package should also be imported.  



 

32 

 

 

Figure 11. Accessing and representing the Iris data set as a data frame in Python. 

 

In addition to the Iris data set, the Wheat Seed data set [11] was also selected 

from UCI machine learning repository to evaluate the Python-based package. This da-

ta set of grain measurements, which was obtained from the real word, contains 210 

observations clustered as 3 species (Kama, Rosa and Canadian), 70 elements for each. 

There are 7 measurements of main geometric features obtained by X-ray technique: 

area, perimeter, compactness, length of kernel, width of kernel, asymmetry coefficient, 

and length of kernel groove. All of them are scaled by either millimeters or square 

millimeters.  

The original Wheat Seed data are stored in either a csv file or plain text file. The 

read.csv (Figure 12) command in R and the open (Figure 13) command in Python 

were utilized to access the Wheat Seed data set.  
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Figure 12. Accessing the Wheat Seed data set in R 

 

 



 

34 

 

 

Figure 13. Accessing and representing the Wheat Seed data set as a data frame in  

                      Python 

 

 

4.2 Iris Experiment Results 

4.2.1 Initialize the Model (instantiate the Model) 

In the R-based POPSOM package, there is no independent function for initializ-

ing the model. However, after refactoring the Python-based package, it allows the user 

to use the reserved function “__init__” to initialize the model (setup the hyper-

parameters for model training): 

# Argument Description Default 

1 Xdim X-dimension of the map 10 

2 Ydim Y-dimension of the map 5 

3 Alpha Learning rate, should be a positive real number 0.3 

4 Train Number of training iterations 1000 

5 Algorithm Selection switch (Python or Fortran) som 

6 Norm Switch, apply normalization to input data space False 

Table 11. Description of __init__ function’s arguments. 
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Figure 14. Example of initializing the model in Python. 

 

Most of the arguments are easy to understand and setup. For the argument of 

“train”, which indicates the number of iterations, there is no good rule of thumb rec-

ommended. Less iterations will result in insufficient converge, while more iterations 

will increase unnecessary computational expense. Examining the quality of the map 

after each training is the best way to determine the optimal number of iterations. For 

the Iris data set, 1000 iterations will return better than a 0.9 convergence index in most 

instances, which is acceptable for this project.  

 

4.2.2 Fit the data 

The R-based package merges the initialization and fitting the data into one func-

tion, called map.build, while the Python-based package has an independent fitting data 

function: fit. The fit function only has two arguments, data and labels. This label is dif-

ferent with the one in other supervised algorithms. In the SOM algorithm, labels are 

not involved in the training process. They are only used for labeling the grid of the 

map after training.  
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Figure 15. Example of fitting the Iris data and labels to the SOM model. 

 

4.2.3 Report the Significance of Each Feature 

The significance of each feature can be reported in the form of either a vector 

(Figure 16) or a graph (Figure 17) by switching graphics to True (which is default) or 

False respectively.  

 

Figure 16. Reporting the significance of each feature by vector for the Iris data. 

 

Figure 17. Graphically reporting the significance of each feature for the Iris data. 
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4.2.4 Report the map convergence index 

The convergence index is a linear combination of the map embedding accuracy 

and the estimated topographic accuracy (Figure 18, 19, 20, 21). It is a criteria for eval-

uating the quality of the map [4] (or model). There are four arguments in this function: 

# Argument Description Default 

1 conf_int Confidence interval of the quality assessment 0.95 

2 K 

Sample size used for the estimated topographic accu-

racy computation 

50 

3 verb 

True: report the map embedding accuracy and esti-

mated topographic accuracy separately; 

False: report the linear combination of map embed-

ding accuracy and estimated topographic accuracy. 

False 

4 ks 

True: use the ks-test to report the map embedding ac-

curacy. 

False: use the variance and mean tests to report the 

map embedding accuracy. 

False 

Table 12. Description of convergence function’s arguments. 

 

 

Figure 18. Reporting the convergence index of the map with default arguments. 
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Figure 19. Reporting the convergence index of the map by selecting 100 samples            

                  for the estimated topographic accuracy. 

 

 

Figure 20. Reporting the map embedding accuracy and the estimated  

                  topographic accuracy separately. 

 

 

Figure 21. Reporting the convergence index of the map with the ks-test approach  

   for the map embedding accuracy. 

 

 

4.2.5 Report the Map Embedding Accuracy 

Report the map embedding accuracy using either the ks-test or the variance and 

mean tests (Figure 22, 23).  

# Argument Description Default 

1 conf_int Confidence interval of the quality assessment 0.95 

2 verb True: report the map embedding accuracy and esti-

mated topographic accuracy separately; 

False: report the linear combination of map embed-

ding accuracy and estimated topographic accuracy. 

False 

3 ks True: use the ks-test to report the map embedding ac-

curacy. 

False 
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False: use the variance and mean tests to report the 

map embedding accuracy. 

Table 13. Description of embed function’s arguments. 

 

 

Figure 22. Reporting the map embedding accuracy using the variance and mean  

   tests. 

 

 

Figure 23. Reporting the map embedding accuracy using ks-test. 

 

4.2.6 Report the Estimated Topographic Accuracy 

Estimated topographic accuracy is a part of the convergence index. It also can be 

reported independently as well for this project (Figure 24, 25, 26, 27). As discussed in 

[9], evaluating the SOMs topographic accuracy by using random samples instead of all 

available input data is a reliably computational and efficient statistical approach.   

# Argument Description Default 

1 conf_int Confidence interval of the quality assessment 0.95 

2 

k 

Sample size used for the estimated topographic accu-

racy computation 

50 

3 verb True: report the map embedding accuracy and esti- False 
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mated topographic accuracy separately; 

False: report the linear combination of map embed-

ding accuracy and estimated topographic accuracy. 

4 

interval 

True: confidence interval is computed 

False: confidence interval is not computed 

True 

Table 14. Description of topo function’s arguments. 

 

 

Figure 24. Reporting the estimated topographic accuracy with the default  

   argument’s value. 

 

 

Figure 25. Reporting the estimated topographic accuracy with k=100. 

 

 

Figure 26. Reporting a vector of individual feature accuracies. 

 

Figure 27. Reporting the estimated topographic accuracy without computing the  
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       confidence interval. 

 

4.2.7 Starburst Visualization of the Model 

Plotting the starburst representation of the SOM model is the most important 

function in the POPSOM package. This function plots a 2-D heat map representation 

(Figure 28, 29) based on the model that satisfies the user. In addition, this function al-

so plots the connected component lines over the heat map, which makes it easy for 

users to identify the center of clusters and the associated boundaries. 

# Argument Description Default 

1 explicit 

Control the shape of connected components 

True: show exact connected components. 

False: all nodes are connected to their centroid 

node. 

False 

2 smoothing Control the smoothing lever of the U-Matrix 2 

3 merge_clusters Starburst clusters are merged together. True 

4 merge_range 

The percentage of a certain distance in the code 

to determine whether components are closer to 

their centroids or instead centroids are closer to 

each other. 

0.25 

Table 15. Description of starburst function’s arguments. 
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Figure 28. Starburst representation of the SOM model with default argument values. 

      Connected component lines represent that all nodes are connected to the  

      center node. 
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Figure 29. Starburst representation of the SOM model. Connected component lines 

       represent the exact connected components. 

 

4.2.8 Visualization of the Marginal Probability Distribution of the Feature 

This function shows the marginal probability distribution of the neurons and the 

input data. The density of the training data frame and the neuron density of the same 

dimension (or index) are to be overlaid on the plot (Figure 31). The more overlaid 

these are indicates the higher quality of the model. The only argument of this function 

is either the index of measurement (such as 0) or the name of the measurement (such 

as "sepal length (cm)") as follows: 

  

Figure 30. Reporting the marginal probability distribution of the first  

   measurement by index or attribute name.  
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Figure 31. Marginal probability distributions of each attribute of the Iris data. 

 

4.2.9 Projection 

This function returns a table which reports the coordinate (location) of each ob-

servation on the map (Figure 32).  
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Figure 32. Reporting the coordinate of each observation on the map. 

 

4.2.10 Neuron 

This function returns the content of the observation by given coordinates (Figure 

33). 

 

Figure 33. Reporting the content of the observation by given coordinates.  

 

4.3 Wheat Seed Experiment Results 

4.3.1 Initialize the Model (instantiate the Model) 

Since there are 210 observations in the Wheat Seed data set, a larger (15 * 10) 

map is used to represent the model (Figure 34).  

 

Figure 34. Example of initializing the model in Python.  
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4.3.2 Fit the data 

The raw data of the Wheat Seed data set are stored in the text file without the 

header. The data was loaded from the text file and the attribute name was inserted 

manually (Figure 35).  

 

Figure 35. Fitting the Wheat Seed data and labels to the model. 

 

4.3.3 Report the Significance of Each Feature 

 

Figure 36. Reporting the significance of each feature by vector for the Wheat  

   Seed data. 
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Figure 37. Graphically reporting the significance of each feature for the Wheat Seed 

         data. 

 

4.3.4 Report the map convergence index 

 

Figure 38. Reporting the convergence index of the map with arguments equal to 

    default values. 

 

 

Figure 39. Reporting the convergence index of the map by selecting 100 samples  

   for estimated topographic accuracy.  
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Figure 40. Reporting the map embedding accuracy and estimated topographic  

   accuracy separately. 

 

 

Figure 41. Reporting the convergence index of the map with the ks-test approach 

                   for embedding accuracy. 

 

4.3.5 Report the Map Embedding Accuracy 

 

Figure 42. Reporting the map embedding accuracy using the variance and mean  

   tests. 

 

 

Figure 43. Reporting the map embedding accuracy using the ks-test. 

 

4.3.6 Report the Estimated Topographic Accuracy 

 

Figure 44. Reporting the estimated topographic accuracy with arguments equal 

  to the default value. 
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Figure 45. Reporting the estimated topographic accuracy with k=100. 

 

 

Figure 46. Reporting a vector of individual feature accuracies. 

 

 

Figure 47. Reporting the estimated topographic accuracy without computing the  

 confidence interval. 
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4.3.7 Starburst visualization of the model 

 

Figure 48. Starburst representation of the SOM model with arguments equal to default  

       values. Connected component lines represent that all nodes are connected  

       to the center node. 
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Figure 49. Starburst representation of the SOM model. Connected component lines  

         represent exact connected components. 

 

4.3.8 Visualization of the Marginal Probability Distribution of the Feature 

  

Figure 50. Reporting the marginal probability distribution of the second  

   measurement by the index or attribute name.  

 

 

 

 

 

 



 

52 

 

 

 

 

 

Figure 51. Marginal probability distribution of each attribute of the Wheat Seed  

 data. 
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4.3.9 Projection 

 

Figure 52. Reporting the location of each observation on the map. 

 

4.3.10 Neuron 

 

Figure 53. Reporting the content of the observation by given coordinates. 

 

4.4 Evaluating the Correctness of Python-based Package.  

The R-based POPSOM package has been developed and verified, and this Py-

thon-based package was derived from it. Thus, the best way to evaluate the correctness 

of the Python-based package is to measure the distance between the R-based package 

and the Python-based package results. Three sophisticated functions from the package 
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were utilized to demonstrate this comparison: model training, starburst representation, 

and visualization of marginal probability distribution.  

 

4.4.1 Evaluating the Model Training Function 

The R-based package used map.build to train the model, while the Python-based 

package used __init__ and fit functions to complete this same task. There are two ran-

dom factors within the algorithm: 1) randomly initialized the neurons at the beginning 

and 2) random selection of a sample from the input data space for training. Due to 

these two random factors, it is not feasible to expect that the same training data will 

generate exactly the same neurons from both the R and Python functions. In order to 

evaluate the correctness of the Python program based on the two neurons generated, 

three statistical approaches have been proposed and applied in this project.  

1) Measuring the average difference of vectors between the two neurons with fol-

lowing formula,  

 𝑎𝑣𝑒 =  
∑|𝑊𝑅 − 𝑊𝑃|

𝐷𝑁 ∗ 𝐹𝑁
 

WR: the single weight vector from R function. 

WP: the single weight vector from Python function. 

DN: the dimension of the neurons. 

FN: the number of features. 

The average difference should be approximately equal to 0 if the two neurons are 

drawn from the same input data space. The following chart represents the average dif-

ferences of vectors between two neurons during the training.  
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Figure 54. The average difference of vectors between two neurons. 

 

As can be clearly seen, the average difference descends to 0.2 at the end of the train-

ing. This result fulfills the expectation 

 

2) Measuring the ratio of the variances from the two neurons. [9], [30] 
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2: The values of the variance from each neuron that have been generated by R 

and Python function respectively. 

𝑓𝛼

2
,𝑛1−1,𝑛2−1: The F distribution with n1 - 1 and n2 – 1 degrees of freedom. 

n1, n2: the number of neurons generated by R and Python functions. 

 

The ratio should be approximately equal to 1 if the two neurons are drawn from 

the same input space. The following ratio of each features’ variances and correspond-

ing 95% confidence intervals were obtained from the Iris data experiments: 
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Lower bound 0.579149 0.582138 0.573727 0.582895 

Ratio 1.020570 1.025837 1.011014 1.027170 

Upper bound 1.798437 1.807719 1.781599 1.810068 

Table 16. The ratio of the variance between two neurons 

 

This result reveals that the two neurons have very similar distributions since all 4 rati-

os reported are not significantly different from 1. 

 

3) Measuring the difference of the means of two neurons. 

𝝁𝟏 −  𝝁𝟐 > (𝒙𝟏̅̅ ̅ −  𝒙𝟐̅̅ ̅ ) −  𝒛𝜶
𝟐

 ∙  √
𝝈𝟏

𝟐

𝒏𝟏
+  

𝝈𝟐
𝟐

𝒏𝟐
 

𝝁𝟏 −  𝝁𝟐 < (𝒙𝟏̅̅ ̅ −  𝒙𝟐̅̅ ̅ ) +  𝒛𝜶
𝟐

 ∙  √
𝝈𝟏

𝟐

𝒏𝟏
+  

𝝈𝟐
𝟐

𝒏𝟐
 

The following mean differences were obtained from Iris data experiments report-

ed with the corresponding 95% confidence intervals (𝛼 = 0.05): 

 

Lower bound -0.305903 -0.117114 -0.579569 -0.248382 

Difference -0.060282 -0.007240 -0.044441 -0.005211 

Upper bound 0.185339 0.102633 0.490687 0.237959 

Table 17. The difference of means between two neurons 

 

These results show that 0 falls within each confidence interval obtained by apply-

ing the above formulas.  This indicates that there is no statistical difference in the 

means; the means of the two neurons are the same.  

Based on the above statistical analysis, it is apparent that each feature in the two 

neurons share the same distribution and the same means, and the average difference 
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between them is closed to 0. Since all the criteria are fulfilled, this evidence supports 

the hypothesis that the Python package is working in the same way as the R package. 

 

4.4.2 Evaluating the Starburst Representation of the SOM Model 

Based on the same neurons and visual (the outcome from model training func-

tion), and with the same value of arguments, the starburst function from the R-based 

and Python-based packages expect to report the same heat map and connected compo-

nents as well. In order to guarantee the input consistency, the model is trained in the 

R-based POPSOM package, and then the neurons and visual result are shared with the 

Python-based package. Results are plotted as starburst representations of the model by 

the R-based package (Figure 57) and the Python-based package (Figure 58) respec-

tively as follow.  

 

Figure 55. Starburst Representation of the SOM model in R. 
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Figure 56. Starburst Representation of the SOM model in Python. 

 

It is clear by visual comparison of the starburst representations that the heat map 

and connected components generated by R and Python are exactly the same.  

 

4.4.3 Evaluating the Density Plot Function.  

Plotting the density of training data overlaid with the neurons density for the same 

features is easy for the user to interpret the quality of the map. Plotting the same densi-

ty representation by different programs (R-based and Python-based) is the best way to 

reveal any differences between the two programs. The following are side-by-side dis-

plays of the density plots from both the R-based and Python-based packages for each 

feature of the Iris data set (Figure 59). 
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Figure 57. Plots of the marginal probability distribution of each feature of the Iris data  

      set.  R-based results are on the left, and Python-based results are on the  

      right. 
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These four groups of density plots are evidence that there is little difference be-

tween the R-based package and the Python-based package for this function. And, this 

also indicates the Python-based package is working properly as the R-based package is 

validated as reliable and consistent.  
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CHAPTER 5 

 

CONCLUSION 

5.1 Conclusions 

Compared with other existing SOM packages in the public repository, the R-

based POPSOM package can be thought of as a one-stop solution for the Self-

Organizing Maps. Besides the basic model construction and visualization function, it 

also provides a computationally efficient model evaluation function. This function 

evaluates the quality of the model in regards to the map embedding accuracy and es-

timated topographic accuracy at the same time. With the purpose of sharing the benefit 

of the R-based POPSOM package with Python users, this project successfully mi-

grates the entire R-based POPSOM package into the Python-based package.  Two dif-

ferent data sets (the Iris data set and the Wheat Seed data set) with different features 

from the UCI machine learning repository were utilized to demonstrate the function of 

the Python-based package. In addition to migrating the functions within the package, 

the entire package was refactored into an object-oriented programming paradigm and 

required splitting the map.build function into __init__ and fit functions, which are both 

conventional function names in machine learning community. Furthermore, to guaran-

tee the correctness and reliability of the Python-based package, the Python-based 

package was verified by utilizing three statistical approaches that are based on specific 

aforementioned comparisons of the outcomes from the R-based package and the Py-

thon-based package. The result of this benchmark is convincing evidence that the Py-

thon-based package is as trustable as the R-based package.  
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5.2 Future Works 

5.2.1 Submit the Python-based Package to Public Repository 

With the purpose of benefiting Python users with the SOM algorithm, the R-

based POPSOM package has been distributed as free software, so that everyone can 

use, modify and redistribute it under the terms of the GNU General Public License 

(published by the Free Software Foundation). PyPI (the Python Package Index) is a 

public repository of software for the Python programming language. It contains 

128882 packages as of 2/7/2018. Submitting the Python-based package used here to 

the PyPI community will allow Python users to utilize these findings in their research.  

In addition, the Python-based package can be published on GitHub as open-

source software to increase exposure to it as the R-based POPSOM package has been 

added for R users.  

 

5.2.2 Using animation to simulate the formation of the model. 

Currently, what is obtained from the POPSOM package is a graphical report 

(starburst representation) of a SOM model. Although the algorithm is not difficult to 

understand, the end users without basic quantitative knowledge still view this algo-

rithm as a black box and might wonder what is happening during the training. Present-

ing the process of the heat map formation may give the user knowledge of the internal 

mechanisms and make the magical box more transparent.  This, in turn, gives evidence 

to the end user that the algorithm is not a magic trick, but rather a reliable, predicable 

and replicable process.  

  



 

63 

 

LIST OF REFERENCE 

 

[1] R Core Team, R: A Language and Environment for Statistical Computing. Vienna, 

Austria, R Foundation for Statistical Computing, 2017. 

[2] Guido van Rossum, Python Programming Language, 2014. 

[3] T. Kohonen, Self-organizing maps, Third edition.. ed. Berlin ; New York, Berlin ; 

New York : Springer, 2001. 

[4] G.T. Breard, "Evaluating self-organizing map quality measures as convergence 

criteria," Evaluating SOM quality measuresThesis (M.S.)--University of Rhode Island, 

2017 2017. 

[5] B.H. Ott, "A convergence criterion for self-organizing 

maps,"DigitalCommons@URI 2012. 

[6] V. Moosavi, S. Packmann and I. Vallés, "A python library for self organizing map 

(SOM),", 1/17/ 2018. 

[7] Peter Wittek, Shi Chao Gao, Ik Soo Lim and Li Zhao, "Somoclu: An ecient paral-

lel library for self-organizing maps,", 5/7/ 2013. 

[8] Lutz Hamel, Benjamin Ott, Greg Breard,Robert Tatoian, Vishakh Gopu, "Pop-

som,", vol. 4.2 2017. 

[9] L. Hamel, SOM Quality Measures An Efficient Statistical 

Approach, 2017. 

[10] Anonymous UCI machine learning repository: Iris data set [Online]. available: 

http://archive.ics.uci.edu/ml/datasets/Iris. 2018 

[11] Anonymous UCI machine learning repository: Seeds Data Set [Online]. available: 

http://archive.ics.uci.edu/ml/datasets/seeds. 2018 

[12] H. Yin and N.M. Allinson, "On the distribution and convergence of feature space 

in self-organizing maps," Neural Comput., vol. 7, no. 6, pp. 1178-1187 1995. 

[13] R. Mayer, R. Neumayer, D. Baum and A. Rauber, "Analytic comparison of self-

organising maps," Advances in Self-Organizing Maps, pp. 182-190 2009. 

[14] G. Pölzlbauer, Survey and comparison of quality measures for self-organizing 

maps, na, 2004. 

http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/seeds


 

64 

 

[15] L. Hamel and B. Ott, "A population based convergence criterion for self-

organizing maps," in Proceedings of the International Conference on Data Mining 

(DMIN), 2012, pp. 1. 

[16] M.L. Rizzo, Statistical computing with R. Boca Raton [u.a.], Chapman & 

Hall/CRC, 2008. 

[17] P. Goldsborough, "A tour of TensorFlow," 2016. 

[18] A. Ohri, Python for R Users. Somerset, John Wiley & Sons, Incorporated, 2017. 

[19] Anonymous Student's T-Test [Online]. available: 

https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/t.test. 2018 

[20] Eric Jones, Travis Oliphant and Pearu Peterson. (-). Open source scientific tools 

for Python [Online]. available: http://www.scipy.org/. 2018 

[21] Anonymous Python statsmodels [Online]. available: 

http://www.statsmodels.org/stable/index.html. 2018 

[22] Anonymous Var Test [Online]. available: 

https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/var.test. 2018 

[23] Anonymous Python Statistics [Online]. available: 

https://docs.python.org/3/library/statistics.html. 2018 

[24] Anonymous Python Scipy [Online]. available: https://www.scipy.org/. 2018 

[25] Anonymous Kernel Smoother For Irregular 2-D Data [Online]. available: 

https://www.rdocumentation.org/packages/fields/versions/9.0/topics/smooth.2d. 2018 

[26] Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. 

and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. 

and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. 

and Duchesnay, E., "Scikit-learn: Machine learning in python," Journal of Machine 

Learning Research, vol. 12, pp. 2830 2011. 

[27] M. Abadi and Luca Cardelli, A Theory of Objects, Springer Verlag, 1998. 

[28] K. Pearson. On Lines and Planes of Closest Fit to Systems of Points in Space. 

Philosophical Magazine. pp. 559–572. 

[29] Magnus H-S Dahle, "A quick guide on how to use the fortran-to-python (F2PY) 

module,", Feb. 2015. 

https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/t.test
http://www.scipy.org/
http://www.statsmodels.org/stable/index.html
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/var.test
https://docs.python.org/3/library/statistics.html
https://www.scipy.org/
https://www.rdocumentation.org/packages/fields/versions/9.0/topics/smooth.2d


 

65 

 

[30] I. Miller, John E. Freund's mathematical statistics with applications, 7th ed. / Ir-

win Miller, Marylees Miller.. ed. Upper Saddle River, NJ, Upper Saddle River, NJ : 

Prentice Hall, 2004. 

 



 

66 

 

BIBLIOGRAPHY 

 

"Discrete Fourier Transform," , accessed 1/31/, 

2018, https://docs.scipy.org/doc/numpy/reference/routines.fft.html. 

"Fortran Pgoramming Language," , accessed 1/31/, 

2018, https://en.wikipedia.org/wiki/Fortran. 

"Kernel Smoother For Irregular 2-D Data," , accessed 1/30/, 

2018, https://www.rdocumentation.org/packages/fields/versions/9.0/topics/smo

oth.2d. 

"Math — Mathematical functions," , accessed 1/29/, 

2018, https://docs.python.org/3/library/math.html. 

"MinGW," , accessed 2/1/, 2018, https://en.wikipedia.org/wiki/MinGW#MinGW-w64. 

"numpy.mean," , accessed 1/30/, 2018, https://docs.scipy.org/doc/numpy-

1.13.0/reference/generated/numpy.mean.html. 

"PYPI Python Package Index," , accessed 2/7/, 2018, https://pypi.python.org/pypi. 

"Python Keywords and Identifier," , accessed 1/29/, 

2018, https://www.programiz.com/python-programming/keywords-identifier. 

"Python Scipy," , accessed 1/30/, 2018, https://www.scipy.org/. 

"Python Statistics," , accessed 1/30/, 

2018, https://docs.python.org/3/library/statistics.html. 

"Python statsmodels," , accessed 1/30/, 

2018, http://www.statsmodels.org/stable/index.html. 

"Python Statsmodels CompareMeans," , accessed 1/30/, 

2018, http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.

CompareMeans.html. 

https://docs.scipy.org/doc/numpy/reference/routines.fft.html
https://en.wikipedia.org/wiki/Fortran
https://www.rdocumentation.org/packages/fields/versions/9.0/topics/smooth.2d
https://www.rdocumentation.org/packages/fields/versions/9.0/topics/smooth.2d
https://docs.python.org/3/library/math.html
https://en.wikipedia.org/wiki/MinGW#MinGW-w64
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.mean.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.mean.html
https://pypi.python.org/pypi
https://www.programiz.com/python-programming/keywords-identifier
https://www.scipy.org/
https://docs.python.org/3/library/statistics.html
http://www.statsmodels.org/stable/index.html
http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.CompareMeans.html
http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.CompareMeans.html


 

67 

 

"Python Statsmodels DescrStatsW," , accessed 1/30/, 

2018, http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.

DescrStatsW.html. 

"Reserved Words in R," , accessed 1/29/, 2018, https://stat.ethz.ch/R-manual/R-

devel/library/base/html/Reserved.html. 

"Scikit-learn," , accessed 1/31/, 2018, http://scikit-learn.org/stable/. 

"Student's t-test," , accessed 1/30/, 2018, https://en.wikipedia.org/wiki/Student%27s_t-

test. 

"Student's T-Test," , accessed 1/30/, 

2018, https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/t.te

st. 

"UCI machine learning repository: Iris data set," , accessed Jan,16th, 

2018, http://archive.ics.uci.edu/ml/datasets/Iris. 

"UCI machine learning repository: Seeds Data Set," , accessed 2/3/, 

2018, http://archive.ics.uci.edu/ml/datasets/seeds. 

"UCI machine learning repository: Wine data set," , accessed Jan,16th, 

2018, http://archive.ics.uci.edu/ml/datasets/Wine. 

"UCI machine learning repository: Wine Quality Data Set&nbsp;" , accessed 2/2/, 

2018, http://archive.ics.uci.edu/ml/datasets/Wine+Quality. 

"Var Test," , accessed 1/30/, 

2018, https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/var

.test. 

M. Abadi and Luca Cardelli, A Theory of Objects:Springer Verlag, 1998. 

G. T. Breard, "Evaluating self-organizing map quality measures as convergence crite-

ria,"Thesis (M.S.)--University of Rhode Island, 2017, , 2017. 

http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.DescrStatsW.html
http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.DescrStatsW.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html
http://scikit-learn.org/stable/
https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/Student%27s_t-test
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/t.test
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/t.test
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/seeds
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/var.test
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/var.test


 

68 

 

D. H. Brown, Cartogram data projection for self-organizing 

maps:DigitalCommons@URI, 2012. 

Y. Cheng, Neural Computation 1997. 

P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, Modeling wine preferences 

by data mining from physicochemical properties 2009. 

Eric Jones, Travis Oliphant and Pearu Peterson, "Open source scientific tools for Py-

thon," , accessed 1/30/, 2018, http://www.scipy.org/. 

P. Goldsborough. "A Tour of TensorFlow." . 2016. 

Guido van Rossum, Python Programming Language 2014. 

L. Hamel, SOM Quality Measures An Efficient Statistical 

Approach 2017. 

L. Hamel and C. Brown, Practical Tools for Self-Organizing Maps. 

L. Hamel and B. Ott, "A population based convergence criterion for self-organizing 

maps," in Proceedings of the International Conference on Data Mining 

(DMIN): The Steering Committee of The World Congress in Computer Sci-

ence, Computer Engineering and Applied Computing (WorldComp)2012, pp. 1. 

T. Kohonen, Self-organizing maps, Third edition.. ed. Berlin ; New York:Berlin ; New 

York : Springer, 2001. 

E. Loh. "The Ideal HPC Programming Language." Queue, vol. 8, no. 6 , pp. 30-38, 

Jun 1,. 2010. 

doi:10.1145/1810226.1820518. http://dl.acm.org/citation.cfm?id=1820518. 

Magnus H-S Dahle, A Quick Guide on How to Use the Fortran-to-Python (F2PY) 

Module. 

Małgorzata Charytanowicz, Jerzy Niewczas, Piotr A. Kowalski, Piotr Kulczycki, 

Szymon Łukasik, and Sławomir Z. ak, A Complete Gradient Clustering Algo-

rithm for Features Analysis of X-ray Images. 

http://www.scipy.org/
http://dl.acm.org/citation.cfm?id=1820518


 

69 

 

R. Mayer, R. Neumayer, D. Baum, and A. Rauber. "Analytic comparison of self-

organising maps." Advances in Self-Organizing Maps, pp. 182-190. 2009. 

I. Miller, John E. Freund's mathematical statistics with applications, 7th ed. / Irwin Miller, 

Marylees Miller.. ed. Upper Saddle River, NJ:Upper Saddle River, NJ : Prentice 

Hall, 2004. 

V. Moosavi, S. Packmann, and I. Vallés, A Python Library for Self Organizing Map 

(SOM). 

A. Ohri, Python for R Users. Somerset:John Wiley & Sons, Incorporated, 2017. 

K. Pearson. "On Lines and Planes of Closest Fit to Systems of Points in 

Space." Philosophical Magazine, pp. 559–572. 1908. 

Pearu Peterson, "F2PY Users Guide and Reference Manual," , accessed 2/1/, 

2018, https://docs.scipy.org/doc/numpy-dev/f2py/. 

Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and 

Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. 

and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and 

Perrot, M. and Duchesnay, E. "Scikit-learn: Machine Learning in Py-

thon." Journal of Machine Learning Research, vol. 12, pp. 2830. 2011. 

Peter Wittek, Shi Chao Gao, Ik Soo Lim, and Li Zhao, Somoclu: An Ecient Parallel 

Library for Self-Organizing Maps. 

G. Pölzlbauer, Survey and comparison of quality measures for self-organizing 

maps:na, 2004. 

R Core Team, R: A Language and Environment for Statistical Computing. Vienna, 

Austria:R Foundation for Statistical Computing, 2017. 

M. L. Rizzo, Statistical computing with R. Boca Raton [u.a.]:Chapman & Hall/CRC, 

2008. 

N. J. Salkind, "Encyclopedia of research design," Sage. 

Yan Jun, R-based SOM Package. https://github.com/cran/som. 

https://docs.scipy.org/doc/numpy-dev/f2py/
https://github.com/cran/som


 

70 

 

H. Yin and N. M. Allinson. "On the distribution and convergence of feature space in 

self-organizing maps." Neural Comput., vol. 7, no. 6 , pp. 1178-1187. 1995. 


