
University of Rhode Island
DigitalCommons@URI

Open Access Master's Theses

2019

AN INTELLIGENT DESIGN EXPLORER FOR
NEW VIOLIN SHAPES
Hao Wang
University of Rhode Island, hao_wang@my.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/theses

This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by
an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.

Recommended Citation
Wang, Hao, "AN INTELLIGENT DESIGN EXPLORER FOR NEW VIOLIN SHAPES" (2019). Open Access Master's Theses. Paper
1492.
https://digitalcommons.uri.edu/theses/1492

https://digitalcommons.uri.edu?utm_source=digitalcommons.uri.edu%2Ftheses%2F1492&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1492&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1492&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1492?utm_source=digitalcommons.uri.edu%2Ftheses%2F1492&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@etal.uri.edu

AN INTELLIGENT DESIGN EXPLORER FOR NEW VIOLIN SHAPES

BY

HAO WANG

MASTER OF SCIENCE
IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2019

 MASTER OF SCIENCE THESIS

OF

HAO WANG

APPROVED:

Thesis Committee:

Major Professor Lutz Hamel

Jean-Yves Hervé

Ben Anderson

Nasser H. Zawia
 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2019

ABSTRACT

The origins of evolutionary computation can be traced back to the late 1950s and

started to receive significant attention during the 1980s. Pioneers have done a lot of

research by using evolutionary computation, especially in the field of design, music,

and art. This article focuses on the violin outline design, which is a very tiny segment

of design. By using the evolution strategies algorithm, the violin explorer, a violin

design tool has been developed. Meanwhile, by introducing user interaction steps, the

violin explorer became a creative evolutionary system. With this system, ordinary

people without any design knowledge can create their favorite violin outline by simple

choices.

In addition, after reviewed by Institutional Review Board, an anonymous

experiment was held to verify the usability of the violin explorer. Hundreds of

participants with different ages and backgrounds were invited to use the violin

explorer. During the anonymous experiment, the violin explorer generated a lot of

creative violin outline designs, which are different from the original violin. Finally, the

experimental data shows that there might be a connection between the age and

background of the participants and their design.

iii

ACKNOWLEDGMENTS

I would like to acknowledge many individuals for helping me during my master’s

study at the University of Rhode Island. Particularly, I would like to express my

sincere gratitude to my advisor Dr. Lutz Hamel to provide the opportunity, knowledge,

and support that enabled this study. I would also like to thank him for his continuous

support, patience, and guidance throughout the past two years.

I would also like to thank my committee members Dr. Jean-Yves Hervé and Dr.

Ben Anderson for generously offering their time, suggestions and goodwill throughout

the preparation and review of this document.

A special thanks to my family – my wife Qingyu, and my newborn son Damon –

for their love and support. I would also like to thank my parents and parents-in-law for

their love and prayers.

iv

TABLE OF CONTENTS

ABSTRACT...ii

ACKNOWLEDGMENTS...iii

TABLE OF CONTENTS ..iv

LIST OF TABLES ..vii

LIST OF FIGURES...viii

CHAPTER 1 ..1

INTRODUCTION...1

CHAPTER 2 ..5

REVIEW OF LITERATURE ..5

2.1 Evolutionary Computation..5

2.2 Evolutionary Algorithm ..6

2.3 Creative Evolutionary System ..11

2.4 Evolutionary Computation Case (Engineering Design) ...12

2.5 Evolutionary Computation Case (Music) ...14

2.6 Evolutionary Computation Case (Art) ..16

CHAPTER 3 ..18

METHODOLOGY ...18

3.1 A Framework for the Violin Explorer ..18

3.1.1 An Evolutionary Algorithm ...18

3.1.2 A Genetic Representation...19

3.1.3 An Embryogeny Using Components..21

v

3.1.4 A Phenotype Representation ..22

3.1.5 Solution Evaluate ..22

3.2 Algorithm of the Violin Explorer ...23

3.2.1 Evolutionary Strategies Scheme...24

3.2.2 Genotype Representation Define..25

3.2.3 Recombination ...30

3.2.4 Mutation ...31

3.2.5 Selection ..33

3.2.6 Generate Violin Images..33

CHAPTER 4 ..35

Results ..35

4.1 Experiments Setup ..35

4.2 Experiments Results..36

4.2.1 Experiment Group 1 ...37

4.2.2 Experiment Group 2 ...39

4.2.3 Experiment Group 3 ...41

4.2.4 Experiment Group 4 ...43

4.3 Results Compare ...45

CHAPTER 5 ..51

CONCLUSION ...51

5.1 Conclusion ..51

vi

5.2 Future Work ..52

APPENDICES ...53

Source code(ViolinGenerator.java) ..53

Source code(ES.java) ..66

Source code(result.java)..69

Source code(DigitalamatiService.java)...70

CitiCompletionReport...71

IRBNetDocument ...72

LIST OF REFERENCE ...74

BIBLIOGRAPHY ...76

vii

LIST OF TABLES

TABLE PAGE

Table 1. The violin explorer genotype representation models.....................................27

Table 2. Four experimental groups ..35

Table 3. The average genotype representation of each group45

Table 4. The difference between each group and standard design46

Table 5. The mean and standard deviation of each group ...47

Table 6. The average of the standard deviation of each group49

viii

LIST OF FIGURES

FIGURE PAGE

Figure 1. Evolutionary computation has its roots in computer science and

evolutionary biology ...5

Figure 2. Mapping genotypes in the search space to phenotypes in the solution space .7

Figure 3. Genetic algorithm ..8

Figure 4. The behavior of the crossover operator in GP...9

Figure 5. Evolution strategies ...10

Figure 6. Evolution programming...11

Figure 7. The five elements of the framework for creative evolutionary systems12

Figure 8. Yacht hulls...13

Figure 9. The genetic cycle of Vox Populi program...14

Figure 10. Tree structure genomes..16

Figure 11. Creative images ...17

Figure 12. Original_Violin..20

Figure 13. The location of Point q ..20

Figure 14. New_Violin ...21

Figure 15. New location of Point q ...21

Figure 16. The phenotype representation of the violin explorer...................................22

Figure 17. The whole processes of the violin explorer ...24

Figure 18. The scope of points..26

Figure 19. The effect of Point q value ..27

Figure 20. The effect of Point O value ...28

ix

Figure 21. The effect of Point e value...29

Figure 22. The effect of Point c value...29

Figure 23. The effect of Point P value ..30

Figure 24. Recombination process..30

Figure 25. Recombination process..31

Figure 26. Mutate each element within the genotype representation32

Figure 27. Additions or subtraction ..32

Figure 28. Reduce the mutation strength ..33

Figure 29. Generate new violin drawing code ..33

Figure 30. New violin outlines..37

Figure 31. The designs of experiment Group 1 ..38

Figure 32. The average outline of Group 1...39

Figure 33. The designs of experiment Group 2 ..40

Figure 34. The average outline of Group 2...41

Figure 35. The designs of experiment Group 3 ..42

Figure 36. The average outline of Group 3...43

Figure 37. The designs of experiment Group 4 ..44

Figure 38. The average outline of Group 4...45

Figure 39. Shapes at 1 standard deviation (μ-σ) ...48

Figure 40. Shapes at 1 standard deviation (μ+σ) ..48

Figure 41. The average of the standard deviation of each group..................................49

Figure 42. The difference between the underlying theme of violin outline and the

original violin..50

1

CHAPTER 1

INTRODUCTION

In the age of technology, the interest in combined human intelligence with the

power of computers is raising. With the blooming of artificial intelligence techniques,

there are plenty of applications that are constantly being developed and showing a

very impressive outcome. Art and design, which are highly relying on human

experience, professional knowledge and aesthetics, have also become popular research

directions. It is a very interesting topic to explore whether a computer can fulfill the

designing tasks. Can computers think/work as a human designer? Furthermore, can

computers create like a human designer? We might answer this question by

developing an intelligent design explorer and seeing if there are any impressive

designs created by the computer.

Design, by definition, is a plan for arranging elements in such a way as best to

accomplish a particular purpose [1]. In a broader sense, a design is an applied art and

engineering that integrates with technology [2]. It involves combinations of the visual

arts disciplines, sciences, and technology, and requires problem-solving and

communication skills [3]. A designer can be treated as one of the most important parts

in such activity, which requires both professional knowledge and human creativity

during the work. Their work is usually a high intersection of art, business, and

technology knowledge. A good design usually takes into account many factors such as

2

function, value, aesthetics and usage environments. That makes design a complex task.

But with the progress of science and technology, the situation is changing.

With the development of computer technology, experts in computer science have

developed a wide range of design software to free designers from their complex design

work. This software usually plays the role of a facilitator or an assistant. By using this

software, designers can make up for the lack of knowledge and reduce the complexity

of their design work. Even though, with the help of this software, it is still considered

"a mission impossible" for an ordinary person without any expert design knowledge to

complete design work. The most difficult part is to make the computer "think" like a

designer and offer advice to an ordinary person. Artificial intelligence may be a

potential solution to this problem. Since the birth of artificial intelligence, theory and

technology have become more and more mature, and the field of application has been

expanding. Art and design are one of the popular sub-fields in artificial intelligence.

There are increasing numbers of researchers focusing on art and design areas,

especially in areas such as architecture, engineering design, and aesthetic design. The

algorithmic art assembly [4] hosted in San Francisco showcasing a diverse range of

artists who are using algorithmic tools and processes in their works. Evolutionary

computation, as a mature algorithm, also plays an important role in the art and design

area. For example, John Frazer showed how evolution could generate many surprising

and inspirational architectural forms and how novel and useful structures could be

evolved [5]. Celestino Soddu uses evolution to generate everything from novel table

lamps to castles to three-dimensional Picasso sculptures [6].

3

Evolutionary computation is a sub-domain of artificial intelligence. The original

idea of evolutionary computation can be traced back to the end of the 1950s

(Friedberg [7], [8], Box [9]). Evolutionary computation is influenced by the natural

selection mechanism of the "survival of the fittest." The essence of evolutionary

computation is to use evolutionary algorithms to search from a massive collection of

potential solutions and find the global optimal solution [10]. By several decades of

development and evolution, evolutionary algorithms developed into a family of

algorithms.

Evolutionary algorithm, from a mathematical point of view, is essentially a search

optimization method. Evolutionary algorithms have been widely used in many fields,

such as pattern recognition, image processing, artificial intelligence, economic

management, and so on. Furthermore, we can form a creative evolutionary system by

using evolutionary algorithms.

A creative evolutionary system is a computer system that makes use of some

aspect of evolutionary computation [10]. The difference between a creative

evolutionary system and an evolutionary algorithm is: an evolutionary algorithm is

used to search for an optimal solution; A creative evolutionary system acts as an

explorer to provide inspiration and investigate creative solutions. The creative

evolutionary system is been frequently used in the area such as architecture,

engineering design, and aesthetic design. Compared to original evolutionary

algorithms, we add human interaction to the evolutionary process. The judgment made

by a human can contribute to our system and help us find a novel solution. Under this

architecture, Our system can act "creatively." It might generate some highly innovate

4

solutions or combine two very different ideas to create new ideas. Users can sidestep

the limitation of "conventional wisdom" and "design fixation" by using this approach.

The purpose of this thesis is to construct a creative evolutionary system to work

out a real-world problem. This study focuses on a very tiny segment of art and design:

the violin outline design. The first goal is to develop a software that applies

evolutionary algorithms to evolve and explore a new design of the violin. A human

intersection process will be added to this software. Ordinary people can create their

favorite violin by simply liking or disliking the violin designed by the computer. The

second goal is to discuss and evaluate the creative ability of this software. The most

difficult aspects of a design problem are people. Some factors such as fashion, age,

background, etc. might affect people's design. We will invite 100 participants to

anonymously use this software and see if there are any novel violin outlines designed.

All violin drawing work in this study will be handled by Digital Amati software.

Digital Amati [11], developed by Harry Mairson, is a software based on Euclidean

geometry and uses "geometry engine" language (AmatiML) to design classical

stringed instruments.

This is a brand new attempt in the field of art and design. After evolving and

exploring new designs of the violin, users can also implement their design onto a

Computer Numerical Control (CNC) machine to customize their own violin.

Furthermore, these kinds of studies can be applied to design the geometric appearance

of other items.

5

CHAPTER 2

REVIEW OF LITERATURE

2.1 Evolutionary Computation

Evolutionary Computation is a kind of effective bionic algorithm, which roots

firmly in evolutionary biology and computer science (Figure 1) [10]. From the

perspective of the computer field, evolutionary computation is all about search [12]. It

defines a computational problem in terms of a search space, which can be viewed as a

massive collection of potential solutions to the problem, and a point in that space

defines a solution [12].

Figure 1. Evolutionary computation has its roots in computer science and

evolutionary biology

On the other hand, it has a very close relationship with biological evolution. It is a

study of computational systems that use ideas and get inspiration from natural

evolution and adaptation [13]. It is typically used as an analogy with natural evolution

6

to perform searches by evolving solutions to problems. And instead of working with

one solution at a time in the search space, these algorithms consider a large collection

or population of solutions at once [14].

The basic idea of evolutionary computation begins with a group of randomly

generated initial populations, by following the inheritance of creatures, using

reproduction, recombination and mutation methods to generate the next generation of

populations. Then eliminate those individuals with a lower fitness to improve the

quality of the new generation of the population. After repeated iterations, the optimal

solution is gradually approached.

2.2 Evolutionary Algorithm

The field of evolutionary algorithms has grown up around four main members:

genetic algorithms (GA), created by John Holland [15]; evolutionary programming

(EP), created by Lawrence Fogel and developed further by his son David Fogel [16];

evolution strategies (ES), created by Ingo Rechenberg [17] and genetic programming

(GP) created by John Koza [18].

The genetic algorithm is perhaps the most well known of all evolution-based

search algorithms [14]. It maintains a population of individuals where each individual

consists of a genotype (search space) and a corresponding phenotype (solution space).

These two spaces have a one-to-one correspondence relationship (Figure 2).

7

Figure 2. Mapping genotypes in the search space to phenotypes in the solution space

This algorithm works as below (Figure 3) [14]:

Step 1: The genotype of every individual in the population is initialized with

random alleles.

Step 2: The main loop of the algorithm then begins, with the corresponding

phenotype of every individual in the population being evaluated and given a fitness

value according to how well it fulfills the problem objective or fitness function.

Step 3: Reproduce individuals according to their fitness, the higher fitness the

more copies that are made of an individual. Then put these new individuals into a

'mating pool'.

Step 4: Randomly take two parents from the 'mating pool' and use a random

crossover and mutate to generate two offspring. These processes will finish until

enough new individuals fill the child population.

Step 5: Evolution terminates after a predefined number of generations, or when a

solution of sufficient quality has been generated.

8

Figure 3. Genetic algorithm

Genetic programming is a specialized form of genetic algorithm. It follows

essentially the same procedure as genetic algorithm. The difference between these two

algorithms is:

1. In genetic programming algorithm, genotypes are the same as phenotypes.

That means genetic programming algorithm does not manipulate coded versions of the

solutions, it manipulates the solutions themselves [14].

2. Genetic programming algorithm uses a hierarchical tree structure to represent

the solutions, which can make a variable-length for each solution. In this way, the

crossover process can be used to interchange randomly chosen branches of the parents'

trees without the syntax of the programs being disrupted. As shown by Figure 4 [14].

9

Figure 4. The behavior of the crossover operator in GP

Evolution strategies were initially designed with the goal of solving difficult

discrete and continuous, parameter optimization problems [19]. Figure 5 shows the

operation of the evolutionary strategy [14].

Step 1: The evolution strategies algorithm is initialized with a population of

random solutions, or from a population of solutions mutated from a single solution

provided by the user.

Step 2: Choose parent solutions from these populations.

Step 3: Use random recombination to generate offspring and place them into the

'child population', until enough new individuals fill the child population.

Step 4: Mutate each offspring within the 'child population'.

Step 5: Evaluate each individual by fitness measures. Select the fittest offspring

and place them into the parent population.

10

Step 6: Evolution terminates after a predefined number of generations, or when a

solution of sufficient quality has been generated.

Figure 5. Evolution strategies

Evolution programming resembles evolutionary strategies closely (as shown in

Figure 6). The difference between these two algorithms is:

1. Evolution programming uses an asexual reproduction to generate child

population. All child population is generated by mutating a randomly chosen parent

individual. There are no crossover or recombination processes in evolution

programming [14].

2. In evolution strategy algorithms, new offspring can only reproduce from the

best two parents of a previous generation. On the other hand, evolution programming

11

allowed the algorithm to reproduce new offspring from the better half of the 'parent

pool' [14].

3. In the selection process, evolution strategies only keep the two most fit

individuals and place them into the parent population. Evolution programming keeps

half of the population with the highest fitness and uses them for a new round of

asexual reproduction [14].

Figure 6. Evolution programming

2.3 Creative Evolutionary System

A creative evolutionary system is a system that uses some kind of evolutionary

algorithm to explore creative solutions. This kind of system is designed to:

1) aid our own creative processes, and/or

12

2) to generate results to problems that traditionally required creative people to

find solutions [12].

A creative evolutionary system framework is constructed by five elements (as

shown in Figure 7):

1)An evolutionary algorithm

2)A genetic representation

3)An embryogeny using components

4)A phenotype representation

5)Fitness function(s) and/or processing of user input [12]

Figure 7. The five elements of the framework for creative evolutionary systems

2.4 Evolutionary Computation Case (Engineering Design)

The use of genetic algorithms is now a well-established technique in engineering

design applications. In the field of design, there are many pioneers who have made a

13

lot of attempts, John Frazer is one of them. In 1992, John Frazer and his students used

genetic algorithm in yacht hull design [20]. Their program was intended to explore a

range of widely different alternative solutions to yacht design (Figure 8).

The program starts by generating a randomized initial population of yacht hull

designs. All designs will be evaluated by a fitness function, which considered both

objective and subjective factors. The objective engineering factors include parameters

such as stability, center of buoyancy, wetted surface area, prismatic coefficient, and

blocking. The subjective factors (i.e. designer criteria) mainly considered aesthetic

appearance, historic tradition, and allusion of form.

Figure 8. Yacht hulls

On the basis of these fitness functions, the designs with the highest fitness scores

are selected and become the parent population. The crossover and mutation process is

then applied to the parent population and produces new offspring. These processes

repeat round and round until an excellent design appears.

14

The yacht hulls design program produces a range of choices for clients and

provides a series of new ideas in yacht hulls design.

2.5 Evolutionary Computation Case (Music)

Music is a highly creative and varied thing. To compose music requires skill,

imagination, and empathy. From contemporary music to jazz, there are many

explorers trying the evolutionary method to generate music.

Vox Populi is an application that uses evolutionary computation to explore new

musical structures [21]. The general processes of Vox Populi are shown in Figure 9.

Figure 9. The genetic cycle of Vox Populi program

The individuals of the population consist of four voices which are randomly

generated. Once the initial population of individuals has been created, the fitness of

each individual is evaluated. The fitness function (F) is defined as a composition of

three sub-functions: the harmonic fitness (H), the melodic fitness (M) and the voice

15

range fitness (O). The value of these sub-functions is determined by the physical

measurement of each voice.

F(O, M, H) =O(x1, x2, x3, x4) + M(x1, x2, x3, x4) + H(x1, x2, x3, x4)

After the fitness evaluation, typical operations of genetic programming like

crossover and mutation are applied to the individuals. Then those individuals with

higher fitness will be retained and treated as the parents of the next generation. This

process will be repeated until the best chord is found. The following steps are realized

in the genetic cycle:

STEP 1: Create an initial population randomly;

STEP 2: Until the termination criterion has been satisfied, perform the following:

1) Evaluate the fitness of each individual in the population;

2) Apply the genetic operators to individual chromosomes, or groups of voices,

chosen with a probability based on fitness, to create a new population. That is:

· Reproduction: Copy existing individual strings to the new population;

· Crossover: Create two new chromosomes by crossing over randomly chosen

sub-lists (substrings) from two existing chromosomes;

· Mutation: Create new chromosomes from an existing one by randomly

mutating the character in the list.

STEP 3: Designate the best individual that appeared in any generation as the

result.

16

2.6 Evolutionary Computation Case (Art)

Compared with music and design, art is more subjective, fuzzy and difficult to

analyze. But it can still be evolved through evolutionary computing. One of the best

known "evolutionary artists," Steven Rooke, uses genetic programming algorithm to

evolve some astonishing pieces of art [22].

Rooke's image evolution system begins with a series of randomly generated tree

structure genomes (as shown in Figure 10). Base on these genomes, the computer

generates a corresponding image according to a specific mapping rule. In each

generation, the image evolution system determines the parent genomes by random

selection or user selection. The parent genomes generate new offspring through

crossover and mutation steps.

Figure 10. Tree structure genomes

In this way, Rooke's image evolution system generates a lot of creative images.

Figure 11 shows some of his works.

17

Figure 11. Creative images

18

CHAPTER 3

METHODOLOGY

3.1 A Framework for the Violin Explorer

The violin explorer is designed as a creative evolutionary system (mentioned in

Chapter 2.3) which can help ordinary people to create their favorite violin design.

Sections 3.1.1 to 3.1.5 illustrate five key elements of the framework for the violin

explorer as a creative evolutionary system.

3.1.1 An Evolutionary Algorithm

A creative evolutionary system requires some kind of evolutionary algorithm to

generate new solutions [14]. The majority of current implementations of evolutionary

algorithms descend from these four approaches: genetic algorithms, evolutionary

programming, evolution strategies, and evolution programming. The evolutionary

algorithm of the violin explorer should be selected from these four algorithms based

on actual demand.

Based on the demand of the violin explorer, it is more efficient to use a real

number genotype instead of a binary parameter to represent the violin outline. This

method will remove the mapping steps, which greatly reduces the computational

strength and improves efficiency. From this perspective, the genetic algorithm is not

the first choice for the violin explorer. In addition, the violin has evolved over

centuries and the current size of violins conforms to ergonomic design. Also, based on

19

the drawing principle of Digital Amati, the genotype of the violin explorer should be a

fixed length. The genetic programming algorithm does not meet the need of the violin

explorer. Finally, the violin explorer introduces human interaction processes to

evaluate the violin outline. It is an exceptionally heavy task to let users' rank violin

designs based on their personal preferences round by round. By contrast, it is a more

reasonable choice for users to choose two of their favorite designs in each round.

Based on the analysis above, the evolution strategies algorithm is the most

suitable evolutionary algorithm for the violin explorer.

3.1.2 A Genetic Representation

The genotype representation defines the search space of the evolutionary

algorithm [14]. The genotype representation of the violin explorer should be a series

of parameters that can manipulate AmatiML [10] (a domain-specific markup language

used in Digital Amati software for drawing violin outlines) to evolve violin outline

design. AmatiML can define a series of geometric elements such as points, lines, and

circles, then connect these geometric elements in a specific order to create violin

outlines. Users can draw different violins by changing the parameters of specific

geometric elements. Here is an example of drawing a different violin outline by

changing the parameters of Point q.

Figure 12 is a violin named "Original_Violin" which is drawn by AmatiML. It is

formed by connecting geometric elements in a specific order. The AmatiML language

defines the location of the point q, as shown in Figure 13. It shares the same Y-

20

coordinate with Point Q and the X-coordinate of Point q is equal to the X-coordinate

of Point A plus a distance of line segment XN/2.

Figure 12. Original_Violin

Figure 13. The location of Point q

When users decide to change the location of point q, as shown in Figure 14. The

new X-coordinate of Point q is equal to the X-coordinate of Point A plus a distance of

the line segment XN/8. Correspondingly, a new violin design was created due to the

influence of the new point q. The change of point q makes the upper bouts of the

violin wider than previous designs, as shown in Figure 15.

21

Figure 14. New_Violin

Figure 15. New location of Point q

The above example shows how to draw different designs by changing parameters.

Similarly, the violin explorer can change the outline of a violin by manipulating a

series of parameters. This series of parameters will achieve a one-to-one mapping

relationship with the violin outline which means there is a unique series of parameters

for each violin outline. The collection of these series of parameters can be considered

as the search space for violin design problems. Section 3.2.2 will provide parameters

selection in more detail.

3.1.3 An Embryogeny Using Components

An embryogeny is a special kind of mapping process from genotype to phenotype

[14]. The embryogeny process of the violin explorer will be implemented through

22

Digital Amati software. The Digital Amati software developed by Dr. Harry Mairson

uses AmatiML language to define a series of geometric elements such as points, lines,

and circles; and use a series of inscribed circles and reverse curves formed by these

geometric elements to draw a violin outline.

3.1.4 A Phenotype Representation

Once the embryonic development process is over, the genotype representation

will be transformed into a solution, which is defined as a phenotype representation.

The phenotype representation of the violin explorer is a violin outline drawn by the

Digital Amati software, as shown in Figure 16.

Figure 16. The phenotype representation of the violin explorer

These phenotype representation will be treated as the solution of a violin outline

design and can be evaluated by either a fitness function or users.

3.1.5 Solution Evaluate

23

In this research, a violin outline design is considered as an aesthetic problem. It is

almost an impossible task to establish a fitness function to quantify aesthetic standards

into real values. Many factors such as users' age, background, and current fashion

trends may become key factors influencing violin design. From this point of view, it is

a more efficient and direct approach to introduce human interaction processes instead

of using a fitness function to evaluate violin design. Users can directly integrate their

imagination and creativity into violin design and create some novel solutions.

3.2 Algorithm of the Violin Explorer

The violin explorer uses evolutionary strategies algorithm to simulate a natural

evolutionary process. These processes will help ordinary people design their favorite

violin outline. The whole working processes are shown below (Figure 17):

Step 1: The violin explorer will initialize by randomly generating 10 violin

outlines. These violin outlines will be treated as the original population pool.

Step2: Users are asked to select two of the most satisfying designs from the

population pool.

Step3: These two designs will become the parents' population and will

continually produce offspring through the recombination process. All offspring will be

placed into the population pool until it reaches the maximum population (10 violin

outlines).

Step4: A mutation process will be applied to each single violin outline in the

population pool by using strategy parameters. The strategy parameters will also

slightly mutate within the mutation process.

24

Step5: Once recombination and mutation have generated enough new individuals

to fill the population pool, users will be asked to select two of the most satisfying

designs from the population pool. These two designs will be treated as the parent

population of the next generation.

Step6: Repeat Step 3 through Step 5 to generate new generations of design.

These evolution processes will terminate after it reaches a predefined number of

generations or when users are satisfied with the current design.

Figure 17. The whole processes of the violin explorer

3.2.1 Evolutionary Strategies Scheme

In each generation, the violin explorer will use specific ES schemes to continually

generate violin designs to fulfill the population pool. The maximum individuals of the

violin explorer population pool will set to a predefined number.

25

Currently, there are three major ES schemes: (1+1)-ES, (µ+ λ)-ES and (μ, λ)-ES

(where μ is the number of parents and λ is the number of offspring). The (1+1)-ES

scheme stands for a competition between one parent and one child. In this scheme, the

maximum capacity of the population pool is 2, which will greatly reduce the

computational strength and improve efficiency. Unfortunately, the (1+1)-ES scheme

has a couple of drawbacks: these point-to-point competitions are easily stagnated at

local optima, and it is extremely slow to converge on optimal solutions. As a modified

version of (1+1) -ES, the (µ+ λ)-ES scheme improves the efficiency of search by

increasing the scope of search in each generation. However, the (µ+ λ)-ES chooses to

keep the old individuals (sometimes the local optimal solution), which may still lead

to problems that tend to stagnate at the local optimum. Different from (1+1)-ES and

(µ+ λ)-ES, the (μ, λ)-ES scheme avoids these drawbacks by slightly mutating each

individual within the population pool.

Based on the analysis above, the violin explorer uses (μ, λ)-ES scheme to create

new individuals in each generation. The violin explorer defined μ=2 and λ = 10, which

means there are two parent populations that will be selected to create 10 offspring in

each generation cycle. The maximum population of the population pool will be

predefined as 10.

3.2.2 Genotype Representation Define

As mentioned in section 3.1.2, the genotype representation consists of an array of

point locations. Each array corresponds to a violin outline in the search space.

26

Since the Digital Amati software is based on Euclidean geometry to draw the

violin outline, each element in the genotype representation array has an dependent

scope. For example, Point a & Point b are the center of two circles. Point g is the

intersection of these two circles. We use Point g as the apex of the violin's upper left

sharp corner (shown in Figure 18). As the position of Point a & Point b changes, the

sharp corner of the violin changes. When the positions of Point a & b are far apart

enough, the intersection (Point g) of the two circles disappears. Therefore, Point g has

its own scope to ensure that the two circles intersect.

Figure 18. The scope of points

Meanwhile, for some points, their scopes are discontinuous. For example, the

scope of Point P is 6-9 and 11-13. If we only choose one of them (scope 6-9 or scope

11-13), it will greatly reduce the search space. Technically, a large search space results

in more potential solutions. The violin explorer expands the search space by adding 5

different models. Each model represents a genotype representation. Briefly, this

method brings in five different models and runs the evolution strategies algorithm five

times to achieve the expansion of search space. Table 1 summarize the different

models chosen by the violin explorer.

27

Table 1. The violin explorer genotype representation models

Model

No.

Genotype

representation

Scope of each element

Model 1 [q,O,e,c] q [1,8]/O [4,5]/e [6,10]/c [2,6]

Model 2 [q,O,e,c,P] q [2,4] / O [3,5] / c [2,6] / P [6,9]/ e [8,10]

Model 3 [q,O,e,c,P] q [2,4] / O [3,5] / c [2,6] / P [11,13] /e [8,10]

Model 4 [q,O,e,c,P] q [5,8] / O [3,5] / c [2,6] / P [6,9] /e [8,10]

Model 5 [q,O,e,c,P] q [5,8] / O [3,5] / c [2,6] / P [11,13] /e [8,10]

The value of Point q controls the width of the upper bouts of a violin. As the

value of Point q increases, the upper bouts of violin will become wider (as shown in

Figure 19).

Figure 19. The effect of Point q value

The value of Point O controls the radian of the upper bouts of a violin. When the

value of Point O increases, the upper bouts of a violin is smoother. For example, there

28

are three upper bouts design in Figure 20; the design on the left has the smallest value

of Point O; the design on the middle is larger; the design on the right has the largest

value of Point O.

Figure 20. The effect of Point O value

The value of Point e controls the width of the middle bouts of a violin. As the

value of Point e increases, the middle bouts of the violin will become narrower (as

shown in Figure 21).

29

Figure 21. The effect of Point e value

The value of Point c controls the shape of the lower bouts. As the value of Point c

increases, the corner of the violin's lower bouts become much sharper (as shown in

Figure 22).

Figure 22. The effect of Point c value

The value of Point P affects the shape of a violin's lower bouts. As the value of

Point P increases, the violin's lower bouts become taller and rounder (as shown in

Figure 23).

30

Figure 23. The effect of Point P value

3.2.3 Recombination

The recombination process exists in each generation cycle. The violin explorer

uses the recombination process to recombine parent populations and create new

offspring. The violin explorer defined an integer "bp", which is randomly generated

and designed to determine the position to break a genotype into two pieces. For

example, when "bp" =3, both parents 1 & 2 will be divided into two pieces from the

3rd position. Then, the randomly generated number "rnd" will decide how to

recombine these 4 pieces and create a new offspring by using these pieces (Figure 24).

Figure 24. Recombination process

31

The violin explorer defined a randomly generated parameter "rnd", which is

designed to selects a parent population to provides the first half "genes" while another

parent population provides the second half "genes" to their offspring. For example, if

"rnd" >0.5, Parent 1 will provide the first half "genes" and Parent 2 will provide the

second half "genes" to create a new offspring. Otherwise, Parent 2 will provide the

first half "genes" and Parent 1 will provide the second half "genes". As the code is

shown in Figure 25.

Figure 25. Recombination process

The recombination process will continue to be repeated until sufficient offspring

are generated.

3.2.4 Mutation

Mutation plays an important role in the evolutionary strategy and is regarded as

the primary search operator [14]. The mutation process in the violin explorer involves

making small additions or subtractions to each array element. The value of additions

or subtractions is determined by the strategy parameter: mutation strength. Mutation

strength is an array that is randomly generated when the original population is

32

initialized. The mutation strength array has the same length as the genotype

representation array, and each array element within mutation strength array will

correspond to the array element of genotype representation. As shown in Figure 26,

the mutation strength is used to produce random deviations according to a Gaussian

distribution with a mean of zero. These random deviations will apply to each element

of genotype representation, and make them slightly mutated.

Figure 26. Mutate each element within the genotype representation

The random integer "num" will determine whether it is an addition or subtraction

to each parameter (as shown in Figure 27).

Figure 27. Additions or subtraction

During the evolving process, the new individuals will become closer and closer to

the optimal solution round by round. It is a good idea to reduce the step size

generation by generation to reach the global optimum faster. The violin explorer uses

a constant (0.9) to reduce the mutation strength generation by generation, as shown in

Figure 28.

33

Figure 28. Reduce the mutation strength

3.2.5 Selection

The selection process is extremely simple. The violin explorer has introduced

human interactive processes to evaluate solutions. In each generation, users are asked

to select two violin designs from the population pool. Their choice will become the

parents of the next generation.

3.2.6 Generate Violin Images

In every evolve cycle, a new genotype representation will be produced through

recombination and mutation processes. The violin explorer uses the elements within

the new genotype representation array to replaces the original violin drawing code (as

shown in Figure 29).

Figure 29. Generate new violin drawing code

After the new violin drawing code is generated, the next step is to uses this code

to generate a violin design. With the Retrofit 2 library [23], we can build an

application programming interface and links to the violin explorer. Then, the violin

explorer sends asynchronously request to API and get violin designs. The image

34

generated by Digital Amati is in SVG format, which can not directly display. The

violin explorer uses the Batik library [24] to solve this problem. With the Batik

library, you can easily display an SVG document.

35

CHAPTER 4

Results

4.1 Experiments Setup

Designed as a creative evolutionary system, the violin explorer is expected to

work creatively like a human designer. The violin explorers will be tested by an

anonymous experiment to verify software usability. In addition, the experiments will

explore whether users' with different ages and backgrounds can use violin explorer to

design a novel violin outline.

This experiment will randomly invite 100 ordinary people to anonymously use

the violin explorer. Considering the protection of personal privacy, no personal

information such as their name, their age and their artistic ability will be recorded. All

participants will be asked two questions to determine their experimental grouping:

1. Which age group are you in? "18 to 40" or "older than 40"?

2. Do you have an artistic background such as painting or musical instruments?

Based on the participants' answers to these two questions, they will be divided

into four experimental groups, as shown by Table 2.

Table 2. Four experimental groups

Group 1 Participants are between the ages of 18 to 40 and have an artistic

background.

Group 2 Participants are between the ages of 18 to 40 but do not have any artistic

background.

36

Group 3 Participants' age is older than 40 and has an artistic background.

Group 4 Participants' age is older than 40 but does not have any artistic background.

After grouping, participants will be invited to use the violin explorer to design

their favorite violin appearance. During the experiment, participants have the right not

to answer the survey question, as well as to withdraw completely from the experiment

at any point during the process. Additionally, participants have the right to request that

the researchers not use any of their responses. After the experiment, the violin explorer

will save participants' violin outline images for research purposes.

For each experiment group, the violin design parameters will be averaged to

create a new violin design and see if there is any difference between them. In addition,

these new violin designs will be compared with traditional violin designs to see if

there are novel designs. Finally, some novel designs will be selected from these

designs for display purposes.

4.2 Experiments Results

During the anonymous experiment, the usability of the violin explorer has been

verified. Participants designed their violins according to their personal preferences. A

lot of creative violin outlines were designed. Compared with the original violin design,

these violin outlines have a series of changes (as shown in Figure 30).

37

Figure 30. New violin outlines

4.2.1 Experiment Group 1

The participants in experiment Group 1 were between 18 and 40 years old and

had an artistic background. Based on anonymous experiments, we collected 25 violin

designs (as shown in Figure 31).

38

Figure 31. The designs of experiment Group 1

After we average the elements within Group 1's genotype representation array,

the average outline of Group 1 is shown in Figure 32.

39

Figure 32. The average outline of Group 1

4.2.2 Experiment Group 2

The experiment Group 2 were between 18 and 40 years old and had no artistic

background. Based on anonymous experiments, we collected 25 violin designs (as

shown in Figure 33).

40

Figure 33. The designs of experiment Group 2

After we average the elements within Group 2's genotype representation array,

the average outline of Group 2 is shown in Figure 34.

41

Figure 34. The average outline of Group 2

4.2.3 Experiment Group 3

The participants in experiment Group 3 were older than 40 years old and had an

artistic background. Based on anonymous experiments, we collected 25 violin designs

(as shown in Figure 35).

42

Figure 35. The designs of experiment Group 3

After we average the elements within Group 3's genotype representation array,

The average outline of Group 3 is shown in Figure 36.

43

Figure 36. The average outline of Group 3

4.2.4 Experiment Group 4

The participants in experiment Group 4 were older than 40 years old and had no

artistic background. Based on anonymous experiments, we collected 25 violin designs

(as shown in Figure 37).

44

Figure 37. The designs of experiment Group 4

After we average the elements within Group 4's genotype representation array,

The average outline of Group 4 is shown in Figure 38.

45

Figure 38. The average outline of Group 4

4.3 Results Compare

The average genotype representation of each experimental group is shown in

Table 3. By comparing this to the standard violin design, we can see how far away the

means for different groups are from the "standard" violin design (as shown in Table

4). Although the genotype representation of each group is different, we still can see

some trends from it.

Table 3. The average genotype representation of each group

46

Table 4. The difference between each group and standard design

Compared with the "standard" violin design, four experimental groups have some

similar trends:

(1) Participants in all four experimental groups tended to choose wider upper and

lower bouts.

(2) Participants in all four experimental groups prefer a sharper violin lower bouts

corner with shorter lower bouts.

(3) Also, a more curvilinear upper bout is preferred.

(4) The width of the middle bouts is narrower but closed to the original design.

Overall, the average violin outlines of the four experimental groups are a little

similar to each other. This result may be caused by many factors. First, using the

average method might eliminate some extreme solutions. These extreme solutions may

be the most characteristic solutions. Second, the experiment only invites 100 people,

47

which is a very small sample size. Third, participants with a centralized geographical

location may also lead to a more similar aesthetic.

After the average shape comparison, I want to see if there is any further

difference between the shapes of four experimental groups. According to the mean and

standard deviation of each group (shown in Table 5), I calculate the 1,2,3 standard

deviation to see if there is any difference between each group. By using this method,

only the shapes at 1 standard deviation are within the scope of the violin's genotype

representation.

Table 5. The mean and standard deviation of each group

The shapes at 1 standard deviation away from the mean are drawn at Figure 39

and Figure 40. The shapes at 1 standard deviation (μ-σ) shows us the younger

participants (18-40) prefer a wider upper bout. The design of participants in Group 3

are similar to the standard violin design.

48

Figure 39. Shapes at 1 standard deviation (μ-σ)

The shapes at 1 standard deviation (μ+σ) did not show much difference, the

shapes of four experimental groups are very similar.

Figure 40. Shapes at 1 standard deviation (μ+σ)

There is another interesting trend in this experiment. The participants with an

artistic background have a lower standard deviation between their design and the

standard violin design. Also, the older participants have a lower standard deviation

between their design and the original violin design. The older participants with an

artistic background have the lowest standard deviation, which means their designs are

the most closed to the original violin design (as shown in Figure 41 and Table 6).

49

Table 6. The average of the standard deviation of each group

Figure 41. The average of the standard deviation of each group

This trend reveals that there might be a potential connection between the age and

background of the participants and their designs. The older people and those people

with an artistic background might prefer a "classic" violin design. The younger people

are more open-minded in designing their favorite violin.

The Figure 42 shows the average shape of four groups' genotype representation.

We'll see the difference between the underlying theme of violin outline and the

original violin.

50

Figure 42. The difference between the underlying theme of violin outline and the

original violin

51

CHAPTER 5

CONCLUSION

5.1 Conclusion

This study is an application of evolutionary computation. It focuses on a tiny

segment of design and combines computational power with human creativity. It is a

brand new attempt in this area. Based on the natural selection mechanism of the

"survival of the fittest," the violin explorer simulates the evolution of violin processes.

It abstracts a violin outline into a unique genotype representation. Then it uses

recombination and mutation processes to change the old genotypes and create new

solutions. The recombination process, in a manner, retains good violin outline

characteristics. Meanwhile, the mutation process makes slight changes to the violin

outline characteristics. These processes enrich the search space to a certain extent and

provide users with more alternative solutions. In addition, the violin explorer adds

human interactive processes to evaluate solutions, which makes it not only a simple

search tool but also a creative evolutionary system. With the help of user selection

activities, the violin explorer integrates personal aesthetics into the violin outline

design.

In the anonymous experiment, 100 participants tested the usability of violin

explorers and created a variety of violin outline design. Based on the experiment data,

we found that there might have been a potential connection between the age and

background of the participants and their design.

52

5.2 Future Work

Currently, the violin explorer provides five different models to help users design

their violin. There are many different combinations of parameters that can be

attempted and help users build a variety of violin designs. In addition, the violin

explorer used Professor Mairson's violin design as the original violin outline. Using

another violin template as the original violin outline may also affect violin design and

provide a richer solution for users. Finally, the violin explorer only provides a

solution for the violin body design. To make a violin, you also need to design other

violin components, such as scroll, bridge, chinrest, among others. It is necessary to

provide users with a solution for designing these components on the violin explorer.

By using these components, users can easily form a violin and use the CNC

(Computerized Numerical Control) machine to make their favorite violin.

53

APPENDICES

Source code(ViolinGenerator.java)

package org.digitalamati;
import org.apache.batik.swing.JSVGCanvas;
import retrofit2.Call;
import retrofit2.Callback;
import retrofit2.Response;
import retrofit2.Retrofit;
import retrofit2.converter.jackson.JacksonConverterFactory;
import retrofit2.converter.scalars.ScalarsConverterFactory;
import javax.swing.*;
import java.awt.*;
import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.nio.file.StandardCopyOption;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;

public class ViolinGenerator {
 /*
 Main function
 */
 public static void main(String[] args) {
 // Create a new JFrame.
 JFrame f = new JFrame("Violin Generator");
 ViolinGenerator app = new ViolinGenerator(f);
 // Add components to the frame.
 f.getContentPane().add(app.createComponents());
 // Display the frame.
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);

54

 }
 });
 f.setSize(1600, 900);
 f.setVisible(true);
 }
 //the original code to draw a violin, written in AmatiML language
 protected String code = "(require AmatiML)\n" +
 "\n" +
 "(elaboration #f)\n" +
 "(mirroring #t)\n" +
 "(arcthickness 5)\n" +
 "(arccolor \"blue\")\n" +
 "(edge-tracing #t violin-overhang)\n" +
 "\n" +
 "(coded-by \"Harry Mairson\")\n" +
 "(title \"Violin by Andrea Amati (const. François Denis)\")\n" +
 "\n" +
 "; Violin by Andrea Amati\n" +
 "\n" +
 "(define (Amati)\n" +
 "\n" +
 " ; LAYOUT OF THE AREA FRAMEWORK on which the curves are
drawn...\n" +
 "\n" +
 "(let* ((xq 208) ;; 208mm in the Amati\n" +
 " (X (label \"X\" origin))\n" +
 "(A (label \"A\" (xshift X (- (/ xq 2)))))\n" +
 " (Q (label \"Q\" (yshift X xq)))\n" +
 " (N (label \"N\" (pointfrom X Q (/ 1 4))))\n" +
 " (q (label \"q\" (xshift (at A Q) (/ (distance X N) {q}))))\n" +
 " (qp (label \"q'\" (mirror q)))\n" +
 " (O (label \"O\" (yshift Q (- (* (distance X N) (/ {O} 4))))))\n" +
 " (Z (label \"Z\" (yshift N (* (distance X N) (/ 2 3)))))\n" +
 "(P (label \"P\" (yshift X (- (* (distance X N) (/ {P} 3))))))\n" +
 "(p (label \"p\" (xshift (at A P) (/ (distance X N) 8))))\n" +
 "(pp (label \"p'\" (mirror p)))\n" +
 "(M (label \"M\" (pointfrom X P (/ 1 2))))\n" +
 "(a (label \"a\" (xshift A (/ (distance X Z) 2))))\n" +
 "(b (label \"b\" (xshift Z (- (/ (distance A a) 2)))))\n" +
 "(e (label \"e\" (xshift (at b N) (- (* (xdistance b p) (/ 3 {e}))))))\n" +
 "(c (label \"c\" (xshift (at p X) (/ (xdistance e p) {c}))))\n" +
 "(d (label \"d\" (xshift (at p X) (/ (xdistance e p) 2))))\n" +
 "(h (label \"h\" (xshift (at e Z) (- (/ (xdistance e p) 4)))))\n" +
 "(g (label \"g\" (xshift (at e Z) (- (/ (xdistance e p) 2)))))" +
 "\n" +
 "; ***** DRAWING THE OUTLINE *****\n" +

55

 "\n" +
 " ; THE LOWER BOUTS...\n" +
 "\n" +
 "(R1lower (circlefrom Z P))\n" +
 " (R2lower (lower-left-flank (vertical p) R1lower (distance M P)))\n" +
 " (R3lower (left-flush R2lower (distance X Z)))\n" +
 " (R4lower (lower-corner R3lower (/ (distance X N) 2) c))\n" +
 " (lower-curve (make-curve P c (list R1lower R2lower R3lower R4lower)))\n"
+
 "\n" +
 "; THE UPPER BOUTS...\n" +
 "\n" +
 " (R1upper (circlefrom N Q))\n" +
 " (R2upper (upper-left-flank (vertical q) R1upper (distance O Q)))\n" +
 " (R3upper (upper-corner R2upper (/ (distance X N) 2) g))\n" +
 " (upper-curve (make-curve Q g (list R1upper R2upper R3upper)))\n" +
 "\n" +
 "; THE MIDDLE BOUTS...\n" +
 "\n" +
 " (R1middle (circlefrom (xshift e (- (distance X Z))) e))\n" +
 " (R2middle (middle-top-corner R1middle (/ (distance N Z) 2) h))\n" +
 " (R3middle (middle-bottom-corner R1middle (/ (distance X N) 2) d))\n" +
 " (middle-curve (make-curve g c (list R2middle R1middle R3middle))))\n" +
 "\n" +
 " (list X A Q N q qp O Z P p pp M a b e c d h g \n" +
 " (horizontal N) (horizontal O) (horizontal Z)\n" +
 " (horizontal P) (horizontal Q) (horizontal X) (horizontal M)\n" +
 " (vertical p) (vertical q) (vertical b) (vertical e) \n" +
 "\n" +
 " (line p (mirror q))\n" +
 "\n" +
 " R1lower R2lower R3lower R4lower \n" +
 " R1upper R2upper R3upper \n" +
 "R1middle R2middle R3middle \n" +
 "lower-curve middle-curve upper-curve)\n" +
 "))\n" +
 "\n" +
 "(sketch (Amati))\n" +
 "\n" +
 "(end-drawing)";
 //default value of the original violin
 final int DEFAULT_Q = 2;
 final int DEFAULT_O = 5;
 final int DEFAULT_P = 8;
 final int DEFAULT_C = 4;
 final int DEFAULT_E = 8;

56

 //Set size for population pool
 final int POP_SIZE = 10;
 //Set the number of models
 final int MAX_MODEL = 5;
 //Set maximum generations of each model
 final int MAX_GENERATION = 6;
 // The frame.
 protected JFrame frame;
 //create evolutionary models
 protected ES[] es = new ES[MAX_MODEL];
 //set DNA size for each evolutionary models
 protected int[] dnaSize = new int[]{5, 5, 5, 4, 5};
 //set minimum boundary for each models
 protected double[][] min = new double[][]{new double[]{2, 3, 2, 7, 8}, new
double[]{2, 3, 2, 11, 8}, new double[]{5, 3, 2, 7, 8}, new double[]{1, 4, 6, 2}, new
double[]{5, 3, 2, 11, 8}};
 //set maximum boundary for each models
 protected double[][] max = new double[][]{new double[]{4, 5, 6, 9, 10}, new
double[]{4, 5, 6, 13, 10}, new double[]{8, 5, 6, 9, 10}, new double[]{8, 5, 10, 6}, new
double[]{8, 5, 6, 13, 10}};
 //API
 protected DigitalamatiService digitalamatiService;
 //Listener for normal models
 protected Listener listener1;
 //Listener for final selection
 protected Listener listener2;
 // The svg canvas
 protected JSVGCanvas[] jsvgCanvas = new JSVGCanvas[POP_SIZE];
 //The checkboxes
 protected JCheckBox[] jCheckBoxes = new JCheckBox[POP_SIZE];
 //The jLabel
 protected JLabel jLabel = new JLabel();
 //The buttons
 protected JButton okButton;
 //Initial model to model 1
 protected int model = 1;
 //Initial generation to generation 1
 protected int generation = 1;
 //Used for Violin naming
 protected String time;
 protected ArrayList<String> resultTime = new ArrayList();
 //Used for Violin naming
 protected ArrayList<Integer> resultGeneration = new ArrayList();
 //Store the code of user selected violin
 protected ArrayList<String> resultCode = new ArrayList();
 /*

57

 violinGenerator
 */
 public ViolinGenerator(JFrame f) {
 frame = f;
 //Create a Retrofit object
 Retrofit retrofit = new Retrofit.Builder()
 .baseUrl("http://api.digitalamati.org/")
 .addConverterFactory(ScalarsConverterFactory.create())
 .addConverterFactory(JacksonConverterFactory.create())
 .build();
 //associate retrofit with DigitalamatiService Interface
 digitalamatiService = retrofit.create(DigitalamatiService.class);
 //five different models
 for (int i = 0; i < 5; i++) {
 es[i] = new ES(POP_SIZE, dnaSize[i], min[i], max[i]);
 }
 for (int i = 0; i < POP_SIZE; i++) {
 jsvgCanvas[i] = new JSVGCanvas();
 jCheckBoxes[i] = new JCheckBox();
 jCheckBoxes[i].addItemListener(listener2);
 }
 initModel();
 }
 /*
 initialModel method get current time to name svg image and get svg image
 */
 public void initModel() {
 getTime();
 getSvg();
 }
 /*
 Record the time when user select a violin design and use it to name the violin
design
 */
 public void getTime() {
 Date currentTime = new Date();
 SimpleDateFormat formatter = new SimpleDateFormat("yyyyMMddHHmmss");
 String dateString = formatter.format(currentTime);
 time = dateString;
 resultTime.add(time);
 }
 /*
 Get SVG image for each violin design
 */
 public void getSvg() {
 for (int i = 0; i < POP_SIZE; i++) {

58

 jCheckBoxes[i].setSelected(false);
 jsvgCanvas[i].setURI("empty.svg");
 getSvg(getCode(i), i);
 }
 }
 /*
 getCode method get the code for each violin. Use getDNA() method to get specific
DNA value,
 then use these value to replace original value and generate new violin design code.
 parameters: i: the i-th violin design
 return value: - return the new violin drawing code
 */
 public String getCode(int i) {
 //get original violin drawing code
 String tempCode = code;
 if (i == 0) {
 System.out.println("model:" + model);
 }
 //generate new violin drawing code
 switch (model-1) {
 //model 1, change point q,O,c,P,e default value with new value
 case 0:
 tempCode = tempCode.replace("{q}", Double.toString(es[model-
1].getDNA()[i][0]));
 tempCode = tempCode.replace("{O}", Double.toString(es[model-
1].getDNA()[i][1]));
 tempCode = tempCode.replace("{c}", Double.toString(es[model-
1].getDNA()[i][2]));
 tempCode = tempCode.replace("{P}", Double.toString(es[model-
1].getDNA()[i][3]));
 tempCode = tempCode.replace("{e}", Double.toString(es[model-
1].getDNA()[i][4]));
 break;
 //model 2, change point q,O,c,P,e default value with new value
 case 1:
 tempCode = tempCode.replace("{q}", Double.toString(es[model-
1].getDNA()[i][0]));
 tempCode = tempCode.replace("{O}", Double.toString(es[model-
1].getDNA()[i][1]));
 tempCode = tempCode.replace("{c}", Double.toString(es[model-
1].getDNA()[i][2]));
 tempCode = tempCode.replace("{P}", Double.toString(es[model-
1].getDNA()[i][3]));
 tempCode = tempCode.replace("{e}", Double.toString(es[model-
1].getDNA()[i][4]));
 break;

59

 //model 3, change point q,O,c,P,e default value with new value
 case 2:
 tempCode = tempCode.replace("{q}", Double.toString(es[model-
1].getDNA()[i][0]));
 tempCode = tempCode.replace("{O}", Double.toString(es[model-
1].getDNA()[i][1]));
 tempCode = tempCode.replace("{c}", Double.toString(es[model-
1].getDNA()[i][2]));
 tempCode = tempCode.replace("{P}", Double.toString(es[model-
1].getDNA()[i][3]));
 tempCode = tempCode.replace("{e}", Double.toString(es[model-
1].getDNA()[i][4]));
 break;
 //model 4, change point q,O,c,e default value with new value
 case 3:
 tempCode = tempCode.replace("{q}", Double.toString(es[model-
1].getDNA()[i][0]));
 tempCode = tempCode.replace("{O}", Double.toString(es[model-
1].getDNA()[i][1]));
 tempCode = tempCode.replace("{c}", Double.toString(es[model-
1].getDNA()[i][3]));
 tempCode = tempCode.replace("{P}", Double.toString(DEFAULT_P));
 tempCode = tempCode.replace("{e}", Double.toString(es[model-
1].getDNA()[i][2]));
 break;
 //model 5, change point q,O,c,P,e default value with new value
 case 4:
 tempCode = tempCode.replace("{q}", Double.toString(es[model-
1].getDNA()[i][0]));
 tempCode = tempCode.replace("{O}", Double.toString(es[model-
1].getDNA()[i][1]));
 tempCode = tempCode.replace("{c}", Double.toString(es[model-
1].getDNA()[i][2]));
 tempCode = tempCode.replace("{P}", Double.toString(es[model-
1].getDNA()[i][3]));
 tempCode = tempCode.replace("{e}", Double.toString(es[model-
1].getDNA()[i][4]));
 break;
 }
 //return the changed code
 return tempCode;
 }
 /*
 Send asynchronously request to API and get the violin image
 parameters: str: feed back from API
 i: the i-th violin

60

 */
 public void getSvg(String str, int i) {
 //Handle the success or failure request
 digitalamatiService.generate(str).enqueue(new Callback<Result>() {
 @Override
 public void onResponse(Call<Result> call, Response<Result> response) {
 if (response.isSuccessful()) {
 //get violin designs
 if (response.body().getErrors().equals("")) {
 String svg = response.body().getSvg();
 if (svg.indexOf("<?xml") != svg.lastIndexOf("<?xml")) {
 getSvg(str, i);
 } else {
 String str = svg.substring(svg.indexOf("<?"));
 try {
 Files.write(Paths.get("temp" + i + ".svg"), str.getBytes());
 jsvgCanvas[i].setURI("temp" + i + ".svg");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 //try again
 else {
 getSvg(str, i);
 }
 }
 //try again
 else {
 getSvg(str, i);
 }
 }
 @Override
 public void onFailure(Call<Result> call, Throwable t) {
 }
 });
 }
 /*
 Create panel for violinGenerator,include message, image, check boxes and buttons
 */
 public JComponent createComponents() {
 //create panel
 final JPanel panel = new JPanel(new BorderLayout());
 JPanel choices = new JPanel(new GridLayout(2, 5));
 //image location and checkbox location
 for (int i = 0; i < POP_SIZE; i++) {

61

 JPanel p = new JPanel(new BorderLayout());
 p.add("North", jCheckBoxes[i]);
 p.add("Center", jsvgCanvas[i]);
 choices.add(p);
 }
 jLabel.setText("Please select the best two violins from model " + model + "
generation " + generation);
 panel.add(jLabel, BorderLayout.NORTH);
 panel.add(choices, BorderLayout.CENTER);
 JPanel buttonPanel = new JPanel(new FlowLayout(FlowLayout.CENTER));
 okButton = new JButton("Generate the next generation of violin design");
 JButton skipButton = new JButton("Satisfied with the selected two design and go
to the next model");
 buttonPanel.add(okButton);
 buttonPanel.add(skipButton);
 panel.add(buttonPanel, BorderLayout.SOUTH);
 //Ok button actions
 okButton.addActionListener(e -> {
 int first = -1;
 int second = -1;
 //recode image No. of first and second selection
 for (int i = 0; i < jCheckBoxes.length; i++) {
 if (jCheckBoxes[i].isSelected()) {
 if (first == -1)
 first = i;
 else
 second = i;
 }
 }
 //must select two violin in each generation
 if (second == -1) {
 JOptionPane.showMessageDialog(null, "Please select two violin design");
 }
 boolean converge = true;
 //check if the first selection is converge
 for (double v : es[model-1].getMutationStrength()[first]) {
 if (v != 0) {
 converge = false;
 break;
 }
 }
 //check if the second selection is converge
 if (converge) {
 for (double v : es[model-1].getMutationStrength()[second]) {
 if (v != 0) {
 converge = false;

62

 break;
 }
 }
 }
 //continue evolve process until finish all models
 if (model < MAX_MODEL) {
 //continue current model, save the selected violin design in each generation
 if (!converge && generation < MAX_GENERATION) {
 saveKid(first, second);
 es[model-1].makeKid(first, second);
 getSvg();
 jLabel.setText("Please select the best two violins from model " + model +
" generation " + generation);
 }
 //go to next model
 else {
 skip();
 }
 }
 //Finished all models,then go to the final selection process
 else {
 getFinalViolin();
 skipButton.setEnabled(false);
 }
 });
 //skip button action
 skipButton.addActionListener(e -> {
 //skip current model
 if (model < MAX_MODEL) {
 skip();
 }
 //skip button can not used in final selection
 else {
 getFinalViolin();
 skipButton.setEnabled(false);
 }
 });
 return panel;
 }
 /*
 Save current selections and skip current model and jump to next model
 */
 private void skip() {
 int first = -1;
 int second = -1;
 //recode image No. of selection

63

 for (int i = 0; i < jCheckBoxes.length; i++) {
 if (jCheckBoxes[i].isSelected()) {
 if (first == -1)
 first = i;
 else
 second = i;
 }
 }
 //save the code and image of current selection
 resultGeneration.add(generation);
 resultCode.add(getCode(first));
 resultCode.add(getCode(second));
 saveKid(first, second);
 generation = 1;
 model++;
 initModel();
 jLabel.setText("Please select the best two violins from model " + model + "
generation " + generation);
 }
 /*
 Let users select the final design after they go through all 5 models
 */
 private void getFinalViolin() {
 int first = -1;
 int second = -1;
 //recode image No. of selection
 for (int i = 0; i < jCheckBoxes.length; i++) {
 if (jCheckBoxes[i].isSelected()) {
 if (first == -1)
 first = i;
 else
 second = i;
 }
 }
 //save the code and image of current selection
 resultGeneration.add(generation);
 resultCode.add(getCode(first));
 resultCode.add(getCode(second));
 saveKid(first, second);
 //display all 10 selections in previous models
 for (int i = 0; i < resultTime.size(); i++) {
 //first selection of each model
 jCheckBoxes[i * 2].setSelected(false);
 jCheckBoxes[i * 2].removeItemListener(listener2);
 jCheckBoxes[i * 2].addItemListener(listener1);
 jsvgCanvas[i * 2].setURI("empty.svg");

64

 jsvgCanvas[i * 2].setURI("kid-" + resultTime.get(i) + "-" +
resultGeneration.get(i) + "-" + 0 + ".svg");
 //second selection of each model
 jCheckBoxes[i * 2 + 1].setSelected(false);
 jCheckBoxes[i * 2 + 1].removeItemListener(listener2);
 jCheckBoxes[i * 2 + 1].addItemListener(listener1);
 jsvgCanvas[i * 2 + 1].setURI("empty.svg");
 jsvgCanvas[i * 2 + 1].setURI("kid-" + resultTime.get(i) + "-" +
resultGeneration.get(i) + "-" + 1 + ".svg");
 }
 jLabel.setText("Please select the final violin");
 okButton.removeActionListener(okButton.getActionListeners()[0]);
 okButton.addActionListener(e -> {
 getTime();
 //Display user's final selection and save the image and code of that violin
design
 for (int i = 0; i < jCheckBoxes.length; i++) {
 if (jCheckBoxes[i].isSelected()) {
 try {
 Files.copy(Paths.get("kid-" + resultTime.get(i / 2) + "-" +
resultGeneration.get(i / 2) + "-" + i % 2 + ".svg"), Paths.get("result-" + time + ".svg"),
StandardCopyOption.REPLACE_EXISTING);
 Files.write(Paths.get("result-" + time + ".txt"),
resultCode.get(i).getBytes());
 frame.setVisible(false);
 JFrame f = new JFrame("Result");

 JSVGCanvas canvas = new JSVGCanvas();
 canvas.setURI("result-" + time + ".svg");
 f.add(canvas);

 // Display the frame.
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });
 f.setSize(1600, 900);
 f.setVisible(true);
 } catch (IOException e1) {
 e1.printStackTrace();
 }
 break;
 }
 }
 });

65

 }
 /*
 Help user to save violin designs they selected
 parameters: first: first selection in each generation
 second: second selection in each generation
 */
 private void saveKid(int first, int second) {
 //save users' selection in each generation and models
 try {
 Files.copy(Paths.get("temp" + first + ".svg"), Paths.get("kid-" + time + "-" +
generation + "-0.svg"), StandardCopyOption.REPLACE_EXISTING);
 Files.copy(Paths.get("temp" + second + ".svg"), Paths.get("kid-" + time + "-" +
generation + "-1.svg"), StandardCopyOption.REPLACE_EXISTING);
 generation++;
 } catch (IOException e1) {
 e1.printStackTrace();
 }
 }
 public class Listener implements ItemListener {
 private int maxSelection;
 private int selectionCounter = 0; //initial counter to 0
 public Listener(int maxSelection) {
 this.maxSelection = maxSelection;
 }
 @Override
 public void itemStateChanged(ItemEvent e) {
 JCheckBox source = (JCheckBox) e.getSource();
 if (source.isSelected()) {
 selectionCounter++;
 // check for max selections:
 if (selectionCounter == maxSelection)
 for (JCheckBox box : jCheckBoxes)
 if (!box.isSelected())
 box.setEnabled(false);
 } else {
 selectionCounter--;
 // check for less than max selections:
 if (selectionCounter < maxSelection)
 for (JCheckBox box : jCheckBoxes)
 box.setEnabled(true);
 }
 }
 }
}

66

Source code(ES.java)

package org.digitalamati;
import java.util.Arrays;
/*
Use evolution strategies algorithm to evolve violin outline
*/
public class ES {
 private int popSize;
 private int dnaSize;
 private double[][] DNA;
 private double[][] mutationStrength;
 private double[] min;
 private double[] max;

 /*
 Use evolution strategies algorithm to evolve violin outline
 parameters: popSize: the size of population pool(set to 10)
 dnaSize: the number of elements for each violin DNA
 min: the minimum value of each DNA element
 max: the maximum value of each DNA element
 */
 public ES(int popSize, int dnaSize, double[] min, double[] max) {
 this.popSize = popSize;
 this.dnaSize = dnaSize;
 this.min = min;
 this.max = max;

 //Randomly generate DNA and mutation strengh to create original population
 DNA = new double[popSize][dnaSize];
 mutationStrength = new double[popSize][dnaSize];
 for (int i = 0; i < popSize; i++) {
 for (int j = 0; j < dnaSize; j++) {
 DNA[i][j] = min[j] + Math.random() * (max[j] - min[j]);
 mutationStrength[i][j] = Math.random();
 DNA[i][j] = Math.max(min[j], DNA[i][j]);
 DNA[i][j] = Math.min(max[j], DNA[i][j]);
 DNA[i][j] = Double.parseDouble(String.format("%.1f", DNA[i][j]));
 mutationStrength[i][j] = Double.parseDouble(String.format("%.2f",
mutationStrength[i][j]));
 }
 }
 System.out.println("DNA:" + Arrays.deepToString(DNA));

67

 System.out.println("mutationStrength:" +
Arrays.deepToString(mutationStrength));
 }
 /*
 return DNA of each violin
 return value:
 -the violin's DNA
 */
 public double[][] getDNA() {
 return DNA;
 }
 /*
 return mutation strength of each violin
 return value:
 -the violin's mutation strength
 */
 public double[][] getMutationStrength() {
 return mutationStrength;
 }

 /*
 simulate the evolution prosesses, use crossover and mutate to create new generation
population
 parameters: first: the first selection of users

 second: the second selection of users
 */
 public void makeKid(int first, int second) {
 //Create arrays to store offspring's DNA and mutation strength
 double[][] kidsDNA = new double[popSize][dnaSize];
 double[][] kidsMutationStrength = new double[popSize][dnaSize];
 //The recombination and mutation processes
 for (int i = 0; i < popSize; i++) {
 //bp determine the position to break a DNA into two pieces
 int bp = (int) (Math.random() * dnaSize);
 //rnd determine which parent provide the first piece DNA to kid, the other
provide the second piece
 double rnd = Math.random();
 int tempFirst = rnd > 0.5 ? first : second;
 int tempSecond = rnd > 0.5 ? second : first;
 //recombination process
 System.arraycopy(DNA[tempFirst], 0, kidsDNA[i], 0, bp);
 System.arraycopy(DNA[tempSecond], bp, kidsDNA[i], bp, dnaSize - bp);
 System.arraycopy(mutationStrength[tempFirst], 0, kidsMutationStrength[i], 0,
bp);
 System.arraycopy(mutationStrength[tempSecond], bp,
kidsMutationStrength[i], bp, dnaSize - bp);

68

 //mutation process
 for (int j = 0; j < dnaSize; j++) {
 //mutation strength decrease in each generation to convergence faster
 kidsMutationStrength[i][j] = mutationStrength[i][j] * 0.9;
 kidsMutationStrength[i][j] = kidsMutationStrength[i][j] < 0.05 ? 0 :
kidsMutationStrength[i][j];
 //use mutation strength to slightly change kid's DNA
 int num = Math.random() > 0.5 ? 1 : -1;
 kidsDNA[i][j] += num * kidsMutationStrength[i][j] * Math.random();
 //to make sure each element of DNA within its scope
 kidsDNA[i][j] = Math.max(min[j], kidsDNA[i][j]);
 kidsDNA[i][j] = Math.min(max[j], kidsDNA[i][j]);
 kidsDNA[i][j] = Double.parseDouble(String.format("%.1f",
kidsDNA[i][j]));
 kidsMutationStrength[i][j] = Double.parseDouble(String.format("%.2f",
kidsMutationStrength[i][j]));
 }
 }
 //put kids' DNA and mutation strength to the population pool
 DNA = kidsDNA;
 mutationStrength = kidsMutationStrength;
 System.out.println("kid DNA:" + Arrays.deepToString(DNA));
 System.out.println("kid mutationStrength:" +
Arrays.deepToString(mutationStrength));
 }
}

69

Source code(result.java)

package org.digitalamati;
/*
Entity class to receive feedback
 */
public class Result {
 private String errors;
 private String svg;

 public String getErrors() {
 return errors;
 }

 public void setErrors(String errors) {
 this.errors = errors;
 }

 public String getSvg() {
 return svg;
 }

 public void setSvg(String svg) {
 this.svg = svg;
 }
}

70

Source code(DigitalamatiService.java)

package org.digitalamati;

import retrofit2.Call;
import retrofit2.http.*;
/*
Used to build a API for violin explorer
 */
public interface DigitalamatiService {
 @POST("/")
 Call<Result> generate(@Body String body);
}

71

CitiCompletionReport

72

IRBNetDocument

73

74

LIST OF REFERENCE

[1]Lunenfeld, P. (2003). The design cluster. Design research: Methods and

perspectives, 10-15.

[2] "Design," n.d. https://en.wikipedia.org/wiki/Design

[3] National Association Of Schools Of Art And Design. (2018) National Association

of Schools of Design Handbook. Retrieved from https://nasad.arts-accredit.org/wp-

content/uploads/sites/3/2018/12/AD-2018-19-Handbook-FINAL-12-17-2018.pdf

[4] algorithmic art assembly. https://aaassembly.org/

[5] Frazer, J. (1995). An evolutionary architecture.

[6] Soddu, C. (2001). Generative Natural Flux. In GA 2001 (pp. 9-22). Generative

design Lab.

[7] R. M. Friedberg, “ A learning machine: Part I,” IBM J., vol. 2, no. 1,

pp. 2–13, Jan. 1958.

[8] R. M. Friedberg, B. Dunham, and J. H. North, “A learning machine:

Part II,” IBM J., vol. 3, no. 7, pp. 282–287, July 1959.

[9] G. E. P. Box, “Evolutionary operation: A method for increasing industrial

productivity,” Appl. Statistics, vol. VI, no. 2, pp. 81–101, 1957.

[10] Bentley, P. (1999). Evolutionary design by computers. Morgan Kaufmann.

[11] Harry Mairson. http://www.digitalamati.org/

[12] Bentley, P. (2002). Creative evolutionary systems. Morgan Kaufmann.

[13] Yao, X. (1999). Evolutionary computation: Theory and applications. World

scientific.

75

[14] Bentley, P. (1999). An introduction to evolutionary design by

computers. Evolutionary design by computers, 1-73.

[15] Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.

[16] Fogel, D. B. (1993). Applying evolutionary programming to selected traveling

salesman problems. Cybernetics and systems, 24(1), 27-36.

[17] Rechenberg, I. (1989). Evolution strategy: Nature’s way of optimization.

In Optimization: Methods and applications, possibilities and limitations (pp. 106-

126). Springer, Berlin, Heidelberg.

[18] Koza, J. R., & Koza, J. R. (1992). Genetic programming: on the programming of

computers by means of natural selection(Vol. 1). MIT press.

[19] Back, T., Hammel, U., & Schwefel, H. P. (1997). Evolutionary computation:

Comments on the history and current state. IEEE transactions on Evolutionary

Computation, 1(1), 3-17.

[20] Frazer, J. (2002). Creative design and the generative evolutionary paradigm.

In Creative evolutionary systems (pp. 253-274). Morgan Kaufmann.

[21] Moroni, A., Manzolli, J., Von Zuben, F., & Gudwin, R. (2002). Vox Populi:

Evolutionary computation for music evolution. In Creative evolutionary systems (pp.

205-221). Morgan Kaufmann.

[22]Rooke, S. (2002). Eons of genetically evolved algorithmic images. In Creative

evolutionary systems (pp. 339-365). Morgan Kaufmann.

[23] Retrofit 2[online]. available: https://github.com/square/retrofit

[24] Apache™ Batik SVG Toolkit[online]. available:

https://xmlgraphics.apache.org/batik/.2016

76

BIBLIOGRAPHY

Frazer, J. (1995). An evolutionary architecture.

Yu, X., & Gen, M. (2010). Introduction to evolutionary algorithms. Springer Science

& Business Media.

Fogel, D. B. (1998). Evolutionary computation: the fossil record. Wiley-IEEE Press.

Wierstra, D., Schaul, T., Peters, J., & Schmidhuber, J. (2008, June). Natural evolution

strategies. In 2008 IEEE Congress on Evolutionary Computation (IEEE World

Congress on Computational Intelligence) (pp. 3381-3387). IEEE.

Gabora, L. (2002). The beer can theory of creativity. In Creative evolutionary

systems (pp. 147-161). Morgan Kaufmann.

Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolution strategies

as a scalable alternative to reinforcement learning. arXiv preprint

arXiv:1703.03864.

Miranda, E. R. (2007). Evolutionary computer music (p. xiv259). J. Al Biles (Ed.).

London: Springer.

Bentley, P. J., & Corne, D. W. (2002). An introduction to creative evolutionary

systems. In Creative evolutionary systems (pp. 1-75). Morgan Kaufmann.

Bäck, T., Hammel, U., & Schwefel, H. P. (1997). Evolutionary computation:

Comments on the history and current state. IEEE transactions on Evolutionary

Computation, 1(1), 3-17.

Soddu, C., & Colabella, E. Artificial intelligence and architectural design. In CAAD

Futures (Vol. 95).

	University of Rhode Island
	DigitalCommons@URI
	2019

	AN INTELLIGENT DESIGN EXPLORER FOR NEW VIOLIN SHAPES
	Hao Wang
	Recommended Citation

	

