
CARTOGRAM DATA PROJECTION FOR SELF-ORGANIZING MAPS

BY

DAVID H. BROWN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2012

MASTER OF SCIENCE THESIS

OF

DAVID H. BROWN

APPROVED:

Thesis Committee:

Major Professor

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2012

Lutz Hamel

Jean-Yves Hervé

Daniel W. Udwary

Nasser H. Zawia

ABSTRACT

The Self-Organizing Map (SOM) is very often visualized by applying Ultsch’s

Unified Distance Matrix (U-Matrix) shading and labeling the cells of the 2-D grid

with training data observations nearest to that node in feature space. Although

powerful and the de facto standard visualization for SOMs, this does not provide

for two key pieces of information when considering real world data mining appli-

cations: (a) While the U-Matrix indicates the location of possible clusters on the

map, it typically does not accurately convey the size of the underlying data pop-

ulation within these clusters. (b) When mapping training data observations onto

the 2-D grid of the SOM it often occurs that multiple observations are mapped

onto a single cell of the grid. Simply labeling the observations on a single cell does

not provide any insights of the feature-space distribution of observations within

that cell and in practical data mining applications it is often desirable to under-

stand the distribution or “goodness of fit” of the observations as they are mapped

to the individual SOM cells. We address these problems with two complementary

innovations. First, we increase or decrease the 2-D size of each cell according to

the number of data elements it contains; an approach derived from the cartogram

techniques in geography. Second, we determine the within-cell location of each

datum according to its similarity in n-dimensional feature space to each of the

neighboring nodes that surround it on the 2-D SOM grid. When multiple obser-

vations are mapped to a single cell then the plot locations will convey a sense of

the data distribution within that cell. One way to view plotting of the data dis-

tribution within a cell is as a visualization of the quantization error of the map.

Finally, we found that these techniques lend themselves to additional applications

and uses within the context of SOMs and we will explore them briefly.

ACKNOWLEDGMENTS

This thesis would not exist but for the patient encouragement and guidance

of Dr. Lutz Hamel, my major professor, who realized I had found a topic for

a thesis long before I did. Thanks also to the additional members of my core

committee, Dr. Jean-Yves Hervé and Dr. Daniel Udwary; and to Dr. James

Baglama (representing the Graduate School on the defense committee).

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

TABLE OF CONTENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

1.1 Visualization of the SOM . 1

List of References . 4

2 Literature Review . 5

2.1 Self-Organizing Map . 5

2.2 Data occlusion . 9

2.3 Cartogram . 14

List of References . 14

3 Cartograms . 17

3.1 Introduction to cartograms . 17

3.1.1 Other variable-scale maps 18

3.2 Selection of a cartogram algorithm 20

3.2.1 Prioritization of constraints 20

3.2.2 Shapes or sheet? . 21

iv

Page

v

3.2.3 Selecting available code 22

List of References . 22

4 Important Structures of the Self-Organizing Map 24

4.1 Properties of the Map . 24

4.2 Properties of the Data . 24

4.2.1 Training Data . 24

4.2.2 Dimensionality of the Data Space 25

4.2.3 Normalization . 25

4.2.4 Best-Match Node . 25

4.3 Inherent Properties of Nodes . 26

4.3.1 Row-Column Grid Coordinates 26

4.3.2 2D Plotting Center . 26

4.3.3 Neighboring Nodes . 27

4.3.4 Node Index . 28

4.3.5 Node cell and enclosing polygon 29

4.4 Trained Properties of Nodes . 29

4.4.1 Rn value . 29

4.4.2 Unified distance, or U-Matrix 29

4.4.3 Mapped Training Data 30

4.4.4 Quantization Error . 30

List of References . 30

5 Data Projection Within the Cell 32

5.1 Selecting the Best-matching Node 32

Page

vi

5.1.1 Computational Complexity 33

5.2 Finding Vectors to Neighbors 33

5.2.1 Computational Complexity 34

5.3 Orthogonal Projection . 34

5.3.1 Computational Complexity 35

5.4 Calculate and scale the 2-D Offset 35

5.4.1 Computational Complexity 36

5.5 Overall Computational Complexity of Mapping 36

5.6 Visual representation . 37

5.6.1 Point symbol . 37

5.6.2 Center trace . 37

List of References . 38

6 Development and Implementation in R 39

6.1 R package architecture . 40

6.2 The somTools class . 40

6.2.1 Methods and functions of somTools 42

6.3 Locating and Interpolating Between SOM Nodes 43

6.3.1 Adaptation for Hexagonal Maps 43

6.4 Cartogram Construction . 44

6.4.1 Computational complexity 45

6.5 Plotting the map . 46

List of References . 47

7 Demonstrations and Experiments 49

Page

vii

7.1 Solutions to Data Hiding . 49

7.1.1 Density Cartogram . 51

7.1.2 Detection of Poorly Converged Map 51

7.1.3 Other Cartogram Applications 51

7.1.4 Other information layers 55

7.2 Further Experiments . 55

7.2.1 Time and Resources Required 56

List of References . 59

8 Conclusions and Future Work . 62

8.1 Future Work . 62

8.1.1 Support Other SOM algorithms 62

8.1.2 Handle missing data . 62

8.1.3 Projection scaling . 63

8.1.4 Optimization of calculations 63

8.1.5 Further visualization techniques 64

List of References . 65

APPENDIX

A Code Listings . 66

A.1 Description of the somTools class 66

A.2 Initialization of the somTools object 67

A.3 somTools.hexify.xy() – transform rectangular grid points to
hexagonal . 68

A.4 somTools.node.polygon() – outline node plot areas 69

Page

viii

A.5 somTools.grid.SpatialPolygons() – prepare node oulines for car-
togram . 71

A.6 somTools.map.density() – calculate data density of SOM 72

A.7 somTools.grid.cartogram() – construct the cartogram 73

B Iris Data . 77

List of References . 79

BIBLIOGRAPHY . 80

LIST OF TABLES

Table Page

B.1 Anderson’s Iris data as published by Fisher. Measurements are
in centimeters (cm). 78

ix

LIST OF FIGURES

Figure Page

1 A comparison of the standard and enhanced SOM visualizations.
Top, the typical SOM visualization ; bottom, our enhanced ver-
sion of the same map. The SOM has been constructed from the
Fisher/Anderson iris data set. Plot symbols correspond to iris
species (class). The linearly separable Setosa species is on the
right (square symbols). 3

2 U-Matrix cluster visualization. On the left, 3D columns rep-
resent the Rn distances between nodes used to calculate the
U-Matrix (Detail from [5], Figure 5). On the right, a SOM
trained on various economic parameters of nation-states. Nodes
are labeled with countries for which they are the best match
and shaded according to the U-Matrix. (Detail from [7], Figure
3-31.) See also Figure 5. 6

3 U*-Matrix SOM visualization. On the left, the standard U-
Matrix of average Rn distances between nodes trained on ; cen-
ter, the P-Matrix showing the average data density in a Pareto
sphere around each node; right, the U*-Matrix de-emphasizes
areas of high data density. The toroidal map is shown tiled in a
2× 2 grid. The smoothed areas more clearly show clusters than
U-Matrix alone. (Adapted from [8], Figures 4-6.) 7

4 The connected components method of cluster visualization. On
the left, a standard U-Matrix visualization of a SOM. On the
right, the starburst display of the connected components method
(from [9], Figures 4 and 5). The U-Matrix distance values have
been smoothed on the right to identify only the most significant
clusters. 8

5 Vector field visualization. On the left, the typical U-Matrix
visualization; on the right, the vector field shows not only cluster
borders but also indicates the center of a cluster. (Adapted
from [10], Figure 1). The SOMs have been constructed from
the Fisher/Anderson iris data set. 9

x

Figure Page

xi

6 Smoothed Data Histograms for Cluster Visualization. On the
left, a synthetic 2D dataset; center, the SOM trained on that
data with data density used to shade map nodes (lighter=more
dense). On the right, contours traced on the smoothed data
density values of the trained SOM indicate clustering. (Adapted
from [12], Figures 1-2.) . 10

7 SOM coloring applied to other visualizations. Left, the color-
opponent shading applied to the SOM by Vesanto and Himberg.
Quadrant labels are added here to in case of monochrome re-
production. Blue and yellow are in opposition from upper right
to bottom left (quadrants 1 and 3) with green versus magenta
from upper left to bottom right (quadrants 1 and 4). Center,
such a coloring applied to a scatter plot [13] clearly reveals that
the lower-trending series is not just noise but part of a different
cluster of data. Right, one view of an interactive model of the
SOM showing a Sammon’s mapping of the Rn codebook values
to a 3D surface. [14] . 10

8 Typical solutions to data occlusion in SOM visualization. On
the left, data labels are stacked around the center of the node.
(Detail from [17], Figure 2). On the right, a demonstration
from the kohonen R package[18] randomly positions (jitters) the
labels within the node’s cell. 11

9 Trustschl’s Smart Jitter of the iris data [20, 21] using a grid of
SOMs embedded in a scatter plot of sepal length vs. sepal width
(From [19]). On the left, a 5 × 5 primary grid with a 10 × 10
secondary (SOM) grid. On the right, a 10 × 10 primary grid
with a 5× 5 secondary grid. 12

10 Nonlinear magnification with multiple centers of increased mag-
nification. (From [22] , Figure 7.) Intended for use with an in-
teractive data visualization environment where the model could
be rotated in real time. The two rings are actually the same
data set. Each ring shows a different subset of three normalized
elements from the data vector. Enclosing polygons indicate the
same datum brushed to reveal its location in each ring. 13

11 Sampling lens from [23], Figure 1. On the left, the over-
saturated data plot. On the right, the sampling lens has reduced
the overplotting to reveal that the middle cluster is in fact of
lower density than the others. 14

Figure Page

xii

12 A continuous, area-by-value cartogram of the world according
to the population of each nation. [1] 17

13 Two examples of variable-scale maps. On the left, a proposed
map display [4] where the center area is enlarged to show de-
tail around a mobile user and the periphery is reduced in scale
to show as large a region as possible. On the right, the rela-
tive importance of local information is dramatized in this cover
illustration [5] . 19

14 A SOM cartogram emphasizing nodes of particular interest. Cell
sizes in this figure are enlarged to emphasize cells to which more
than one species of iris map—i.e., the inseparable region in the
dataset. 19

15 The relative balance between shape, topography, and areas will
produce markedly different cartograms. In the rectangular sta-
tistical cartogram (left), Raisz choses to “discard altogether the
outlines of the country”—both the shapes of the states and most
of the map topology—in order to achieve the exact area required
[3]. The pseudo-cartogram (right) preserves topology while only
slightly relaxing shape constraints, but areas are far from their
intended values. [7] . 21

16 A continuous, area-by-value cartogram of the United States of
America based on population data.[11] 22

17 Transformation of node index to (x, y) (row, column) grid coor-
dinate pairs. Selected nodes are labeled with their node index i
and (x, y) grid coordinates. Neighbors of the white-background
nodes are shown with a light background. Non-neighbor nodes
are shown with a dark background. 26

18 Orthogonal projection (x′′) of a datum vector (x′) onto a neigh-
boring node vector (m′j). This calculation is generalizable to the
Rn feature space of the SOM. [2] 34

19 UML class structure diagram of important data and methods of
the somTools class. 41

Figure Page

xiii

20 Transformation of rectangular grid space to hexadecimal plot-
ting coordinates by equations (11) and (12). Example coordi-
nate values determined in the rectangular grid space are shown
on the left. On the right, these values transformed for plotting
a hexagonal map. Note that the center of the node remains cen-
tered and points that had been radiating out toward adjacent
node centers are still on a line from the center to those adjacent
nodes. 44

21 A relatively high-resolution rectangular grid is overlain and ex-
tended beyond the plotted area of example SOM maps to form
the matrix on which the cartogram will be calculated. (SOM
nodes are drawn with heavier outlines; rectangular SOM on the
left; hexagonal SOM on the right.) 45

22 Grob Layers. The four smaller images on the left show the
individual gTree components of the basic visualization. From
upper left to bottom right, they are the gridPolys, gridEdges,
tails, and points. The larger image on the right combines the
layers. 46

23 Jitter compared with projection. On the left, a mapping plot
from the kohonen package uses jitter to accommodate multi-
ple data in a cell. On the right, our data mapping considers
similarity to neighboring cells to locate each datum. U-matrix
distances are shown as gray backgrounds (darker = greater dis-
tance). 50

24 U-matrix shading, projected data, and cartogram expansion.
The 10× 6 iris SOM shown with U-matrix background shading,
data mapped to projected locations, and cartogram expansion
based on data density. 52

25 A poorly converged SOM. The 10×6 iris SOM shown after only
20 training iterations. The deliberately poor convergence of this
SOM is indicated by data projecting far from their best-match
node centers. 52

Figure Page

xiv

26 Wireframe used to show third dimension. On the left, a demon-
stration shaded rendering from the lattice package of the vol-
cano data set (Topographic Information on Auckland’s Maunga
Whau Volcano) that is bundled with R.[13] Center, the shad-
ing has been removed, showing the underlying wireframe. On
the right, the same package is used to render the data densities
of the SOM in Figure 24. The SOM wireframe is of quite low
resolution, a matrix of only 60 elements compared to the 5307
elements in the volcano dataset. 53

27 Cartogram based on U-Matrix (umat) distances. The (10 × 6)
iris SOM is shown on the left with cell areas increased where
the umat distances are highest. On the right, high-umat cells
are shrunk. The grayscale shading of cells also shows the umat
distances, as in previous figures. 54

28 Cartogram based on the number of species found in a node. . . 54

29 The connected Components clustering [14] can easily be added
to this visualization. These “starburst” lines identify the node
centers, making the tails of the data plots mostly redundant;
they have been omitted. 55

30 A SOM of the Cardiotocography data set. The standard
dist.neighbours (U-matrix) plot from the kohonen package is
above; below is our visualization. We include data tails to show
quantization error and adjust cell size to show data density. The
data set appears fairly homogeneous, with no strongly separated
clusters nor any extreme variations in data density. 57

31 A SOM of the Cardiotocography data set where the area of
each cell represents the average risk classification of examina-
tions mapping to that node. Examinations are assessed by
consensus of three obstetricians as 1=normal (smallest cells);
2=suspect; or 3=pathologic (largest cells). Data labels are
the fetal state class codes; 1 is “A” (calm sleep), 2=“B”
(REM sleep), 3=“C” (calm vigilance), 4=“D” (active vigi-
lance), 5=“SH” (shift pattern), 6=“AD” (accelerative/deceler-
ative; stress), 7=“DE” (decelerative), 8=“LD” (largely deceler-
ative), 9=“FS” (flat-sinusoidal), and 0=“susp” (suspect). 58

Figure Page

xv

32 User time required to calculate a large SOM visualization (Fig-
ure 31). The SOM calculation itself dwarfs the time required
for other computations. 58

B.33 Iris attributes, redrawn from Anderson’s Figures 5 and 8 in The
Species Problem in Iris.[3] The larger sepals extend downward
while the petals extend upward. The solid silhouettes show how
the length and width are measured. 79

CHAPTER 1

Introduction

In this project, we present a solution to problems of information hiding and

point occlusion found in popular visualizations of the Self-Organizing Map (SOM).

The techniques we developed can be used to enhance many existing visualizations,

providing additional insight into the data within a familiar frame of reference.

Kohonen’s self-organizing maps [1] are a widely used method of visualizing

structure in high-dimensional (Rn) data sets. They employ an artificial neural

network typically constructed and visualized as a regular two-dimensional mesh

of nodes, each representing a vector trained to some point in the Rn data space.

Thus, each node has both a feature-space Rn value and a 2-D (x, y) position.

In the original SOM algorithm, the Rn vectors in the map nodes are randomly

initialized.[1, ch. 3.2] Each training datum is mapped to the nearest node and that

node’s Rn vector is adjusted to more closely match the Rn value of the datum.

A lesser adjustment is also applied to nodes located within a certain radius of

the nearest node’s 2-D grid position. This neighborhood smoothing results in

a global ordering of the map during the earlier iterations: “...the collection of

models [nodes] is ordered by definition, if each model is equal to the average of

input data mapped to its neighborhood.” [1, p. 109] As the training progresses,

the neighborhood radius is decreased and so the Rn vectors nodes will eventually

converge on a stable arrangement.

1.1 Visualization of the SOM

The 2-D grid of nodes is appropriately the basis for most visualizations of the

SOM map. Nodes are marked by outlines of the same size and shape. The space

within may be used variously to display information about the Rn vector.

1

Clustering is often indicated by shading each cell to indicate the average dis-

tance in feature-space of the node to its 2-D grid neighbors; this is the Unified

Distance Matrix (U-Matrix) [2]. To map data to this grid, the node nearest to

each datum is identified and the data is plotted in the grid cell of that node [3];

often, multiple data map to the same cell in the grid.

This standard visualization of the SOM is a powerful tool for gaining un-

derstanding of the overall structure of a dataset, but it can obscure important

information about individual data. It does not reliably show the size of the under-

lying data population within the clusters. The labeling of cells with their data does

not provide any insight into the feature-space distribution of observations within

that cell.

To remedy the cluster size representation problem, we expand and contract

the 2-D SOM grid cells in proportion to the number of data points plotted in

each. This shows clusters in proportion to their population and it also opens up

space within the more populous cells for plotting the data more informatively. The

resulting plot is called a cartogram and is a technique borrowed from geography.

To visualize the data distribution within each cell, we need to show the feature-

space separation between each datum and the node. Data that are most similar to

the node (in feature space) appear at or near the center of the 2-D grid cell. Data

that are less similar to the node are moved toward the grid neighbors with which

they have the most similarity in feature space. The spread of the data around the

center of the cell also indicates the quantization error.

A comparison of the standard visualization and our enhancements is shown

in Figure 1. First we show a standard U-Matrix visualization of the familiar

iris data set [4, 5] with mapped data randomly jittered within the cell. Darker

shading indicates cluster boundaries (greater U-matrix distance between cells).

2

Figure 1. A comparison of the standard and enhanced SOM visualizations. Top,
the typical SOM visualization ; bottom, our enhanced version of the same map.
The SOM has been constructed from the Fisher/Anderson iris data set. Plot
symbols correspond to iris species (class). The linearly separable Setosa species is
on the right (square symbols).

While their exact location within the cell is meaningless, the plotted points do

give a sense of the data density. Our enhanced visualization maintains the same

U-matrix shading to indicate clustering and individual points do still imply data

density. More explicitly, the size of each cell is scaled according to its data density;

denser areas appear larger. The location of the mapped data within the cell is a

projection of their similarity to neighboring cells, so a larger spread of the data

points indicates how well a node fits its data as well as suggesting the number of

data. The grid organization of the SOM mesh is still clearly perceived despite the

distortion of the cartogram expansion.

3

List of References

[1] T. Kohonen, Self-Organizing Maps, 3rd ed., Springer Series in Information
Sciences. Berlin, Heidelberg, New York: Springer, 2001, no. 30.

[2] A. Ultsch, U*-matrix: a tool to visualize clusters in high dimensional data.
Fachbereich Mathematik und Informatik, 2003.

[3] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen, “SOM PAK: the self-
organizing map program package,” Report A31, Helsinki University of Tech-
nology, Laboratory of Computer and Information Science, 1996.

[4] E. Anderson, “The irises of the gaspe peninsula,” Bulletin of the American Iris
society, no. 59, pp. 2–5, 1935.

[5] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann.
Eugen, vol. 7, no. Part II, pp. 179–88, 1936.

4

CHAPTER 2

Literature Review

2.1 Self-Organizing Map

A complete review of literature regarding the Self-Organizing Map is far be-

yond the scope of this project. As early as 1997, a bibliography [1] of some 3300

papers related to SOM was compiled; this had expanded to 5300 by 2001 [2], 7700

in the most recent compilation (through 2005) [3], and is likely to be over 10,000

today. [4]

These SOM bibliographies helpfully include keyword indices that identify pa-

pers of interest in areas such as visualization. However, these keywords are derived

automatically from the titles and abstracts and do not always indicate the primary

emphasis of the paper. Many papers listed under the “visualization” keyword are

applications of the standard visualizations of the SOM in particular problem ar-

eas. Another subset of these papers evaluate use of the standard visualizations to

evaluate a novel variant algorithm they use to generate the SOM. Similar results

are found in electronic searches of various databases

Only a very few of these thousands of papers describe general-purpose methods

of visualizing data on the SOM.

Among the most important of these is Ultsch’s development of the U-matrix [5]

that has become the de facto standard visualization. The “Unified distance matrix”

(U-matrix) assigns a value to each node in the 2D SOM projection according to

that average distance of that node’s Rn codebook vector to the Rn vectors of the

nodes surrounding it on the 2D map as demonstrated in Figure 2. Nodes with

greater average distance (in Rn) to their neighbors typically form boundaries

between clusters. This average distance value has been represented in several

ways, including the height columns in a 3D column plot superimposed on the map

5

Figure 2. U-Matrix cluster visualization. On the left, 3D columns represent the
Rn distances between nodes used to calculate the U-Matrix (Detail from [5], Figure
5). On the right, a SOM trained on various economic parameters of nation-states.
Nodes are labeled with countries for which they are the best match and shaded
according to the U-Matrix. (Detail from [7], Figure 3-31.) See also Figure 5.

[5], a third dimension for a rendered surface [6], and (probably most often), as a

grayscale or colored heat map. [7]

More recently, Ultsch has developed the U*-Matrix [8] calculated by multi-

plying the U-Matrix node distance (in Rn) value with an inverted data density

(P-matrix) measure so as to emphasize low-density regions typically found be-

tween clusters. Utilizing toroidal maps with thousands or tens of thousands of

nodes, Ultsch renders the U*-matrix as a 3D surface that can show clustering

better than U-matrix alone (Figure 3). Because of the small size of each node

in the plot, it would be difficult to apply our enhancements to this visualization.

However, the use of data density is similar to our adoption of a density cartogram.

Where the U*-Matrix smooths areas of high density, the cartogram expands them.

Both approaches call attention to clusters.

The connected components [9] approach to cluster identification adds an in-

tuitive overlay on top of a standard U-matrix plot. Each node in the map is

connected to the neighboring node with the least unified distance value; that is,

6

Figure 3. U*-Matrix SOM visualization. On the left, the standard U-Matrix of
average Rn distances between nodes trained on ; center, the P-Matrix showing the
average data density in a Pareto sphere around each node; right, the U*-Matrix
de-emphasizes areas of high data density. The toroidal map is shown tiled in a
2 × 2 grid. The smoothed areas more clearly show clusters than U-Matrix alone.
(Adapted from [8], Figures 4-6.)

following the maximal descent gradient. For any node, following a chain of these

connections will point the way to some node which has the least unified distance

value of any of its neighbors. If a node itself has the lowest unified distance of any

of its neighbors, the gradient to itself is obviously zero and it may be considered

to be the center of a cluster. A line is drawn from each node in the map to its

central (zero-gradient) node forming a starburst pattern that clearly identifies the

location and extent of clusters (Figure 4). We have implemented this visualization

in the current project.

Pölzlbauer’s vector field technique [10] (Figure 5) improves somewhat on the

U-matrix by not only showing where boundaries are located but also labeling nodes

with an arrow pointing toward the most similar adjacent node(s)—that is, most

similar in Rn codebook values and adjacent on the 2D map. The length of the arrow

indicates “the degree of how much the area it is pointing to is more similar to it than

the opposite direction.” Thus nodes at the boundaries of clusters point strongly

toward their centers while nodes actually at the center of a cluster might show

nothing more than a central dot of an arrow. Using arrows instead of gray levels

7

Figure 4. The connected components method of cluster visualization. On the
left, a standard U-Matrix visualization of a SOM. On the right, the starburst
display of the connected components method (from [9], Figures 4 and 5). The
U-Matrix distance values have been smoothed on the right to identify only the
most significant clusters.

to indicate boundaries would allow node coloring or shading to represent some

other data layer. The technique seems largely compatible with our enhancements

and could be a candidate for future inclusion in our visualization toolkit.

Another informative visualization by Pölzlbauer creates a graph from the SOM

nodes, adding edges between nodes if some data mapped to one node is within a

certain Rn radius of data mapped to another node. The graph edges are then drawn

as lines connecting nodes on the 2D SOM map. In addition to offering insight into

data density and clustering, areas in which the topology projection from Rn to

2D has been distorted can appear as edges that connect non-adjacent nodes. [11]

This information could certainly be included with the cartogram-expanded map

we propose.

An approach to finding clusters that is visually similar to the U-matrix was

proposed by Pampalk et al. [12]. In this method, the frequency distribution of

training data is mapped, assigning each datum not only to a single node, but pro-

portionately among several, thereby calculating a smoothed data density histogram

on top of the SOM. (This is somewhat similar to the P-Matrix that contributes

to Ultsch’s U*-Matrix.) Contours drawn around the areas of highest data density

8

Figure 5. Vector field visualization. On the left, the typical U-Matrix visualization;
on the right, the vector field shows not only cluster borders but also indicates
the center of a cluster. (Adapted from [10], Figure 1). The SOMs have been
constructed from the Fisher/Anderson iris data set.

reveal clustering (Figure 6).

Several visualizations based on the SOM have been developed by Vesanto and

Himberg [13, 14]. One interesting approach uses the SOM as an intermediate step

to summarize and organize a high-dimensional data set preparatory to another

visualization. The SOM is smoothly colored so that the neighborhood association

between the Rn codebook values will still be apparent in the final visualization.

Particularly interesting are 2D and 3D Sammon’s mappings where nodes adjacent

in the SOM are connected to form a mesh that reveals something of the Rn shape

of the SOM (Figure 7). [15]

2.2 Data occlusion

Occlusion, or hiding, occurs when two or more data points map to the same

location in a data visualization and so are indistinguishable. This overplotting

occurs when the data do in fact share the same values, and can also be caused by

insufficient resolution in the visualization or by a dimensional reduction such as a

Sammon’s mapping [16] or the SOM.

9

Figure 6. Smoothed Data Histograms for Cluster Visualization. On the left, a
synthetic 2D dataset; center, the SOM trained on that data with data density
used to shade map nodes (lighter=more dense). On the right, contours traced on
the smoothed data density values of the trained SOM indicate clustering. (Adapted
from [12], Figures 1-2.)

0 10 20 30 40 50 60 70 80
30

40

50

60

70

80

90

100

Idle%

A
ns

%

−10

−5

0

5−10 −5 0 5

−8

−6

−4

−2

0

2

4

6

8

10

12

3 4

1

23

4

1

23

4

Figure 7. SOM coloring applied to other visualizations. Left, the color-opponent
shading applied to the SOM by Vesanto and Himberg. Quadrant labels are added
here to in case of monochrome reproduction. Blue and yellow are in opposition
from upper right to bottom left (quadrants 1 and 3) with green versus magenta
from upper left to bottom right (quadrants 1 and 4). Center, such a coloring
applied to a scatter plot [13] clearly reveals that the lower-trending series is not
just noise but part of a different cluster of data. Right, one view of an interactive
model of the SOM showing a Sammon’s mapping of the Rn codebook values to a
3D surface. [14]

10

1

1
1

1 1

1

1

1

11

11

1

1

11
1

1 1
1

111
1

1

1
1

1

1

1

1

1

11

1

1

11

11

1

1

1

1

1

1
11

1

1

1

1
1

1
1

1

1
1

2

22

2

2

2

2

22

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2

2
2

2

2

2

2

2

22 2
2

2
2

2 2
2

2

2

2

2
2

2

2

22 2

22

2

2
2

2

2
2

2

2

2 3

333
3

3

333

3
3

3

3

3 3
3

3
3

3
3

33 33
3

3

33 33333

3

3

3

3
3 33

3

33

3

3

33 3

Figure 8. Typical solutions to data occlusion in SOM visualization. On the left,
data labels are stacked around the center of the node. (Detail from [17], Figure 2).
On the right, a demonstration from the kohonen R package[18] randomly positions
(jitters) the labels within the node’s cell.

This problem is exacerbated in the SOM because data are mapped to a fairly

small number of discrete nodes. If the data are relatively few in number, discrete

labels can simply be stacked—ideally, but not always, within the confines of the

node’s map cell. A larger number of data can be randomly jittered within the cell

(Figure 8). Both of these approaches succeed in showing the data density within

the SOM along with limited information about the identity of the individual datum

(datum label or category mark). They do not convey any information about the

distribution of the data subset or how near a datum is to a node’s Rn vector.

Trutschl’s Smart Jitter algorithm [19] uses a grid of SOMs to expand areas

of high density. In this, he modifies visualizations such as a scatter plot by first

grouping nearby points together in a regular grid by binning or rounding one or

more of the Rn elements of the data to be plotted. For each of these primary

grid divisions, the data found therein are used to train a small SOM. The data

are mapped into the secondary grid of these small SOMs (Figure 9). So long

as the number of nodes in the small SOMs is greater than the number of data

to be plotted, one can be reasonably sure of seeing distinct marks for the data.

11

Figure 9. Trustschl’s Smart Jitter of the iris data [20, 21] using a grid of SOMs
embedded in a scatter plot of sepal length vs. sepal width (From [19]). On the
left, a 5 × 5 primary grid with a 10 × 10 secondary (SOM) grid. On the right, a
10× 10 primary grid with a 5× 5 secondary grid.

Data with exactly the same values would still likely appear in the same place.

Also, while the primary grid is arranged according to selected variables from the

Rn data space, the SOM grids will likely arrange along the primary components of

the data subset; it is not meaningful to identify a datum within a SOM as greater

or less than another with respect to the primary grid axes. The resolution of those

axes has been reduced to the primary grid. This approach is seen by the author

as being most useful for visualizing local relationships among crowded data (e.g.,

identifying clusters) while retaining the use of more familiar plotting techniques

such as the x/y scatter plot. (It would be interesting to apply this technique with

the primary grid itself being a SOM.)

Keahy uses a nonlinear magnification [22] to resolve additional detail within

3D mappings of high-dimensional data. The regions to be magnified are selected

according to the user’s interest, and the author expects applicability of this visual-

ization is limited to interactive graphical systems where the model can be rotated.

The appearance of the nonlinearly magnified grid (Figure 10) is similar to the SOM

12

Figure 10. Nonlinear magnification with multiple centers of increased magnifica-
tion. (From [22] , Figure 7.) Intended for use with an interactive data visualization
environment where the model could be rotated in real time. The two rings are
actually the same data set. Each ring shows a different subset of three normal-
ized elements from the data vector. Enclosing polygons indicate the same datum
brushed to reveal its location in each ring.

grid after the cartogram expansion we propose, if somewhat coarse and angular.

(That may simply be a limitation of the computing and graphic resources at the

time.)

Another tool for interactive visualization is provided by Ellis’s Sampling Lens.

[23] Within a specified area of the visualization, some random proportion of data

are eliminated. This allows differences in cluster density to be seen where they

would otherwise appear to be fully saturated. The effect is somewhat like changing

the exposure on a camera to suit the lighting of a scene (Figure 11). It suffers the

obvious drawback of not showing all the data in areas under the lens, but it does

maintain the underlying grid.

13

Figure 11. Sampling lens from [23], Figure 1. On the left, the over-saturated data
plot. On the right, the sampling lens has reduced the overplotting to reveal that
the middle cluster is in fact of lower density than the others.

2.3 Cartogram

A discussion of the history of the cartogram and algorithms for their generation

follows in Chapter 3.

List of References

[1] S. Kaski, J. Kangasz, and T. Kohonen, “Bibliography of Self-Organizing map
(SOM) papers: 1981-1997,” Neural Computing Surveys, vol. 1, pp. 102–350,
1998.

[2] M. Oja, S. Kaski, and T. Kohonen, “Bibliography of self-organizing map
(SOM) papers: 1998-2001 addendum,” Neural Computing Surveys, vol. 3,
no. 1, pp. 1–156, 2003.

[3] M. Pll, T. Honkela, and T. Kohonen, “Bibliography of self-organizing map
(SOM) papers: 2002-2005 addendum,” Helsinki University of Technology,
Helsinki, Tech. Rep. TKK-ICS-R23, 2007.

[4] “Bibliography of SOM papers,” Accessed: 2012-01-22. [Online]. Available:
http://www.cis.hut.fi/research/refs/

[5] A. Ultsch, “Self-Organizing neural networks for visualisation and classifica-
tion,” in Information and classification: concepts, methods, and applications.
University of Dortmund: Springer Verlag, 1993, pp. 307–313.

[6] E. L. Koua, “Using self-organizing maps for information visualization and
knowledge discovery in complex geospatial datasets,” in Proceedings of 21st
International Cartographic Renaissance (ICC), 2003, pp. 1694–1702.

[7] T. Kohonen, Self-Organizing Maps, 3rd ed., Springer Series in Information
Sciences. Berlin, Heidelberg, New York: Springer, 2001, no. 30.

14

http://www.cis.hut.fi/research/refs/

[8] A. Ultsch, U*-matrix: a tool to visualize clusters in high dimensional data.
Fachbereich Mathematik und Informatik, 2003.

[9] L. Hamel and C. Brown, “Improved interpretability of the unified distance
matrix with connected components,” in Proceeding of the 7th International
Conference on Data Mining. Las Vegas Nevada, USA: CSREA Press, July
2011, pp. 338–343.

[10] G. Plzlbauer, A. Rauber, and M. Dittenbach, “A vector field visualization
technique for self-organizing maps,” in Advances in Knowledge Discovery and
Data Mining, 2005, pp. 399–409.

[11] G. Plzlbauer, A. Rauber, and M. Dittenbach, “Advanced visualization tech-
niques for self-organizing maps with graph-based methods,” Advances in Neu-
ral NetworksISNN 2005, pp. 813–813, 2005.

[12] E. Pampalk, A. Rauber, and D. Merkl, “Using smoothed data histograms for
cluster visualization in Self-Organizing maps,” in Artificial Neural Networks
ICANN 2002, J. R. Dorronsoro, Ed., vol. 2415. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 871–876.

[13] J. Himberg, “Enhancing the SOM based data visualization by linking different
data projections,” in Proceedings of the International Symposium on Intelli-
gent Data Engineering and Learning (IDEAL’98), Hong Kong, Oct. 1998, p.
427434.

[14] J. Vesanto, J. Himberg, M. Siponen, and O. Simula, “Enhancing SOM based
data visualization,” in Proceedings of the International Conference on Soft
Computing and Information/Intelligent Systems (IIZUKA’98), Iizuka, Japan,
Oct. 1998, p. 6467.

[15] J. Vesanto, “SOM-based data visualization methods,” Intelligent Data Anal-
ysis, vol. 3, no. 2, pp. 111–126, Aug. 1999.

[16] J. Sammon, John W., “A nonlinear mapping for data structure analysis,”
IEEE Transactions on Computers, vol. C-18, no. 5, pp. 401–409, May 1969.

[17] Y. Park, R. Crghino, A. Compin, and S. Lek, “Applications of artificial neu-
ral networks for patterning and predicting aquatic insect species richness in
running waters,” Ecological Modelling, vol. 160, no. 3, pp. 265–280, Feb. 2003.

[18] R. Wehrens and L. Buydens, “Self- and super-organising maps in R: the ko-
honen package,” J. Stat. Softw., vol. 21, no. 5, 2007.

[19] M. Trutschl, G. Grinstein, and U. Cvek, “Intelligently resolving point oc-
clusion,” in IEEE Symposium on Information Visualization, 2003. INFOVIS
2003. IEEE, Oct. 2003, pp. 131–136.

15

[20] E. Anderson, “The irises of the gaspe peninsula,” Bulletin of the American
Iris society, no. 59, pp. 2–5, 1935.

[21] R. A. Fisher, “The use of multiple measurements in taxonomic problems,”
Ann. Eugen, vol. 7, no. Part II, pp. 179–88, 1936.

[22] T. A. Keahey, “Visualization of high-dimensional clusters using nonlinear
magnification,” Visual Data Exploration and Analysis VI, vol. 3643 of SPIE,
1999.

[23] G. Ellis, E. Bertini, and A. Dix, “The sampling lens: making sense of saturated
visualisations,” in CHI ’05 extended abstracts on Human factors in computing
systems, CHI EA ’05. New York, NY, USA: ACM, 2005, pp. 1351–1354.

16

CHAPTER 3

Cartograms

3.1 Introduction to cartograms

“Cartogram” is a “rather vague term” [2] encompassing any of a variety of

maps which set the area enclosed by regions of the map in proportion to some

measured attribute of the region (other than its actual area). A common example

of a cartogram presents a geopolitical map with regions sized according to their

population, such as that of the United States shown in Figure 12. These are

also referred to as “density-equalizing map projections.” Distorting the shapes

of a well-known map in this manner provides an additional channel for data and

can work well along with techniques such as coloring or shading, superimposed

symbols, or direct text labeling.

In addition to providing another means of communicating data, construction

of a cartogram can help to even out the distribution of points of interest, as Raisz

noted in 1934 [3]:

The idea of the statistical cartogram occurred to the author when he
had occasion to prepare maps of the United States showing the distri-
bution of various economic units, such as steel factories, textile mills,

Figure 12. A continuous, area-by-value cartogram of the world according to the
population of each nation. [1]

17

power plants, banks, etc. These maps were far too crowded in the
northeast to be useful, while elsewhere, for the most part, they were
relatively empty. If a way could be found to increase the scale of the
northeastern region and reduce that of the west, distribution could be
shown more clearly.

We encounter a similar challenge with the Self-Organizing Map when plotting

observations back onto the map. Within the area of a cluster, data points will

be crowded, making them difficult to label and interpret; simultaneously, nodes

corresponding to boundaries between clusters will have few points. In this visu-

alization, we can expand and contract the plotted area of nodes in proportion to

how many data are to be displayed in each.

3.1.1 Other variable-scale maps

This enlargement and reduction can also be applied specifically for the purpose

of enhancing and calling attention to certain areas of the map. Harrie et al. [4]

propose dynamically enlarging the current location of a user of a map on a mobile

device so both local detail and the larger region can be simultaneously displayed.

Here, the metric of the cartogram is distance from the user. Areas near the user

are (presumably) of greater interest or importance and so are emphasized. (Figure

13).

By constructing a matrix of weights for each cell in the SOM according to our

interest in its contents, we are able to achieve similar effects. In the iris dataset,

there is an “inseparable” area of overlap between two of the three species. Giving

each cell a score according to the number of species it contains allows us to call

attention to that area of the population (Figure 14).

18

Figure 13. Two examples of variable-scale maps. On the left, a proposed map
display [4] where the center area is enlarged to show detail around a mobile user
and the periphery is reduced in scale to show as large a region as possible. On
the right, the relative importance of local information is dramatized in this cover
illustration [5]

●
●●

●

●

●
●

●

●

● ●

●

●

●
●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●

●●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

Figure 14. A SOM cartogram emphasizing nodes of particular interest. Cell sizes
in this figure are enlarged to emphasize cells to which more than one species of iris
map—i.e., the inseparable region in the dataset.

19

3.2 Selection of a cartogram algorithm
3.2.1 Prioritization of constraints

Designing a cartogram—or a cartogram-generating algorithm—requires com-

promise. An ideal cartogram would preserve the shape of every region; all regions

would be oriented and connected to each other in the same way as in the origi-

nal map (preserving the topology of the map), and each region will have exactly

the intended area. Unsurprisingly, this is not generally achievable. Using simple

checkerboard maps, Keim [6] demonstrated that it is not possible to preserve both

the original shape of each outline and its topology while achieving the desired area

for each shape. Some compromise of the shapes, of the map topology, or of the

areas will be required; the rules must be relaxed. Different cartogram designs and

algorithms prioritize some aspects and relax other constraints to different degrees.

Extremes of these conflicting approaches include Raisz’s rectangular statistical

cartogram which discards shape entirely (and much of the original topology) to

achieve the exact area desired. In contrast, the pseudo-cartogram of Tobler [7]

preserves local shape, orientation, and relationships but areas are still far from

what is desired. (Figure 15).

An important capability of the SOM is that it preserves topology [8, ch. 3.4]

as it maps from the Rn input space to the 2D grid of the neural network. Thus,

preservation of topology should also be a key consideration in our selection of a

cartogram-generating algorithm. Given that the original shapes in our visualiza-

tion are all the same (similar hexagons or rectangles), preservation of shape is of

minimal importance.

Relaxing the shape should allow sufficient flexibility to achieve the desired

areas with sufficient accuracy. We are adjusting areas primarily as a visual

convenience—to allow more distinct observations to be plotted within the 2D bor-

ders of a cell—not necessarily to represent specific values.

20

Figure 15. The relative balance between shape, topography, and areas will pro-
duce markedly different cartograms. In the rectangular statistical cartogram (left),
Raisz choses to “discard altogether the outlines of the country”—both the shapes
of the states and most of the map topology—in order to achieve the exact area
required [3]. The pseudo-cartogram (right) preserves topology while only slightly
relaxing shape constraints, but areas are far from their intended values. [7]

3.2.2 Shapes or sheet?

Algorithms which focus on the shapes (outlines) of individual areas devote

significant attention and code to issues such as preventing self-intersection, sim-

plifying outlines, reconnecting adjacent objects that moved apart, and preserving

important features of the shapes such as angles between segments. [9, 6] These

considerations are important for presenting a recognizable map based on famil-

iar geography, but are largely irrelevant to the simple, tiled grids of the SOM

visualization.

We need be able to address arbitrary points anywhere within our grid (not

just the corners of the cells). Algorithms that can transform any point within the

2D coordinate plane rather than only existing vertices of the shapes are going to

be much easier for us to use.

Tobler’s rubber sheet method [10] was one of the first cartogram algorithms

to change an underlying grid rather than the shapes of the map. Guesin-Zade

and Tikunov [11] divide the plane of the map into cells, calculate a density value

for each cell, and construct a vector field that seeks to make that density uniform

21

Figure 16. A continuous, area-by-value cartogram of the United States of America
based on population data.[11]

with (an example is shown in Figure 16). Gastner and Newmann take a similar

approach [12] based on density gradients, allowing more flexibility in the selection

of a density function. The results of this approach are often quite aesthetic; Figure

12 opened this chapter with an example of their work.

3.2.3 Selecting available code

Development of a novel cartogram algorithm is beyond the scope of this

project. Some ([9, 6]) offer pseudo-code and key formulae. Most usefully, Mark

Newmann provided portable C code for the density-equalizing maps [12] which has

been built into a R package by Duncan Temple Lang, available at the Omegahat

repository [13]. This package is used to perform the cartogram transformation in

this project.

List of References

[1] M. Newman, “Images of the social and economic world,” Accessed: 2012-02-
26. [Online]. Available: http://www-personal.umich.edu/∼mejn/cartograms/

[2] W. R. Tobler, “Geographic area and map projections,” Geographical Review,
vol. 53, no. 1, pp. 59–78, Jan. 1963.

22

http://www-personal.umich.edu/~mejn/cartograms/

[3] E. Raisz, “The rectangular statistical cartogram,” Geographical Review,
vol. 24, no. 2, pp. 292–296, Apr. 1934.

[4] L. Harrie, L. T. Sarjakoski, and L. Lehto, “A variable-scale map for small-
display cartography,” International Archives of Photogrammetry Remote
Sensing and Spatial Information Sciences, vol. 34, no. 4, pp. 237–242, 2002.

[5] S. Steinberg, “Front cover,” The New Yorker, p. OFC, Mar. 1976.

[6] D. A. Keim, S. C. North, and C. Panse, “CartoDraw: a fast algorithm for
generating contiguous cartograms,” IEEE Transactions on Visualization and
Computer Graphics, vol. 10, no. 1, pp. 95–110, 2004.

[7] W. R. Tobler, “Pseudo-cartograms,” Cartography and Geographic Information
Science, vol. 13, no. 1, pp. 43–50, 1986.

[8] T. Kohonen, Self-Organizing Maps, 3rd ed., Springer Series in Information
Sciences. Berlin, Heidelberg, New York: Springer, 2001, no. 30.

[9] D. H. House and C. J. Kocmoud, “Continuous cartogram construction,” in
Proceedings of the conference on Visualization ’98. Research Triangle Park,
North Carolina, United States: IEEE Computer Society Press, 1998, pp. 197–
204.

[10] W. R. Tobler, “A continuous transformation useful for districting,” Annals,
New York Academy of Sciences, no. 219, pp. 215–220, 1973.

[11] S. M. Gusein-Zade and V. S. Tikunov, “A new technique for constructing
continuous cartograms,” Cartography and Geographic Information Science,
vol. 20, pp. 167–173, July 1993.

[12] M. T. Gastner and M. E. J. Newman, “Diffusion-based method for producing
density-equalizing maps,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 101, no. 20, pp. 7499–7504, May 2004.

[13] D. Temple Lang, “Rcartogram: Interface to mark newman’s cartogram
software,” Accessed: 2011-06-16, Nov. 2008, R package version 0.2-2.
[Online]. Available: http://www.omegahat.org/Rcartogram/

23

http://www.omegahat.org/Rcartogram/

CHAPTER 4

Important Structures of the Self-Organizing Map

In this section, we identify and discuss aspects of the self-organizing map

that persist after training and so can be used in creating the visualizations of this

project. Data structures used by the existing R packages that implement the SOM

algorithm—kohonen and som [1, 2]—are of particular interest.

As might be expected in a developing field with hundreds of contributing au-

thors, terminology is not precisely and invariably defined. Kohonen’s book [3]

is of course an important guide, and in [4], Ultsch conveniently outlines his pre-

ferred terminology. We have tried to adopt the terminology of these authors where

appropriate and unambiguous.

4.1 Properties of the Map

The first step in creating a Self-Organizing Map in R is to define the geometry

of the grid of nodes. The size and shape of the grid the number of nodes along

each of its x and y dimensions is of primary importance. Depending on the SOM-

generating algorithm selected [1, 2], additional parameters may include whether

the nodes are to be arranged in a rectangular or a hexagonal grid and whether

the map is toroidal. A toroidal map considers the top row to be adjacent to the

bottom and the left column adjacent to the right, thereby avoiding edge effects.

4.2 Properties of the Data
4.2.1 Training Data

Training data are those data values used to build the SOM. A sampling of the

training data may be used to initialize the codebook values of the nodes. During

training, values of the training data are used to adjust the codebook values. The

SOM is a mapping of the training data.

24

4.2.2 Dimensionality of the Data Space

The data are points in some multidimensional space Rn , where n is the

number of real-valued attributes of each datum. A datum is sometimes referred to

as a data vector; n is the length of the vector. Ultsch uses “data space” to refer to

that “subspace of Rn where data points of an application can be observed.” (Some

work has been done to adapt SOM to categorical data [5] but we do not attempt

to support such data.)

4.2.3 Normalization

The data used to train the SOM may be normalized, i.e., shifted and scaled to

have a mean of 0 and a standard deviation (variance) of 1. Where this is done, the

centers and scales will need to be retained if new data is to be plotted to the map

or if the codebook values of the trained nodes are to be expressed in the original

Rn space. (R’s scale function is ideal for this; it operates on an entire matrix and

returns the scale and centers along with the transformed matrix).

4.2.4 Best-Match Node

During and after training, any datum in Rn (not just training data) may be

compared to each of the codebook values of the SOM nodes and their separation

calculated (e.g., Euclidean distance). Whichever node has the codebook value

nearest to the datum is the best-match node for that datum. During training, these

associations are changing, but after training they are fixed. Because it requires so

many comparisons, some SOM algorithms will save the final best-match nodes of

the training data for later use.

25

i=1
x=0
y=0

i=2
x=1
y=0

i=9
x=0
y=1

i=10
x=1
y=1

i=23
x=6
y=2

i=24
x=7
y=2

i=31
x=6
y=3

i=32
x=7
y=3

i=16
x=7
y=1

i=22
x=5
y=2

i=15
x=6
y=1

i=14
x=5
y=1

i=30
x=5
y=3

Rectangular
grid coordinates

i=1
x=0.5

y=0√3/2

i=2
x=1.5

y=0√3/2

i=9
x=0

y=1√3/2

i=10
x=1

y=1√3/2

i=23
x=6.5

y=2√3/2

i=24
x=7.5

y=2√3/2

i=31
x=6

y=3√3/2

i=32
x=7

y=3√3/2

i=16
x=7

y=1√3/2

i=22
x=5.5

y=2√3/2
i=15
x=6

y=1√3/2

Hexagonal,
as plotted

i=1
x=0
y=0

i=2
x=1
y=0

i=9
x=0
y=1

i=10
x=1
y=1

i=23
x=6
y=2

i=24
x=7
y=2

i=31
x=6
y=3

i=32
x=7
y=3

i=16
x=7
y=1

i=22
x=5
y=2

i=15
x=6
y=1

i=14
x=5
y=1

i=30
x=5
y=3

Rectangular
(no change to plot)

i=1
x=0
y=0

i=2
x=1
y=0

i=9
x=0
y=1

i=10
x=1
y=1

i=23
x=6
y=2

i=24
x=7
y=2

i=31
x=6
y=3

i=32
x=7
y=3

i=16
x=7
y=1

i=22
x=5
y=2

i=15
x=6
y=1

Hexagonal
grid coordinates

Figure 17. Transformation of node index to (x, y) (row, column) grid coordinate
pairs. Selected nodes are labeled with their node index i and (x, y) grid coordinates.
Neighbors of the white-background nodes are shown with a light background. Non-
neighbor nodes are shown with a dark background.

4.3 Inherent Properties of Nodes
4.3.1 Row-Column Grid Coordinates

Both rectangular and hexagonal SOM grids are defined by the number of

rows and number of columns in the grid. The only real difference is how the

neighborhood is determined (see Figure 17). Each node may be identified by its

row and column in this grid, an (x, y) position, where x and y are integers.

For convenience in certain calculations, these values may be zero-indexed, so

if a w × h (width by height) map is created, the (x, y) grid positions will range

from (0, 0) to (w − 1, h− 1).

4.3.2 2D Plotting Center

For a rectangular (square) SOM, the (x, y) row-column grid coordinates of a

node can also serve as the plotting location of a node in a visualization. We chose

to consider this value to be the center of the cell rather than some corner for two

reasons: first, hexagons do not have any vertices coincident with those of a square

26

but they do have a center; second, our data mapping plot each datum relative to

the center of its best-match node cell.

To transform the grid coordinates of the node centers for plotting a hexagonal

grid, one need only multiply the y coordinate by (
√

3÷2) and in alternate rows, the

x coordinate is shifted by 0.5. This is shown in the bottom-right grid in Figure 17.

The plotting centers may be pre-calculated and stored with the map (the

kohonen package does so).

4.3.3 Neighboring Nodes

The neighbors of a node are those nodes that are adjacent in the 2D repre-

sentation of the SOM grid. Each node has several neighbors in the map as shown

in Figure 17. The number of neighbors is dependent on the geometry of the map

and will range from a minimum of 3 in a corner to a maximum of 6 or 8 in the

center of a hexagonal or rectangular grid, respectively.

The set of neighbors may be determined by examination of the row-column

grid coordinates—e.g., the nodes at the relative positions (+1, 0), (−1, 0), etc. are

neighbors unless the resulting coordinates are outside the grid. A more complicated

Euclidean distance measurement between the plotted centers might alternatively

be used.

Calculation in the neighbor set can vary according to the needs of a particular

algorithm. For example, when the kohonen package calculates U-matrix distances

in a rectangular map, it considers only orthogonal neighbors, not diagonals.

Some SOM constructions consider the map to be toroidal, wrapping from left-

to-right and top-to-bottom (and the reverse) to remove any edge effects. In such

a map, each node has the maximum number of neighbors.

27

4.3.4 Node Index

It would be cumbersome to refer to the map nodes by their (x, y) row-column

positions, using two values where one might suffice. Even worse to use the plotted

centers where for hexagonal maps, the coordinates are not integers. Both the

kohonen and som packages instead store properties of their nodes as matrices

where each row contains the value for a single node. The Rn data-space values of

each node are stored, for example, as a m×n matrix where m is the total number

of nodes. This approach is both efficient and convenient when programming; the

node index—the row number of this m × n matrix—identifies the node in most

contexts, allowing us to identify sets of nodes with a simple numeric vector.

The node index, i, is easily calculated from the column and row positions of

the node (1a) and the number of columns in the grid and a node index can also be

transformed back to (x, y) coordinates (1b, 1c). Node 1 is at the bottom left of the

grid; Node 2 is to its right; when the end of the row is reached, counting resumes

at the left edge of the second row from the bottom and the node with the greatest

index is at the upper right. The R expressions for these conversions follow where

i is the node index, x and y are the node’s 0-indexed row-column position, and w

is the grid width (number of columns in each row):

i = 1 + x+ (y ∗ n) (1a)

x = (i− 1) %%n (1b)

y = (i− 1) %/%n. (1c)

As with many programming languages, * indicates multiplication; %% is R’s mod-

ulus operator (remainder after integer division), and %/% is R’s integer division

operator (throws away any remainder).

28

4.3.5 Node cell and enclosing polygon

For the purpose of our visualizations, we consider the 2D space of the SOM

projection to be continuous, not restricted to the integer coordinates of the nodes

themselves. To achieve this, we must continuously tile the 2D grid, enclosing each

node at the center a polygon: nominally a square or a hexagon depending on the

map configuration. (Some packages plot nodes as circles which leave gaps in the

plane; see Figure 1 in Chapter 1.) It is desirable that any graphical information

pertaining to a node should be plotted within the area bounded by this polygon;

this area is the cell.

4.4 Trained Properties of Nodes

Once training of the SOM is complete, each node can be thought of as acquir-

ing additional properties.

4.4.1 Rn value

After training, each node retains the final n-dimensional data-space value

learned from the training data; these values are the essential information produced

by the SOM algorithm[3]. Various descriptive names have been used in the litera-

ture, including “model vector,” “reference vector,” “n-dimensional weight value,”

“codebook vector,” “weight vector,” “prototype,” “weight,” “map unit vector,”

and yet more. Many of these connote additional meaning in their specific context.

We will adopt “Rn value” as the most universal term.

4.4.2 Unified distance, or U-Matrix

For each node, the average distance in Rn space to its neighboring nodes in the

2D mesh is calculated; this the unified distance, or unit distance measure. These

values are typically used to shade the background of a cell, The Unified Distance

Matrix (U-matrix) [6] is a popular method of visualizing the SOM.

29

4.4.3 Mapped Training Data

A node’s mapped training data are that subset of the training data that (after

training is complete) are nearer to this node than to any other node—i.e., this

node is best-match node for those data. Counting the number of data mapped

to a node gives us the data density and can be used to control the cartogram

expansion/contraction of the map.

4.4.4 Quantization Error

The quantization error is a measure of how well a node represents its mapped

training data. A typical calculation would be to average the Euclidean Rn distances

between a node’s codebook value and each of its mapped training data, though

SOM variants may use some other distance measure. Let Di be the set of training

data mapping to a node at index i whose Rn value is xi:

qi =

NA, if D is an empty set∑
d∈D

‖xi−d‖

|D| , otherwise

(2)

List of References

[1] R. Wehrens and L. Buydens, “Self- and super-organising maps in R: the koho-
nen package,” J. Stat. Softw., vol. 21, no. 5, 2007.

[2] J. Yan, “som: Self-Organizing map,” Accessed: 2011-06-16, 2010, R package
version 0.3-5. [Online]. Available: http://CRAN.R-project.org/package=som

[3] T. Kohonen, Self-Organizing Maps, 3rd ed., Springer Series in Information
Sciences. Berlin, Heidelberg, New York: Springer, 2001, no. 30.

[4] A. Ultsch, “Maps for the visualization of high-dimensional data spaces,” in
Proc. Workshop on Self organizing Maps, 2003, p. 225230.

[5] C. C. Hsu, “Generalizing self-organizing map for categorical data,” IEEE
Transactions on Neural Networks, vol. 17, no. 2, pp. 294–304, 2006.

30

http://CRAN.R-project.org/package=som

[6] A. Ultsch, “Self-Organizing neural networks for visualisation and classifica-
tion,” in Information and classification: concepts, methods, and applications.
University of Dortmund: Springer Verlag, 1993, pp. 307–313.

31

CHAPTER 5

Data Projection Within the Cell

To position each datum within the cartogram-expanded data cell, we begin

(as do other visualizations) by selecting the best-match node (the node nearest to

the datum in the Rn data space). We will plot the datum at some location within

that node’s cell (enclosing polygon). Then:

� a feature-space vector from that nearest node to each of its neighbors is

calculated,

� the relative length of the orthogonal projection of the datum along each

neighbor vector is calculated in feature-space, and

� a 2-D offset vector is calculated and added to the nearest node’s position in

the 2-D grid.

The resulting location meaningfully and consistently places the datum on the

map visualization.

5.1 Selecting the Best-matching Node

The datum to be plotted (x) is compared to each node’s feature-space value

(mi) using some metric, such as the least Euclidean distance (3) [1]:

‖x−mc‖ = min
i
{‖x−mi‖}. (3a)

c = arg min
i
{‖x−mi‖}. (3b)

Node c is the node nearest to the datum in the data space—i.e., its best-match

node.

32

5.1.1 Computational Complexity

To calculate the Euclidean distance between two arbitrary points in Rn space

requires n subtractions to calculate the difference vector x−mi n multiplications

to calculate the square of each component of this vector, n − 1 additions to sum

the squares, and finally one square root calculation. The calculation cannot be

done in fewer steps nor will it ever require more, so the asymptotic complexity

of Euclidean distance is Θ(n). We assume that the best-match node must be

found using an exhaustive search of all m nodes in the SOM map, requiring m

calculations of Euclidean distance in Rn space and m comparisons. Thus the

asymptotic complexity of selecting the nearest node is Θ(m×n) for each datum to

be plotted. This is the most complex operation our approach requires. However,

finding the bestmatch node for the training data is also required for building the

SOM; some packages will save this information in which case we don’t need to

recalculate it.

5.2 Finding Vectors to Neighbors

The feature-space vectors to each of the j neighbors (m′j) are calculated simply

by subtracting the Rn feature-space value of the nearest node, mc, from that of

each neighbor mj, a linear translation, (4):

m′j = mj −mc. (4)

Likewise, the datum’s translated vector is (5):

x′ = x−mc. (5)

Applying the same translation to the nearest node itself (6) confirms its role as the

origin for the calculations that follow (its value is 0 in every Rn coordinate axis):

0 = mc −mc. (6)

33

0

x'

mj'x''=αjmj'

Figure 18. Orthogonal projection (x′′) of a datum vector (x′) onto a neighboring
node vector (m′j). This calculation is generalizable to the Rn feature space of the
SOM. [2]

5.2.1 Computational Complexity

Translating the datum and each neighbor in Rn space requires n(ti + 1) sub-

tractions where t is the number of neighboring nodes and i is the index of the

nearest node. The value ti will vary according to the topology of the map, ranging

from ti = 3 for a corner of a (non-toroidal) map (rectangular or hexagonal) to

ti = 8 for a node in the interior of a rectangular map. Because ti is so bounded to

single-digit values, the asymptotic complexity is O(n).

5.3 Orthogonal Projection

To determine how far a datum should shift from its nearest node toward each

neighbor node, we consider its orthogonal projection onto each neighbor vector

in the n-dimensional feature space of the SOM. The translated datum vector (x′)

can be thought of as the sum of two component vectors: one (x′′) directly along

the vector to the neighbor node (m′j) and the other at right angles to the first.

The vector x′′ is the orthogonal projection of the datum vector onto the neighbor

node vector. As shown in Figure 18, the orthogonal projection is equal to the

product of some scalar value αj and the translated neighbor vector. This αj value

34

(proportional projection toward the neighbor) is found using the dot product (inner

product) of vectors (7) [2]:

αj =
x′ ·m′j
m′j ·m′j

. (7)

If the datum is on the other side of the origin (headed away from a neighbor), the

value of αj will be negative. Neighbors with positive α values will pull the datum

in their direction on the grid while neighbors with negative α push the datum

away.

5.3.1 Computational Complexity

In Rn space, the calculation of the dot product requires n multiplications and

n− 1 additions. Calculating a projection require two dot products and a division.

To find all the projections to neighbors requires 2ti(2(n + n − 1) + 1) operations

which is Θ(n).

5.4 Calculate and scale the 2-D Offset

Again taking the center of nearest node c as the origin (this time in 2-D grid

space: gc), the translated grid coordinates of each neighbor gj are multiplied by

the proportional length αj and added together (8) to form a raw 2-D offset vector,

r:

r =
∑

j∈{neighbors}

αj(gj − gc). (8)

Typically, several neighbors contribute to this raw offset, exaggerating the datum’s

distance from its nearest node. For example, if the neighbor to the left has a

positive α, pulling the datum to the left, the neighbor to the right might very well

have a negative α and push the datum even further to the left. Diagonal neighbors

can push or pull along both axes. If the raw offset is used, the datum will frequently

appear outside the area of its nearest node’s cell; this incorrectly suggests that

some other node is nearest. We have found that the simplest satisfactory scaling

35

function (9) is to divide the raw offset by the number of neighbors (ti) surrounding

the nearest node:

s =
r

ti
. (9)

There is an aesthetic and practical tension between ensuring that data are displayed

within the area of their nearest nodes while not limiting offsets to a range too

small to be perceptible. Alternate approaches to scaling are possible and may be

addressed in future work. Finally, the scaled offset s is added to the 2-D coordinates

of the nearest node, gc (10), giving the plotted grid position of the datum, gd :

gd = gc + s. (10)

5.4.1 Computational Complexity

To translate the neighbor nodes’ 2D grid coordinates requires 2(ti) subtrac-

tions and scaling each by its α is another 2(ti) multiplications. Combining these

2D offsets is 2(ti − 1) additions. Scaling this 2D offset requires a further 2 mul-

tiplications. The total 6(ti) operations are O(1) because ti can never be greater

than 8.

5.5 Overall Computational Complexity of Mapping

The computation required to position a point on the SOM in this manner

is determined by the size and geometry of the underlying SOM. the sum of the

following components:

� finding the nearest node, O(m)×O(n) = O(m× n),

� calculating distances to each neighbor, O(n),

� determining the orthogonal projection toward each neighbor, O(n), and

� scaling the 2D offset, O(1) for this method.

36

Adding these together, we have O(m× n) + 2O(n) +O(1). Either m (the number

of nodes in the map) or n (the Rn dimension of the data) could be large and dom-

inate. Ultsch’s U*-Matrix examples [3] contain (26)2 = 4096 and (27)2 = 16536

nodes. Some public data sets—not only those involving a time series—have tens

of thousands of numerical attributes [4]. The most appropriate description of com-

plexity is O(m× n). Having mapped one datum provides little-to-no information

to use in the next, so if there are a series of p data to be mapped, the complexity

is O(m× n× p).

If the datum to be mapped is a member of the map’s training data, then its

nearest node may already be known. If so, the complexity of mapping that one

datum would simply be O(n); of a set, O(n× p).

5.6 Visual representation
5.6.1 Point symbol

An appropriate symbol or label is drawn at the position gd calculated by

Equation (10).

5.6.2 Center trace

We also add a thin line connecting each symbol back to the center of its cell, gc.

This visually reinforces the interpretation of the plotted position as a vector from

the nearest node toward neighbors. On occasion, the cartogram reshaping of the

map can produce cell outlines where the true center is not immediately obvious. An

example may be found in the cell to the left of the bottom-right corner of Figure 22.

Despite the dramatic distortion of the shape of the cell, one can perceive that the

datum plotted there is at the center because the connecting line has length zero

and so disappears. Intuitively, all data should appear somewhere within the grid

cell representing their nearest node. If a map has very high quantization errors

or too extreme a scaling function is used (see experiments below), data might

37

be pushed into adjacent grid cells. The connecting line makes this immediately

evident; without it, the data might be seen as belonging to the wrong cell.

List of References

[1] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen, “SOM PAK: the self-
organizing map program package,” Report A31, Helsinki University of Tech-
nology, Laboratory of Computer and Information Science, 1996.

[2] D. C. Lay, Linear algebra and its applications, 3rd ed. Addison Wesley, Sept.
2005.

[3] A. Ultsch, U*-matrix: a tool to visualize clusters in high dimensional data.
Fachbereich Mathematik und Informatik, 2003.

[4] A. Frank and A. Asuncion, “UCI machine learning repository,” Accessed:
2011-02-18, 2010, university of California, Irvine, School of Information and
Computer Sciences. [Online]. Available: http://archive.ics.uci.edu/ml

38

http://archive.ics.uci.edu/ml

CHAPTER 6

Development and Implementation in R

A primary goal of this project was to make this visualization widely available

to the research community as usable software. We selected the R Language and

Environment for Statistical Computing [1] in which to develop this visualization.

As free and open-source (GPL) software, R enjoys strong and active development,

research, and user communities (e.g., [2, 3]). R supports extension through user-

defined packages written in the same interpreted language (R) by which users

interact with the system. R is used as a data mining and visualization environ-

ment in courses in the University of Rhode Island Computer Science and Statistics

department. The graphics systems available in R are sufficiently capable to re-

alize the visualizations intended by this project. (We are using the grid graphics

library [4].) At least two packages for creating and visualizing self-organizing maps

are available in R, we use both the som package [5] and the kohonen package [6].

Support for Gastner and Newmann’s diffusion cartograms [7] is available in the

Rcartogram package [8] which provides an R interface to Newmann’s Cart software

[9].

Other options considered include WEKA [10], another open-source data ex-

ploration and visualization environment. In contrast to R’s text-driven operation,

WEKA is primarily controlled through its extensive graphical user interface. Re-

cent versions offer increasing extensibility capability through plug-ins written in

Java, and a package that implements the SOM algorithm does exist (though with-

out any visualization capability) [11]. However, only a handful of visualization

plug-in categories are listed in the most recent WEKA documentation [12], none

of which seem to provide the capabilities needed by this project. MATLAB [13]

39

would also be a viable option, but its cost made it less attractive and a GPL SOM

Toolbox for MATLAB has not yet been updated to work with recent versions of

MATLAB [14].

6.1 R package architecture

R is extensible through the installation of packages distributed online through

various sources such as the Comprehensive R Archive Network (CRAN) [3] and

R-forge [2]. The procedure of making packages is thoroughly documented in the

“Writing R Extensions” section of the online R manual [1].

The name of our package, “somTools” was selected to be able to accommodate

the variety of functions, techniques, and methods being developed by members of

the University of Rhode Island Department of Computer Science and Statistics

Machine Learning Group. In this initial form, the somTools package includes

the somTools class, numerous functions supporting the somTools to realize the

visualizations, and a few more general functions that are not specific to somTools.

6.2 The somTools class

While there was no need to write yet another SOM-generating routine to

implement this visualization, we do need access to the information contained within

a SOM. The data structures created by the kohonen and som packages are similar

but are not identical. Because we want to support both packages—and because

variant algorithms for constructing the SOM are an area of continuing research

and development [15, Ch. 5] which seem likely to implement yet more variant

data structures—it was appropriate to create our own universal SOM structure,

implemented as a S4 class [16] in R (see Figure 19 and Listing A.1). In the

somTools, we retain the following essential properties without which the object is

not valid:

40

+validObject() : TRUE or character vector
+initialize(in anysom : ANY) : somTools
+print()
+show()
+plot()

+topol : character
+toroidal : logical
+xdim : numeric
+ydim : numeric
+data : ANY
+codes : matrix
+scalecodes : matrix
+datacode : ANY (numeric or NULL)
+original.class : character
+hex.row.shift : numeric
+plot.centers : matrix

somTools

Figure 19. UML class structure diagram of important data and methods of the
somTools class.

� codes—matrix of the codebook Rn values of each node in the map; each row

represents one node and the row number is the node index

� topol—the topology of the map: a character string beginning either “hex”

for hexagonal maps or “rect” for rectangular (square) maps

� original.class—a character string such as “kohonen” or “som”

� xdim, ydim—the number of columns and rows of nodes in the map

Additionally, the somTools can store the following, either copied from the original

object, calculated during initialization or set by the user:

� toroidal—whether the map was calculated with joined edges; not all of our

methods support such maps

� data—a matrix the original training data used to build the map

41

� scalecodes—a copy of the codebook values (stored in codes) scaled according

to R defaults such that values ±1 are 1 standard deviation away from the

mean (0)

� datacode—a vector of node indexes indicating the best-matching code node

for each of the training data

6.2.1 Methods and functions of somTools

The function is the most important programming unit in R [17]; this is in

contrast to languages such as Java where the object (as defined by its class) is

primary. Common actions such as print() or plot() might require very different

behavior for different data types (classes). In R, these common actions are termed

generic functions and a call to setMethod() creates a binding between a signature—

the list of class names of each argument to the function—and the appropriate

function definition. With this information, the correct implementation of a generic

function call can be dispatched.

The somTools package provides methods for a few generic functions. List-

ing A.2 in the appendix shows the intialization method of the somTools object,

with translation functions for each of the two supported classes of SOM, koho-

nen and som. Other generic functions of the somTools class include a print/show

method that summarizes its contents as text output.

Numerous additional functions are defined as part of the package. Many of

these are primarily intended for internal use in plotting the visualization and are

prefixed somTools.functionName().

Where practical, functions have been designed to use R’s efficient vector op-

erations rather than iteration.[16, Ch. 6.4]

42

6.3 Locating and Interpolating Between SOM Nodes

One innovation in our visualization is that we plot each mapped data within

its best-match node cell according to its similarity neighboring nodes’ Rn values.

This algorithm is described in Chapter 5 and is calculated using the row-column

grid position of the nodes as integer reference points in a continuous 2D plane.

This simplifies some of the calculations and allows us to use the same equations

for rectangular and hexagonal grids.

6.3.1 Adaptation for Hexagonal Maps

As described in Section 4.3, this row-column grid of a rectangular map also

corresponds to the plotting coordinates; for these maps, we can use our calculated

values directly. However, if the map topology is hexagonal, we must transform

both the x and y from row-column grid coordinates to plotting coordinates. The

function (11) to transform the y coordinate is trivial:

yhex = yrect ×
√

3

2
. (11)

Because every other row is shifted 1
2

unit in the x axis, our x transformation adds

an x offset calculated as a continuous function of y. Such a“triangle wave” function

can be given as arcsin(sin(θ)), but the formulation we developed avoids trigonom-

etry by carefully combining two discontinuous processes: taking the absolute value

and round(), a function built into R that returns the nearest integer:

xhex = xrect +
∣∣∣yrect

2
− round

(yrect
2

)∣∣∣ . (12)

With these equations, we can transform points calculated our continuous grid-space

surface into a coordinates suitable for plotting a hexagonal SOM as shown in Figure

20. In the somTools package, they are combined into the somTools.hexify.xy()

function that also takes into account that the kohonen package shifts odd-numbered

43

(6, 2)

(6.4, 5.6)

(5.7, 2)

(6, 2.35)

(6.5, 2)(6.2, 2)

(6.70, 1.654)

(6.325, 2.303)

Figure 20. Transformation of rectangular grid space to hexadecimal plotting co-
ordinates by equations (11) and (12). Example coordinate values determined in
the rectangular grid space are shown on the left. On the right, these values trans-
formed for plotting a hexagonal map. Note that the center of the node remains
centered and points that had been radiating out toward adjacent node centers are
still on a line from the center to those adjacent nodes.

rows to the right while the som package shifts even rows (listing in Appendix A.3).

6.4 Cartogram Construction

To construct the cartogram, we need to first compute the desired area of each

node cell. As we will see in Chapter 7, this could be the data density or some other

metric.

The cartogram algorithm [9, 8] requires a regular rectangular matrix of density

values. For maximum efficiency, this will be a 2a× 2b matrix and should be scaled

to provide a buffer of neutral-density space around the actual map as shown in

Figure 21. (The buffer helps minimize edge effects.)

For a rectangular SOM, one might be able to construct a cartogram overlay

grid that exactly coincided with the areas of each SOM node. This could not be

done for a hexagonal map. To support both topologies, we have adapted a method

being developed in a pre-release package on R-Forge [18]. This approach uses the

overlay() method of the spatial data package, sp [19], to calculate in which SOM

44

Figure 21. A relatively high-resolution rectangular grid is overlain and extended
beyond the plotted area of example SOM maps to form the matrix on which
the cartogram will be calculated. (SOM nodes are drawn with heavier outlines;
rectangular SOM on the left; hexagonal SOM on the right.)

node each intersection on the grid resides. This creates a density matrix according

to the desired area values.

Our functions somTools.node.polygon() and somTools.grid.SpatialPolygons()

construct the outlines around each node and wrap those into the structure expected

by the sp package. (Code listings in Appendix A.4 and A.5.) The vector of

node data densities is provided by somTools.map.density() (Appendix A.6). The

cartogram is constructed by somTools.grid.cartogram() (Appendix A.7).

The returned cartogram structure includes a transform function which must

be applied to all plotting coordinates.

6.4.1 Computational complexity

The complexity of the inner loop of the cartogram is O(n log n)—the run-time

of the fast Fourier transform, where n is the number of cells in the density grid.

According to Gastner and Newmann [7], the speed of this transform is dominant

in the overall calculation of the cartogram; they do not offer an analysis of the

outer loop which terminates when the array of points has converged.

45

Figure 22. Grob Layers. The four smaller images on the left show the individual
gTree components of the basic visualization. From upper left to bottom right,
they are the gridPolys, gridEdges, tails, and points. The larger image on the right
combines the layers.

6.5 Plotting the map

The grid graphics model of R [4] provides a flexible, object-oriented approach

to building a display. A grob—graphics object—is one of several simple types such

as a polygon or a set of points, with associated visual parameters such as color or

line thickness. Grobs can be drawn individually or collected into gTree structures

which can provide default parameters while still allowing overrides by individual

grobs. Our basic map consists of four main gTrees, drawn as successive layers,

shown separately and together in Figure 22:

� gridPolys—the individual areas representing each cell; often these are shaded

or colored to show the U-matrix value, cluster membership, or some other

attribute of the node. An optional subdivision parameter interpolates addi-

tional points along each edge, allowing smoother reshaping by the cartogram.

� gridEdges—the outlines of the areas representing each cell; these are usually

drawn as a thin black line to subtly reinforce the regular appearance of the

mesh of nodes (especially useful when the cartogram has been applied). Like

the polys, the edges also support interpolation and must be interpolated in

the same way as the polys if they are to align in a cartogram.

46

� tails—when data are mapped to interpolated locations, the optional tail con-

nects the datum back to its node center

� points—the individual data plotted at their interpolated locations; these may

use different point codes to show categorical information about the datum

List of References

[1] R. D. C. Team, R: A Language and Environment for Statistical Computing,
Vienna, Austria, 2011, ISBN 3-900051-07-0.

[2] “R-Forge: welcome,” Accessed: 2011-05-25. [Online]. Available: https:
//r-forge.r-project.org/

[3] R Foundation for Statistical Computing,, “The comprehensive R archive
network,” Accessed: 2011-05-18. [Online]. Available: http://cran.r-project.
org/

[4] P. Murrell, R Graphics, 1st ed. Chapman and Hall/CRC, July 2005.

[5] J. Yan, “som: Self-Organizing map,” Accessed: 2011-06-16, 2010, R package
version 0.3-5. [Online]. Available: http://CRAN.R-project.org/package=som

[6] R. Wehrens and L. Buydens, “Self- and super-organising maps in R: the ko-
honen package,” J. Stat. Softw., vol. 21, no. 5, 2007.

[7] M. T. Gastner and M. E. J. Newman, “Diffusion-based method for producing
density-equalizing maps,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 101, no. 20, pp. 7499–7504, May 2004.

[8] D. Temple Lang, “Rcartogram: Interface to mark newman’s cartogram
software,” Accessed: 2011-06-16, Nov. 2008, R package version 0.2-2.
[Online]. Available: http://www.omegahat.org/Rcartogram/

[9] M. E. J. Newman, “Cart: Computer software for making cartograms,”
Accessed: 2011-06-17, Nov. 2006. [Online]. Available: http://www-personal.
umich.edu/∼mejn/cart/

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,
“The WEKA data mining software: an update,” SIGKDD Explor. Newsl.,
vol. 11, no. 1, p. 1018, Nov. 2009.

[11] J. Brownlee, “WEKA classification algorithms,” Accessed: 2012-02-09, May
2011. [Online]. Available: http://sourceforge.net/projects/wekaclassalgos/

47

https://r-forge.r-project.org/
https://r-forge.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://CRAN.R-project.org/package=som
http://www.omegahat.org/Rcartogram/
http://www-personal.umich.edu/~mejn/cart/
http://www-personal.umich.edu/~mejn/cart/
http://sourceforge.net/projects/wekaclassalgos/

[12] R. R. Bouckaert, E. Frank, M. Hall, and R. Kirkby, “WEKA manual
for version 3-7-5,” Accessed: 2012-02-08, Oct. 2011, the University
of Waikato. [Online]. Available: http://prdownloads.sourceforge.net/weka/
WekaManual-3-7-5.pdf?download

[13] “MATLAB,” The Mathworks, Inc.; Natick, Massachusetts, USA, Mar. 2012.

[14] J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas, “Self-organizing
map in MATLAB: the SOM toolbox,” CiteSeerX, Tech. Rep., 1999.

[15] T. Kohonen, Self-Organizing Maps, 3rd ed., Springer Series in Information
Sciences. Berlin, Heidelberg, New York: Springer, 2001, no. 30.

[16] J. Chambers, Software for Data Analysis: Programming with R, 1st ed.
Springer, July 2008.

[17] J. Chambers, “How S4 methods work,” Accessed: 2010-05-13, Aug. 2006.
[Online]. Available: http://developer.r-project.org/howMethodsWork.pdf

[18] T. Zumbrunn, “R-Forge: diffusion-based cartograms,” Accessed: 2010-12-01,
Sept. 2010. [Online]. Available: https://r-forge.r-project.org/projects/cart/

[19] E. J. Pebesma and R. Bivand, “Classes and methods for spatial data in R,”
R News, vol. 5, no. 2, 2005.

48

http://prdownloads.sourceforge.net/weka/WekaManual-3-7-5.pdf?download
http://prdownloads.sourceforge.net/weka/WekaManual-3-7-5.pdf?download
http://developer.r-project.org/howMethodsWork.pdf
https://r-forge.r-project.org/projects/cart/

CHAPTER 7

Demonstrations and Experiments

We begin our demonstration by applying our visualization to the Iris data

set. These data [1, 2, 3] have been models for countless studies of high-dimensional

visualization, including several specific to the SOM [4, 5, 6, 7, 8]. More information

about this data set is available in Appendix B.

7.1 Solutions to Data Hiding

We first create a SOM of 10 × 6 nodes and train it to the iris data using

the kohonen package [9] (som [10] does not offer a mapping plot). A uniform

distribution of 150 data through the map would result in two or three data mapped

to each of the 60 nodes. The actual data density ranges from 0 to 10 per node,

thus there is opportunity for data occlusion, or hiding.

In a SOM, data are usually mapped to a best-match (nearest) node. Thus in

this SOM, there are up to 10 data that need to be plotted at a specific point. Jitter

is a data visualization technique that distorts the true position of a datum by a

small random amount.[11] When the positions are discrete instead of continuous—

such as when mapping to the nearest SOM node—no information is lost. The

datum is displayed within the area of the node—just not at the exact center of

it where it would be difficult to distinguish from any other data mapping to the

same cell. Jitter is easy and quick to calculate and it allows the density of data in

a particular area to be seen.

While jitter might not lose data, it does not convey as much information as it

might. Taken all together the plotted data in a cell convey only a few bits worth of

additional information—the number of data in the cell. Individually, the plotted

location of each datum embodies two real values—(∆x, ∆y) or (ρ, θ)—but jitter

49

Figure 23. Jitter compared with projection. On the left, a mapping plot from the
kohonen package uses jitter to accommodate multiple data in a cell. On the right,
our data mapping considers similarity to neighboring cells to locate each datum.
U-matrix distances are shown as gray backgrounds (darker = greater distance).

does not use these to convey any information.

In Figure 23, we compare the mapping plot from kohonen with ours, in which

we adjust the location of each plotted datum to reflect its similarity to neighboring

nodes. The differences in information content are subtle. The visual representation

of data density is very similar to that provided by jitter.

The spread of the points around the cell conveys the node’s local quantization

error. The data mapping projection is calculated as a similarity to adjacent nodes

only, so when the U-Matrix distances are high, it will require a greater quantization

error to show the same apparent spread.

It may occur during training of a SOM that only a single datum maps to a node

and the training radius has shrunk to a point where no other data will influence

this node. If this occurs while sufficient iterations remain and the learning rate

is still high enough, the node’s codebook value will match its datum. Because

the quantization error is essentially zero, such data will appear precisely centered

in their node’s cell. We can see this at several locations within our version of

Figure 23; this effect is entirely obscured by the random jitter. It would not be

correct to presume that any cell with one datum in any map has no quantization

error; our visualization helps reveal this situation at a glance.

50

Furthermore, we anticipate that the distribution of data as plotted throughout

the cell may indicate something about local Rn structure within the data subset

that maps to a cell or to a smaller region of cells. There seem to be some cells

whose data are evenly arranged; others seem to show distinct subgroups.

7.1.1 Density Cartogram

The local-neighborhood projection of data into the cell shows where we have

multiple data in the cell, but these data may still be very crowded, making inter-

pretation of any possible smaller-scale structures difficult. To relieve this crowding

we apply the density-equalizing cartogram technique, enlarging node cells to which

many data map and reducing the area devoted to less populous nodes. In this man-

ner, the available space is used more efficiently, effectively zooming in on the most

densely populated cells to better reveal relationships among their data.

Not always, but not uncommonly, data-dense areas of a SOM correspond to

clusters and empty cells are found on the borders between clusters. Thus, clusters

will tend to appear inflated and boundaries take on a pinched appearance.

7.1.2 Detection of Poorly Converged Map

When a map is not yet converged, the quantization error may be unusually

high, especially where the map has not yet adapted to encompass atypical training

data. Our data projection technique helps to reveal this, as shown in Figure 25

where the SOM was allowed only 20 training iterations. Several data are shown

beyond the cell enclosing their best-match node; a few even project outside the

map borders. This defect would not be so apparent with the jitter plotting.

7.1.3 Other Cartogram Applications

The cartogram expansion of the SOM map effectively adds an additional chan-

nel of information. The appearance of a regular SOM grid distorted by the car-

51

Figure 24. U-matrix shading, projected data, and cartogram expansion. The 10×6
iris SOM shown with U-matrix background shading, data mapped to projected
locations, and cartogram expansion based on data density.

Figure 25. A poorly converged SOM. The 10 × 6 iris SOM shown after only 20
training iterations. The deliberately poor convergence of this SOM is indicated by
data projecting far from their best-match node centers.

52

rowcolumn

volcano

rowcolumn

volcano

Figure 26. Wireframe used to show third dimension. On the left, a demonstration
shaded rendering from the lattice package of the volcano data set (Topographic
Information on Auckland’s Maunga Whau Volcano) that is bundled with R.[13]
Center, the shading has been removed, showing the underlying wireframe. On the
right, the same package is used to render the data densities of the SOM in Figure
24. The SOM wireframe is of quite low resolution, a matrix of only 60 elements
compared to the 5307 elements in the volcano dataset.

togram is similar to a 3D wireframe rendering of a surface if viewed from above.

Examples of wireframes in R are provided by the lattice package[12].

In [6], Ultsch renders his U*-Matrix as a 3D contour map with hidden surface

removal, showing boundaries between clusters as “mountains”—going so far as to

use geographic map-maker’s color scheme and white “snow” at the peaks of the

boundaries (see Figure 3). If we use the cartogram expansion to show the umat

distances (Figure 27), the boundaries between clusters visually seem to push the

clusters away from each other, enhancing the perception of different regions of the

map, though with a consequent loss of plot area in which to show data. Alter-

natively, we can reverse this emphasis, pinching the cluster boundaries (making

them look a bit like fences or gullies) and expanding the more stable areas where

clusters are found.

The cartogram effect can be based on information channels other than data

density. One characteristic of the iris dataset is that two of the three species are

linearly inseparable. In Figure 28, we expand the cells to which more than one

species map, immediately calling the viewers attention to those nodes.

53

Figure 27. Cartogram based on U-Matrix (umat) distances. The (10×6) iris SOM
is shown on the left with cell areas increased where the umat distances are highest.
On the right, high-umat cells are shrunk. The grayscale shading of cells also shows
the umat distances, as in previous figures.

Figure 28. Cartogram based on the number of species found in a node.

54

Figure 29. The connected Components clustering [14] can easily be added to this
visualization. These “starburst” lines identify the node centers, making the tails
of the data plots mostly redundant; they have been omitted.

7.1.4 Other information layers

The cartogram expansion offers a new visual device for encoding information

in a plotted SOM. As we’ve seen, it does not interfere with (and may enhance)

other information layers such as U-Matrix shading and data mapping.

This visualization complements the Connected Components cluster visualiza-

tion [14] nicely, too. In Figure 29, we add thick lines connecting each cell to its

proposed cluster center according to Hamel’s method.

7.2 Further Experiments

The iris data are tremendously useful for initial exploration of new techniques,

but with only 150 members and 4 attributes, they are not a good representative of

the very large, very-high-dimensional data sets often encountered in contemporary

research. The UCI Machine Learning Repository [15] provides a variety of more

extensive data.

We selected the Cardiotocography [16] data set for further experimentation. A

cardiotocogram is a recording of both uterine contractions and fetal heartbeat [17]

used in obstetrics. This data set contains results of 2126 examinations each with

21 measured real- or integer-valued attributes plus two additional classification at-

55

tributes assigned by the consensus of three expert obstetricians. One classification

attribute indicates one of ten classes of event being observed such as “calm sleep”

or “decelerative pattern.” The second classification attribute is a risk measure:

“normal,” “suspect,” or “pathologic.”

After normalizing the 21 measured attributes with R’s scale function, we con-

structed a 40×20 rectangular SOM. The expert interpretations (risk and category)

were not used to train the SOM. A U-Matrix plot of this SOM (Figure 30, left)

does not show any clear pattern of clustering; there are two pockets of higher umat

distance but no clear divisions between regions. A data density cartogram expan-

sion (Figure 30, right) was not very helpful because the training data are evenly

distributed through the map, with cell densities ranging from 0 to 10 with a mean

around 2.6 and standard deviation of only about 1.8.

We obtained a much more interesting plot (Figure 31) when we used the

cartogram expansion to show the average risk classification (1=normal; 2=sus-

pect; 3=pathologic) of the examination observations mapping to a given cell. This

risk assessment was not used to train the SOM, but it seems to correspond to

a particular region in the data-space which maps to the lower-left corner of the

SOM. The cartogram expansion of that high-risk area gives us more room to see

data markers (omitted in Figure 30); it is dominated by “largely decelerative” (8)

and“decelerative’ (7) fetal state classes. As with the risk assessment, the state

codes were not used to train the SOM.

7.2.1 Time and Resources Required

To assess whether these techniques can be adopted in practice, we employed

the system.time() function in R to find the user time taken by the various compu-

tations required to produce Figure 31. The primary system available for testing

and development is a commercially-available notebook computer running 64-bit R

56

20

40

60

80

Figure 30. A SOM of the Cardiotocography data set. The standard dist.neighbours
(U-matrix) plot from the kohonen package is above; below is our visualization. We
include data tails to show quantization error and adjust cell size to show data
density. The data set appears fairly homogeneous, with no strongly separated
clusters nor any extreme variations in data density.

57

9

66

62

88

999

00

6
2

6
6

6
76

6

8

6

8
9

9

9

9

9

7777 7 22 266 2
222

1

277

26
6

2 2

7

7

0

9

70

11

2

2
2

3

33

1

5

22
55

2

2

22

0

0

2
2 21

11

444

2

3

1

7

5

00
9

9

1

0
0

0

2

6

2
2

3

3

67
2

6

3

6

2

2
36

7

8

676

7

77

6

7
0

0

0

0

1

1

1

1
11

0
1

0
55

1

2

5

2

2

2

1

2

2

2

11

4

21

211

2222

2
2

2

22
2

2

1

1

1

11

1

2

1

2

1

2 2

4

7

7

4

6

3

55

2

5

5

5

5

5
1

5

5

2

13
1 11 11

33

2

1

2

1

2

2
2

2

00

2
2

2

1

3

111

2222
2

1

2

11

2

12 00

9

0

0

0

0

2

2

2
2

00

5

2

1 1

66

6

6

61133

1

5

2

2

2

2

2

2

2

3

1
2
1

11

2

2

2

6

3

2

0

0

01

0

0

0

1

1

0

0

99
9

0

0
0

0 0

0

0

0

0

0

9

0

0

0 0

0

0

0

9

0

9

9

0

5

99

5

0

0

9

0
00

0

09

9

0

00

99
9

9

0

0

00

0

0
00

99

0

0

7

5

1

0

1

00

0

99

0

0 0

0

0
0

1
0

0
0

5

5

2

5

5

244

2

1

4

44

2

2

2

1

0

11

0

1

00

7

0

1

09

77

00
0

0

0

0

0

1

1

1

0

0

9

0

0

0

0

00

1

1

222 2
2

2

2

7

7
7

7

77

77

5

05

000

2

1

1

2

2

111

2

2

2

2

20

2

2
2

0

999

99

9

99

99

0

0

01

0

0

5

5

0

0

22

2

2

4 444
4 4

4 44 4
44

44 22

222222 1
0

2

2

24

22

1

1

4444
4

44

44
4

2

5

0

1

1

00
0

2

5

1

1

0
0

0

5

100

2

4

6
7
2

6

6

66

7

6

6

62

66

6

6

6

7

66 2

4

7

6

6

2

1

1

222

2

1

1

2

33

2
4

4

2

20990
0

2

5

22 2 222

2 2
2

2
2

222

4

1

1

24

1

2
2

22

2
2

1

4
4

5

5

0

2

1

1

222

33
2

2

9
9

0

00099

9

99

2

2

1111

7

7777

1
0

7

77

1

0

444

4

44

1

1

2

8 8

66

3

6
2

7

8

666 6
6
6

8

8

7

8 8

999
0

9

11

1

1

2

22

2
2

2
0

1

0

9

0

0

1

22

5

2

22

1

4

1

4
4

44

222 2

2

0

7

7

7

77

09

9

9

1

111

1

1

2

0

2
2

5

2

0

0

0

0

9 99

9

0

9

0

5500

5 0
5 0

0

0

11

22
2

22

111

0
000
0

0

0
0

77

1

15

1

5

56

6

6677

01

0000

9 9

0

11

0

1101

1

66

6

6

1011 1
01

11112

121
1

1
111111

22 1

11

1 11

2
2

222

1212
1111
11

1
1

1

11

1

11 1

11111

122

673

3

7

66

2

2

7

6

2

11

1

67

71
1

1

6

2

6
6

1

6

7

6

2

7
1

6 6

2

111

7

0

0

2

2

8

6

7
6

2

2

2

1

6

6

777
7

7

77
7

77

6

6

22
33

3

77

7

7

7

67

66

6
6

111

22

2
2

2
22 2

2

2

2

2
22

44

4
444

667

2

7

22
22

22

2

1
1

22

2

1

6
6

67

62

6
6

22

6

2

7
1
111

11111

2

2

2
2 22
22

2

2

667 7

77

2

2

77

4
44

4

66

6

7

6

6

6

6

6
7

6

7

6
77

211

22

1
1

2

2

2222

11
2

1
23

2

3

2

3

33
2

2

11333
11

11

11

1
3

2
2

11

22

6
67766

77

11

77

66

77

77

766

2

6777

6

2

6

4 44 4
4

4

2
2

11

2

1

1

2

1
2

2

1

22
2

22

2

3
11

2
11

21
2

1

2

2

2

2

1

1

2
22 2

22

0

22 2

1

1

0 0000 11

1

7

1
1

22
2

1

11 21

2
1
1

1
22

21

1
22

2
1

2
22

1

2

2

222

1

2

6

6

6

1

66

7
7

66

2

1

23 1

3

11

2

2

22
2

1

6

2

6

7

6

7 6

121

6
7

6

7

6

2

67

666

4

67

22

77

6
7
6

6

6

62

6

6

6677

666

7
67

6
7

6
6

6666

6

7

6

7
6

7
6

6

66

6

2

688

88

7
7

7

1

6

7

66
6

2

66

666

1

76
77

00

2
2

26
6 66

677
7

7

6

7

6
2
6

4

0
1

01
55

7
77767

55

552 2
2

221

5

5

2
2

2

1

2

2
2

1

2

2

2

2

2

2

252
5

2 222 22 2

2

22 2
2

2

5

2

22

2

2 1

2
5

2

5

2

22

2

1

101011

22

2

5

2

2

55

5

5

2

2
2

4

2

11

2
2

66

68

6

8

8

3

2

1

2
2

6

7

2
2

1

1

22

2

1

1

2

1
2

2

2

3
13

11

26

6

7

3

3

6

3

55

2

2

2

2

1

3

1

3

11

2
2

2

2

1

7

7

0

0

001
1

222

226

66 7222

3

22

6

4

67

6

7

7

7

77 7

17

3

7

7

7 3

7

7

7
7

7

7

7

3

777

6
1

4

4

5

3

5 2

5

5

2
22

1

2
2

21
2

2

6
6
66

66

6

22
2

2
22 42

66
6 666

2
2

66
6

6
6

666

6

66666

1111122 11111
22222

1

2

226

6

66666

888 888

66 6
66666

66 66 666 6
2
2

222

8

6

6
2 22

6222
2

2 222

666

6

8

66666

66

6

66666
6

66
66666

8

8888888

2

66
6

88
8

88888 88
88

8888

666

2 2226

66
66

6

8

88 888

2

22

111

11 1
11111

1

1

1

11

2 2222

2

22

6
6

7 7777 777777
7
7

7
6

6

6

6

777

777

22

22222222222
22222

66
666

66

6
6

66

8
8

8

8

22
222

2222
22

666 66666

2

688

88888
8

6
66666666

66677

7

7

8

77

7777

7 77777
7 777

8

88

8

88

8 8

88

8

8 88
8

8

8 8

8
8

4

4

4
22
22222

222 2
2 222

22

22

2

22222
2

77777

77 77

7
6

6
667

77

7777 77
7777

7

77

77

8888

8

8888

8 88
8
88

7

77

7777 7

8

2

3

2
11

1 1111111111
1

22222 222 22
222
22
111

11

1

111

111111111

11111

111

1

11

7
77

1 1
1

2

111

1

5

5551

Figure 31. A SOM of the Cardiotocography data set where the area of each cell
represents the average risk classification of examinations mapping to that node.
Examinations are assessed by consensus of three obstetricians as 1=normal (small-
est cells); 2=suspect; or 3=pathologic (largest cells). Data labels are the fetal state
class codes; 1 is “A” (calm sleep), 2=“B” (REM sleep), 3=“C” (calm vigilance),
4=“D” (active vigilance), 5=“SH” (shift pattern), 6=“AD” (accelerative/decel-
erative; stress), 7=“DE” (decelerative), 8=“LD” (largely decelerative), 9=“FS”
(flat-sinusoidal), and 0=“susp” (suspect).

Figure 32. User time required to calculate a large SOM visualization (Figure 31).
The SOM calculation itself dwarfs the time required for other computations.

58

2.13.0 under Windows 7. This machine’s CPU (Intel Core i7-2820QM @ 2.30GHz)

has four cores, but no computation was ever observed to use more than a single

core. R’s memory use peaked at under 200MB, a very modest footprint. Time

tests were repeated at least twice and did not vary by more than one percent of the

reported value despite leaving numerous other applications running on the system.

The kohonen package required 274 seconds to complete 5000 iterations. This

is by far the most costly computation task required, as shown in Figure 32. Cal-

culation of the cartogram on a 256 × 256 grid was unexpectedly rapid, requiring

only about 1.5 seconds. Calculating the polygons that fill the 800 node cells with

9 subdivisions within each of the 4 sides required about 0.3 seconds as did calcu-

lating the matching edges used to trace their outline. Calculating the projected

location within the cell took about 10 seconds; additional time to recalculate the

best-match node increased that to 22 seconds. Recalculating the best-match node

was not actually required for the training data; this unnecessary step accounted for

half of the non-SOM computation time. Transforming all the node centers, data

locations, node edges, and node polygons according to the cartogram was barely

measurable, requiring only about 0.1 seconds.

It seems clear that if it is practical to calculate the SOM itself, the complexity

of this visualization will not be problematic.

List of References

[1] E. Anderson, “The irises of the gaspe peninsula,” Bulletin of the American
Iris society, no. 59, pp. 2–5, 1935.

[2] J. C. Bezdek, J. M. Keller, R. Krishnapuram, L. I. Kuncheva, and N. R.
Pal, “Will the real iris data please stand up?” IEEE Transactions on Fuzzy
Systems, vol. 7, no. 3, pp. 368–369, 1999.

[3] R. A. Fisher, “The use of multiple measurements in taxonomic problems,”
Ann. Eugen, vol. 7, no. Part II, pp. 179–88, 1936.

59

[4] M. A. Kraaijveld, J. Mao, and A. K. Jain, “A nonlinear projection method
based on Kohonen’s topology preserving maps,” IEEE Transactions on Neural
Networks, vol. 6, no. 3, pp. 548–559, May 1995.

[5] D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, G. Plzlbauer, A. Rauber,
and M. Dittenbach, “A vector field visualization technique for self-organizing
maps,” in Advances in Knowledge Discovery and Data Mining, T. B. Ho,
D. Cheung, and H. Liu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, vol. 3518, pp. 399–409.

[6] A. Ultsch, U*-matrix: a tool to visualize clusters in high dimensional data.
Fachbereich Mathematik und Informatik, 2003.

[7] J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas, “Self-organizing
map in MATLAB: the SOM toolbox,” CiteSeerX, Tech. Rep., 1999.

[8] H. Yin, “Data visualisation and manifold mapping using the ViSOM,” Neural
Networks: The Official Journal of the International Neural Network Society,
vol. 15, no. 8-9, pp. 1005–1016, Nov. 2002, PMID: 12416690.

[9] R. Wehrens and L. Buydens, “Self- and super-organising maps in R: the ko-
honen package,” J. Stat. Softw., vol. 21, no. 5, 2007.

[10] J. Yan, “som: Self-Organizing map,” Accessed: 2011-06-16, 2010, R package
version 0.3-5. [Online]. Available: http://CRAN.R-project.org/package=som

[11] M. O. Ward, “A taxonomy of glyph placement strategies for multidimensional
data visualization,” Information Visualization, vol. 1, no. 3-4, pp. 194–210,
Dec. 2002.

[12] D. Sarkar, Lattice: Multivariate Data Visualization with R. New York:
Springer, 2008, ISBN 978-0-387-75968-5.

[13] R. D. C. Team, R: A Language and Environment for Statistical Computing,
Vienna, Austria, 2011, ISBN 3-900051-07-0.

[14] L. Hamel and C. Brown, “Improved interpretability of the unified distance
matrix with connected components,” in Proceeding of the 7th International
Conference on Data Mining. Las Vegas Nevada, USA: CSREA Press, July
2011, pp. 338–343.

[15] A. Frank and A. Asuncion, “UCI machine learning repository,” Accessed:
2011-02-18, 2010, university of California, Irvine, School of Information and
Computer Sciences. [Online]. Available: http://archive.ics.uci.edu/ml

60

http://CRAN.R-project.org/package=som
http://archive.ics.uci.edu/ml

[16] D. Ayres-de Campos, J. Bernardes, A. Garrido, J. Marques-de-Sa, and
L. Pereira-Leite, “SisPorto 2.0: a program for automated analysis of car-
diotocograms.” J Matern Fetal Med, vol. 9, no. 5, pp. 311–8, 2000.

[17] “Cardiotocography - Wikipedia, the free encyclopedia,” Accessed: 2012-02-27.
[Online]. Available: http://en.wikipedia.org/wiki/Cardiotocography

61

http://en.wikipedia.org/wiki/Cardiotocography

CHAPTER 8

Conclusions and Future Work

With this project, we have achieved our primary goal of increasing the visual

area available for plotting data within a Self-Organizing Map. The two techniques

used—the cartogram and locating plotted data within the cell in a meaningful

way—have shown their usefulness in unanticipated contexts beyond what we ex-

pected.

The cartogram can convey an additional layer of information, encouraging the

viewer to focus attention on areas of a map of particular interest while also expand-

ing those areas to better see data detail. Examples include the inseparable area of

the Iris species (Figure 28) or the higher-risk pregnancies of the Cardiotocography

examinations (Figure 31).

Projecting the data according to its relationship to the neighboring nodes

allows us to see the local quantization error which may also indicate how well the

SOM has converged (Figure 25).

8.1 Future Work
8.1.1 Support Other SOM algorithms

The R community continues to develop SOM implementations (e.g., [1]) with

unique features and capabilities which we would like to be able to use with this

visualization. The key task is to extend the “initialize” method of the package to

recognize additional SOM classes and copy their data into the appropriate slots.

8.1.2 Handle missing data

As we reviewed existing algorithms in R, we noticed that some of them in-

cluded additional code to handle problems with the input data such as missing

values. This was not a concern with the somewhat idealized data sets we used in

62

developing these techniques, but it would be a concern for their wider application.

Accordingly, it would be appropriate to incorporate better handling of missing

data into our routines.

8.1.3 Projection scaling

As described in section 5.4, the orthogonal projections of each datum from

its best-match node toward neighboring nodes must be scaled. The equations

currently employed seem to adequately handle most reasonably well-converged

maps but may be somewhat conservative. We note that the data projections

infrequently fill the cell, even in “smooth” areas of the map where unit distances

between nodes are low. If it were appropriate to expand the area of the cell used,

this would aid in avoiding data occlusion.

8.1.4 Optimization of calculations

At present, our calculations seem reasonably efficient and practical for fairly

substantial data sets on a mid-to-high-end computer. It is unclear that effort

to make them faster would produce significant improvements for the end-user.

Nonetheless, we have noticed some areas that could be enhanced.

Lists of matrices Most of our algorithms have been adapted to use R’s vector-

ization and it is unlikely that interpreted code could run faster. There are still a

few instances where we have to iterate through a list of matrices. It might be pos-

sible to reconsider how those data structures are implemented and fully vectorize

them.

Mesh of subdivided polygons At present, we are passing the 9×-subdivided

polygon outlines to the sp package’s overlay method for calculating the cartogram

density mesh. It should be possible to calculate this map on the undivided polygons

63

and so speed the calculation of the mesh. Note, though, that the entire cartogram

construction is accomplished in a matter of seconds; this task is a relatively small

piece of that process.

Best-Match While optimizing the SOM algorithm itself is entirely outside the

scope of the present project, it could not escape our notice that the SOM im-

plementation used was unable to benefit from more than a single CPU core,

churning away for minutes while the CPU reported only a 12% or 25% work-

load (depending on whether “hyperthreading” was enabled, allowing each core to

function as two virtual cores). Continuing research projects investigate how to

parallelize the complete SOM algorithm, especially how to coordinate simultane-

ous map updates.[2, 3, 4] However, the inner loop of the SOM algorithm—finding

the best-matching node for the current training datum—could much more easily

be done in parallel. Each thread would search an equal slice of the map and return

its best candidate and distance to determine the ultimate winner. Such algorithms

exist;[5] it could be useful to bring them to the R community.

8.1.5 Further visualization techniques

Where appropriate, we will continue to add additional capabilities to the som-

Tools package. Preliminary code to outline contiguous regions of nodes (e.g., clus-

ters) has already been written. To provide feature parity with other packages, a

jitter data projection may be useful in some situations as could be a routine to

stack data labels around a node center.

A mechanism to place a small figure in each cell, representing the data-space

values of that node, would be a useful addition.

64

List of References

[1] F. Rossi, “R-Forge: yasomi: Self-Organising Map in R: Project
home,” Accessed: 2012-02-27, Feb. 2011. [Online]. Available: https:
//r-forge.r-project.org/projects/yasomi/

[2] D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, M. Takatsuka, and M. Bui,
“Parallel batch training of the Self-Organizing map using OpenCL,” in Neu-
ral Information Processing. Models and Applications, K. W. Wong, B. S. U.
Mendis, and A. Bouzerdoum, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2010, vol. 6444, pp. 470–476.

[3] M. H. Yang and N. Ahuja, “A data partition method for parallel self-organizing
map,” in International Joint Conference on Neural Networks, vol. 3. IEEE,
1999, pp. 1929–1933 vol. 3.

[4] B. Silva and N. Marques, “A hybrid parallel SOM algorithm for large maps in
data-mining,” in Proceedings of the Portuguese Conference on Artificial Intel-
ligence, 2007.

[5] G. Myklebust and J. G. Solheim, “Parallel self-organizing maps for actual ap-
plications,” in International Conference on Neural Networks, vol. 2. IEEE,
1995, pp. 1054–1059 vol. 2.

65

https://r-forge.r-project.org/projects/yasomi/
https://r-forge.r-project.org/projects/yasomi/

APPENDIX A

Code Listings

(Automatic line breaks have been inserted where necessary to fit thesis format

requirements.)

A.1 Description of the somTools class
In: somTools/R/AllCasses.R

#from somTools
#Copyright 2012 David H. Brown
#GPL l i c e n s e a v a i l a b l e
#' Class d e f i n i t i o n f o r somTools
#'

#'

s e t C l a s s (”somTools” ,
r e p r e s e n t a t i o n (

topo l = ” charac t e r ” ,
t o r o i d a l = ” l o g i c a l ” ,
xdim = ”numeric ” ,
ydim = ”numeric ” ,
#whatever the i n t e r f a c i n g f u n c t i o n says
data = ”ANY” ,
#v a l u e in n−space at each node
codes = ” matrix ” ,
s c a l e c o d e s = ” matrix ” , #a saved copy o f s c a l e (codes)
#l i s t o f nodeIdexes f o r each o b s e r v a t i o n
#ANY becuase t h i s i s numeric or NULL
datacode = ”ANY” , #l i k e kohonen$u n i t . c l a s s i f

#' o r i g i n a l . c l a s s records the type o f SOM t h a t
i n i t i a l i z e d t h i s somTools

o r i g i n a l . class = ” charac t e r ”
) #r e p r e s e n t a t i o n
,

#v a l i d i t y parameter c r e a t e s the v a l i d O b j e c t () method
v a l i d i t y=function (ob j e c t) {

messages <− NULL #by d e f a u l t

#simple known problems :
i f (i s . null (object@codes)) {

66

messages<−c (messages , ”Codes not known (@codes) −− has
the map been t ra ined ?”)

}
i f (i s . null (object@topo l)) {

messages<−c (messages , ”Topology not known (@topol) ”)
}

i f (i s . null (o b j e c t @ o r i g i n a l . class)) {
messages<−c (messages , ” Or i g i na l c l a s s not known (

@or i g ina l . c l a s s) ”)
}

i f (object@xdim < 1) {
messages<−c (messages , ”X−dimension must be at l e a s t 1 (

@xdim) ”)
}

i f (object@ydim < 1) {
messages<−c (messages , ”Y−dimension must be at l e a s t 1 (

@ydim) ”)
}

#did we pass a l l the t e s t s ?
i f (i s . null (messages)) { TRUE }

#or do we have problems ?
else { messages }

} #v a l i d i t y f u n c t i o n
) #s e t C l a s s

A.2 Initialization of the somTools object
In: somTools/R/AllGenerics.R

#' i n i t i a l i z e a somTools ;
#' i f passed a \ l i n k {som} or \ l i n k {kohonen} o b j e c t ,
#' w i l l a s s i g n v a l u e s to a p p r o p r i a t e s l o t s
setMethod (” i n i t i a l i z e ” , ” somTools” ,

function (. Object , anysom , . . .) {
i f (! missing (anysom)) {

i f (class (anysom) == ”kohonen”) {
. Objec t@or ig ina l . class = ”kohonen”
. Object@data <− anysom$data
. Object@topol <− substr (anysom$grid$topo , 1 , 4)
. Object@toro ida l <− anysom$ t o r o i d a l
. Object@xdim <− anysom$grid$xdim
. Object@ydim <− anysom$grid$ydim
. Object@datacode <− anysom$uni t . c l a s s i f
. Object@codes <− anysom$code
. Object@sca lecodes <− scale (. Object@codes)

67

} #i f kohonen

i f (class (anysom) == ”som”) {
. Objec t@or ig ina l . class = ”som”
. Object@topol <− anysom$ topo l
. Object@toro ida l <− FALSE
. Object@data <− anysom$data #som : : som always keeps

data
. Object@xdim <− anysom$xdim
. Object@ydim <− anysom$ydim

#som uses x+y*xdim ; which s t a r t s a t 0 ; our
f u n c t i o n s assume nodeIndex s t a r t s a t 1 :

. Object@datacode <− (anysom$ v i s u a l [, 1]+(anysom$xdim
* anysom$ v i s u a l [, 2]) + 1)

. Object@codes <− anysom$code

. Object@sca lecodes <− scale (. Object@codes)
} #i f som

Add f u t u r e c l a s s e s o f s e l f−o r g a n i z i n g map here

I f we did not f i n d a c l a s s , anysom p r o b a b l y wasn ' t meant
f o r us and shou ld

be passed to the next method?
i f (i s . null (. Objec t@or ig ina l . class)) {

classNextMethod (. Object , anysom , . . .)
} else {

callNextMethod (. Object , . . .)
}

. Object
} #i f anysom not miss ing
else { callNextMethod (. Object , . . .) }
} #f u n c t i o n
) #setMethod i n i t i a l i z e

A.3 somTools.hexify.xy() – transform rectangular grid points to hexag-
onal

In: somTools/R/somTools.hexify.xy.R

#from somTools
#Copyright 2012 David H. Brown
#GPL l i c e n s e a v a i l a b l e
#s c a l e data c o o r d i n a t e s from square xy to a l i g n wi th hexes

(i f a p p r o p r i a t e to map)
#c u r r e n t l y t a k e s l i s t s o f x , y or a matrix f o r x ; t h i s may

change ?

68

#r e t u r n s a 2−column matrix
somTools . h ex i f y . xy <− function (somTools , x , y) {
#check parameters :

i f (! i s (somTools , ” somTools”)) {
stop (”Must have a somTools as f i r s t argument . ”)

}
i f (missing (y)) {#x b e t t e r be a matrix , then

y <− x [, 2]
x <− x [, 1]

} #miss ing y
i f (length (x) != length (y)) {

stop (' Length o f x must match length o f y ')
}

i f (i d e n t i c a l (somTools@topol , ' r e c t ')) {
return (matrix (c (x , y) , ncol=2, dimnames=l i s t (NULL, c ('x ' ,

'y ')))) #unchanged as matrix
}

#we ' l l add 1 to y to account f o r maps which s h i f t odd
rows

i f (somTools@or ig inal . class %in% c (' kohonen ')) {
ys <− 1+y
} else {
ys <− y
}

#here we c a l c u l a t e a z i g−zag o f f s e t based on the y v a l u e
xadj <− abs (ys/2−round(ys/2))

#return v a l u e :
matrix (c (x+xadj , y * sqrt (3)/2) , ncol=2, dimnames=l i s t (

NULL, c ('x ' , 'y ')))
}

A.4 somTools.node.polygon() – outline node plot areas
In: somTools/R/somTools.node.polygon.R

#from somTools
#Copyright 2012 David H. Brown
#GPL l i c e n s e a v a i l a b l e
r e t u r n s a l i s t [[node . index]] where each entry i s a n*2

matrix

69

l i s t i n g x/y p o i n t s t h a t surround the node
the x/y p o i n t s HAVE been h e x i f i e d
sp : Polygon r e q u i r e s the po lygon to be c l o s e d=TRUE
@TODO: move the t e s t f o r the o r i g i n a l c l a s s and which hex

row s h i f t s
to be a c l a s s proper ty and s e t during

i n i t i a l i z a t i o n
somTools . node . polygon <− function (somTools , node . index ,

c l o s e d=FALSE) {
i f (! i s (somTools , ” somTools”)) {

stop (”Must have a somTools as f i r s t argument . ”)
}

i f (missing (node . index)) node . index <− (1 : (somTools@xdim*

somTools@ydim))

xy <− somTools . nodeIndex . to . xy(somTools , node . index)
x <− xy [, 'x ']
y <− xy [, 'y ']
#we can form a monster l i s t l o f x f o r a l l node . index , y

f o r a l l node . index
#and then reassemb le i t as needed in a matrix

l <− c (node . index) #keep t r a c k to i d e n t i f y e n t r i e s in
l i s t

i f (i d e n t i c a l (somTools@topol , ' r e c t ')) {
#l e t ' s handle j u s t r e c t a n g u l a r g r i d s f i r s t . . .
l <− c (l ,

x−0.5 , y−0.5 , #l l
x−0.5 , y+0.5 , #u l
x+0.5 , y+0.5 , #ur
x+0.5 , y−0.5) #l r

i f (c l o s e d) { l <− c (l , x−0.5 , y−0.5) }
}

i f (i d e n t i c a l (somTools@topol , ' hexa ')) {
#hexagon g r i d s are arranged such t h a t rows are on a l i n e

and columns s t a g g e r
#For the d i s t a n c e between t h e s e p a r a l l e l s i d e s to be

e q u a l to 1 .0 , the
#l e n g t h o f the s i d e must be s q r t (3)/3 .

70

#For kohonen maps , the 1 s t (bottom) and o ther ”odd” rows
are o f f s e t to the r i g h t

#For som hex maps , the 2nd−from−bottom and ” even ” rows
are o f f s e t to the r i g h t

sq3 <− sqrt (3) #not r e a l l y sav ing time by precomputing
these , but i t ' s a

sq33 <− sq3/3 #maybe a l i t t l e c l e a r e r in the code be low ?
sq36 <− sq3/6

i f (i d e n t i c a l (somTools@or ig inal . class , ' kohonen ')) {
x <− x+((1−(y %%2)) * . 5)
} else {
x <− x+((y %% 2) * . 5)

}

y <− y* (sq3/2) #s c a l y y h e i g h t to nes t

l <− c (l ,
x , y−sq33 , #bottom
x−0.5 , y−sq36 , #lower− l e f t
x−0.5 , y+sq36 , #upper− l e f t
x , y+sq33 , #top
x+0.5 , y+sq36 , #upper−r i g h t
x+0.5 , y−sq36) #lower−r i g h t

i f (c l o s e d) { l <− c (l , x , y−sq33) }
}
m <− matrix (l , nrow=length (node . index)) #matrix
l <− l i s t ()
for (i in 1 : length (node . index)) {

l [[m[i , 1]]] <− matrix (m[i ,−1] , ncol=2,byrow=TRUE, dimname
=l i s t (NULL, c ('x ' , 'y ')))

}
l

} #somTools . node . po lygon

A.5 somTools.grid.SpatialPolygons() – prepare node oulines for car-
togram

In: somTools/R/somTools.grid.SpatialPolygons.R

#from somTools
#Copyright 2012 David H. Brown
#GPL l i c e n s e a v a i l a b l e
##' c r e a t e a sp : Polygons o b j e c t c o n t a i n i n g a l l the po lygons

in the map .

71

somTools . grid . Spat ia lPo lygons <− function (somTools) {
i f (! i s (somTools , ” somTools”)) {

stop (”Must have a somTools as f i r s t argument . ”)
}
xys <− somTools . node . polygon (somTools , c l o s e d=TRUE)
po lys <− l i s t ()
for (i in 1 : length (xys)) {

po lys [[i]] <− Polygons (l i s t (Polygon (xys [[i]])) , ID=i)
}

Spat ia lPo lygons (polys , pO=1: length (xys))
}

A.6 somTools.map.density() – calculate data density of SOM
In: somTools/R/somTools.map.density.R

#from somTools
#Copyright 2012 David H. Brown
#GPL l i c e n s e a v a i l a b l e
##' somTools . map . d e n s i t y
##'

##' r e t u r n s a v e c t o r o f data count f o r each g r i d c e l l
##' i f newdata i s provided , i t s n e a r e s t nodes w i l l be

c a l c u l a t e d
##' otherwise , the datacode or data v a l u e s s t o r e d in the

somTools
##' w i l l be used .
##'

##' @param somTools somTools
##' @param newdata numeric
##' @param s c a l e f u n f u n c t i o n

somTools .map . density <− function (somTools , newdata ,
s c a l e f u n = function (vec) {vec }) {

i f (! i s (somTools , ” somTools”)) {
stop (”somTools .map . dens i ty must have a somTools as

f i r s t argument . ”)
}

#i f newdata i s missing , we can t r y to use t r a i n i n g data
from somTools@datacode or @data

i f (missing (newdata)) {
i f (i s . null (somTools@datacode)) {

i f (i s . null (somTools@data)) { #n e i t h e r data nor
datacode

72

stop (” This somTools does not have e i t h e r data nor
datacode ; cannot i n f e r dens i ty ; you must s p e c i f y

newdata”)
} else { #we do have data but no datacode

nea r e s t <− somTools . n ea r e s t . node (somTools ,
somTools@data)

} #e l s e we do have data
} else { #we do have datacode

nea r e s t <− somTools@datacode
} #e l s e we do have datacode

} else { #we do have newdata
newdata <− somTools . newdata . massage (somTools , newdata)
i f (i d e n t i c a l (FALSE, newdata)) {

stop (” somTools@codes and newdata must match ; s ee
warnings . ”)

}
nea r e s t <− somTools . n ea r e s t . node (somTools , newdata)

} #e l s e we do have newdata

#at t h i s point , a l l we want i s the v e c t o r tab , wi th one
d e n s i t y v a l u e per nodeIndex

somTools . nodeIndexVector . to . countVector (somTools , n ea r e s t)
}

A.7 somTools.grid.cartogram() – construct the cartogram
In: somTools/R/somTools.grid.cartogram.R

#from somTools
#Copyright 2012 David H. Brown
#GPL l i c e n s e a v a i l a b l e
##' o b t a i n a cartogram on somTools accord ing to areas g iven

as vec tor , one−per−c e l l .

##' some code r e l a t i n g to working wi th the sp package i s
thanks to

##' (or at l e a s t i n s p i r e d by) Thomas Zumbrumm; see a
c u r r e n t l y u n f i n i s h e d

##' p r o j e c t a t : h t t p s : //r−f o r g e . r−p r o j e c t . org/ p r o j e c t s / c a r t
/

somTools . grid . cartogram <− function (somTools , areas , sea .
expansion =0.2 , grid . d imensions=c (128 ,128) , b lur =0) {

i f (! i s (somTools , ” somTools”)) {
stop (”Must have a somTools as f i r s t argument . ”)

}

73

i f (missing (a reas)) {
#i n c l u d e some minimum area to avoid s q u i s h i n g a c e l l to

noth ing
areas <− (somTools .map . density (somTools) + 0 . 75) ˆ 1 .5

#squar ing i t seemed too extreme
}

i f (length (a reas) != somTools@xdim*somTools@ydim) {
warning (”Areas should be equal to the number o f c e l l s

in the SOM”)
}

i f (length (grid . d imensions) == 1) grid . d imensions <− rep (
grid . dimensions , 2)

i f (length (grid . d imensions) != 2) {
warning (”Should s p e c i f y g r id . dimensions as a vec to r o f

2 numerics (x , y) ”)
}

i f (length (grid . d imensions) < 2) stop (”Unusable g r id .
dimensions . ”)

i f (! isTRUE(a l l . equal (log (grid . dimensions , 2) , f loor (log (
grid . dimensions , 2))))) {

warning (” Set g r id . dimensions to powers o f 2 f o r f a s t e r
c a l c u l a t i o n ”)

}

spo ly s <− somTools . grid . Spat ia lPo lygons (somTools)

#the cartogram proces s wants a f a i r l y l a r g e ” sea ” o f
space around the

#a c t u a l map area so as to avoid edge e f f e c t s
#note : the cartogram f u n c t i o n can do t h i s i t s e l f . . .
range <− d i f f (t (spolys@bbox))
s h i f t <− range * sea . expansion
bbox . expanded <− spolys@bbox + c(− s h i f t , s h i f t)
range . expanded <− d i f f (t (bbox . expanded))
spgr id <− Spat ia lGr id (

GridTopology (
c e l l c e n t r e . of fset = as . numeric (bbox . expanded

[, ”min”]) ,
c e l l s i z e = as . numeric (range . expanded / (grid .

d imensions − 1)) ,
c e l l s .dim = grid . d imensions #

s p g r i d @ g r i d @ c e l l s . dim
)#GridTopology #spgr id@gr id

74

)#S p a t i a l G r i d

o v e r l a y g r i d and po lygons

This i s an e x t e n s i o n o f the point−in−polygon problem .
We o b t a i n a v e c t o r o f

i n d i c e s o f the po lygons in s p d f .
ind <− over l ay (spgr id , spo ly s)

c a l c u l a t e ” d e n s i t y ”

For each g r i d c e l l , we need to determine the f r a c t i o n
o f the u n i t s o f

” v a r i a b l e ” as the number o f u n i t s per c e l l . For NAs, i
. e . f o r the ” sea ” ,

i n s e r t the mean v a l u e f o r the whole ” land ” mass . For
the t a b u l a t i o n , the

l e v e l s need to be en forced because t h e r e might be
po lygons wi th count zero .

For t h e s e c e l l s , d i v i s i o n by zero i s c o r r e c t e d by
r e p l a c i n g the r e s u l t i n g

i n f i n i t e r e s u l t by zero .
tab <− xtabs (˜ factor (ind , levels = seq (a long =

spolys@polygons)))
indVar <− areas [as . numeric (names(tab))] / tab
indVar [i s . i n f i n i t e (indVar)] <− 0
tmean <− sum(tab * indVar [as . numeric (names(tab))]) / sum(

tab)
ind [i s . na(ind)] <− length (a reas) + 1
indVar [length (a reas) + 1] <− tmean

dens <− matrix (indVar [ind] , byrow = TRUE, ncol = grid .
d imensions [2])

ca r t <− cartogram (dens , b lur=blur)

#now we need to add some e x t r a in format ion to the
cartogram

#f i r s t , the bounding box o f the expanded g r i d t h i s
cartogram r e p r e s e n t s

ca r t$bbox <− bbox . expanded
ca r t$ c e l l c e n t r e . of fset <− spg r id@gr id@ce l l c en t r e . of fset
ca r t$ c e l l s i z e <− s p g r i d @ g r i d @ c e l l s i z e
ca r t$ c e l l s .dim <− spg r id@gr id@ce l l s .dim

75

#we ' re going to i n c l u d e a f u n c t i o n ; f u n c t i o n s b r i n g a long
t h e i r environment ,

#so we ' l l remove l a r g i s h o b j e c t s we no l o n g e r need :
rm(' spg r id ' , ' spo ly s ' , ' areas ' , ' tab ' , ' indVar ' , ' ind ' , ' dens ')
#the transform f u n c t i o n s c a l e s data from the o r i g i n a l

space to the
#cartogram g r i d . dimensions space
ca r t$transform <− function (x , y = NULL) {

i f (missing (y) | | i s . null (y)) {
y = x [, 2]
x = x [, 1]
}
x <− (x−ca r t$ c e l l c e n t r e . of fset [1]) / ca r t$ c e l l s i z e [1]
#we need to f l i p the y a x i s to match the cartogram

s t r u c t u r e wi th [1 , 1] a t UL:
y <− ca r t$ c e l l s .dim[2]− ((y−ca r t$ c e l l c e n t r e . of fset [2])

/ ca r t$ c e l l s i z e [2])

tmp <− predict (cart , x , y)
#and we need to f l i p the y a x i s back to match how

t h i n g s p l o t wi th (0 ,0) at LL :
tmp$y <− ca r t$ c e l l s .dim[2]−tmp$y

matrix (c (tmp$x * ca r t$ c e l l s i z e [1] + ca r t$ c e l l c e n t r e .
of fset [1] ,

tmp$y * ca r t$ c e l l s i z e [2] + ca r t$ c e l l c e n t r e .
of fset [2])

, ncol=2, dimnames=l i s t (NULL, c ('x ' , 'y ')))
}# c a r t$ transform

return (ca r t)
}

76

APPENDIX B

Iris Data

Anderson’s iris data, first published by Fisher in 1936, [1] have been the
subject of innumerable analyses and experiments. The data are mentioned (but not
reported) in various articles by Anderson, especially Iris of the Gaspé Peninsula[2]
in which he does seem to recognize the enduring interest of his “juicy morsel” of
data which provides two of the three species in the iris data set:

I have found no other opportunity quite like the field from Ile Verte
to Trois Pistoles.1 There for mile after mile one could gather irises at
will and assemble for comparison one hundred full-blown flowers of Iris
versicolor and of Iris setosa canadensis, each from a different plant, but
all from the same pasture, and picked on the same day and measured
at the same time by the same person with the same apparatus. The
result is, to ordinary eyes, a few pages of singularly dry statistics, but
to the biomathematician a juicy morsel quite worth looking ten years
to find.

In The Species Problem in Iris [3], Anderson presents the case that Iris Ver-
sicolor is a hybrid between the Setosa and Virginica species based on several
considerations, including the morphological characteristics of the petal and sepal
length and width (Figure B.33).

Interestingly, Anderson notes that because Virginica has twice as many chro-
mosomes as Setosa, he expects and finds Versicolor to be substantially closer to
Virginica—this similarity is very familiar to us as Versicolor and Virginica are the
difficult-to-separate species. The iris data were published by Fisher to demonstrate
his method of linear discriminant functions.[1] [4].

Iris sestosa Iris versicolor Iris virginica
Sepal Petal Sepal Petal Sepal Petal

Len. Wid. Len. Wid. Len. Wid. Len. Wid. Len. Wid. Len. Wid.
5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8
5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1
4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7
5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3 2.9 6.3 1.8

1The Gaspé peninsula (officially, the Gaspésie) forms the southern shore of the Saint Lawrence
River in the Canadian province of Quebec. The town of L’Isle-Verte is about 230km northeast of
Quebec City. A national wildlife area extends along the Saint Lawrence about half-way toward
Trois-Pistoles which is about 20km further northeast.

77

Iris sestosa Iris versicolor Iris virginica
Sepal Petal Sepal Petal Sepal Petal

Len. Wid. Len. Wid. Len. Wid. Len. Wid. Len. Wid. Len. Wid.
4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5
5.4 3.7 1.5 0.2 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0
4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9
4.8 3.0 1.4 0.1 6.0 2.2 4.0 1.0 6.8 3.0 5.5 2.1
4.3 3.0 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0
5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3
5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8
5.1 3.5 1.4 0.3 5.8 2.7 4.1 1.0 7.7 3.8 6.7 2.2
5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6.0 2.2 5.0 1.5
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3
5.1 3.7 1.5 0.4 6.1 2.8 4.0 1.3 5.6 2.8 4.9 2.0
4.6 3.6 1.0 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2.0
5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1
5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8
5.0 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8
5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 3.0 4.9 1.8
5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 2.8 5.6 2.1
4.7 3.2 1.6 0.2 5.7 2.6 3.5 1.0 7.2 3.0 5.8 1.6
4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0
5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2
5.5 4.2 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5
4.9 3.1 1.5 0.2 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4
5.0 3.2 1.2 0.2 6.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3
5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4
4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8
4.4 3.0 1.3 0.2 5.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8
5.1 3.4 1.5 0.2 5.5 2.5 4.0 1.3 6.9 3.1 5.4 2.1
5.0 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4
4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3
4.4 3.2 1.3 0.2 5.8 2.6 4.0 1.2 5.8 2.7 5.1 1.9
5.0 3.5 1.6 0.6 5.0 2.3 3.3 1.0 6.8 3.2 5.9 2.3
5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5
4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3
5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5.0 1.9
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0
5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.2 3.4 5.4 2.3
5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8

Table B.1: Anderson’s Iris data as published by Fisher. Measure-
ments are in centimeters (cm).

78

Petal

Sepal

Iris Setosa I. Versicolor I. Virginica
var. Shrevei

width

length

Figure B.33. Iris attributes, redrawn from Anderson’s Figures 5 and 8 in The
Species Problem in Iris.[3] The larger sepals extend downward while the petals
extend upward. The solid silhouettes show how the length and width are measured.

List of References

[1] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann.
Eugen, vol. 7, no. Part II, pp. 179–88, 1936.

[2] E. Anderson, “The irises of the gaspe peninsula,” Bulletin of the American Iris
society, no. 59, pp. 2–5, 1935.

[3] E. Anderson, “The species problem in iris,” Annals of the Missouri Botanical
Garden, vol. 23, no. 3, pp. 457–509, 1936.

[4] J. C. Bezdek, J. M. Keller, R. Krishnapuram, L. I. Kuncheva, and N. R. Pal,
“Will the real iris data please stand up?” IEEE Transactions on Fuzzy Systems,
vol. 7, no. 3, pp. 368–369, 1999.

79

BIBLIOGRAPHY

“Bibliography of SOM papers,” Accessed: 2012-01-22. [Online]. Available:
http://www.cis.hut.fi/research/refs/

“Cardiotocography - Wikipedia, the free encyclopedia,” Accessed: 2012-02-27.
[Online]. Available: http://en.wikipedia.org/wiki/Cardiotocography

“R-Forge: welcome,” Accessed: 2011-05-25. [Online]. Available: https:
//r-forge.r-project.org/

“MATLAB,” The Mathworks, Inc.; Natick, Massachusetts, USA, Mar. 2012.

Anderson, E., “The irises of the gaspe peninsula,” Bulletin of the American Iris
society, no. 59, pp. 2–5, 1935.

Anderson, E., “The species problem in iris,” Annals of the Missouri Botanical
Garden, vol. 23, no. 3, pp. 457–509, 1936.

Ayres-de Campos, D., Bernardes, J., Garrido, A., Marques-de-Sa, J., and
Pereira-Leite, L., “SisPorto 2.0: a program for automated analysis of car-
diotocograms.” J Matern Fetal Med, vol. 9, no. 5, pp. 311–8, 2000.

Bezdek, J. C., Keller, J. M., Krishnapuram, R., Kuncheva, L. I., and Pal, N. R.,
“Will the real iris data please stand up?” IEEE Transactions on Fuzzy Sys-
tems, vol. 7, no. 3, pp. 368–369, 1999.

Bouckaert, R. R., Frank, E., Hall, M., and Kirkby, R., “WEKA manual
for version 3-7-5,” Accessed: 2012-02-08, Oct. 2011, the University
of Waikato. [Online]. Available: http://prdownloads.sourceforge.net/weka/
WekaManual-3-7-5.pdf?download

Brownlee, J., “WEKA classification algorithms,” Accessed: 2012-02-09, May
2011. [Online]. Available: http://sourceforge.net/projects/wekaclassalgos/

Chambers, J., “How S4 methods work,” Accessed: 2010-05-13, Aug. 2006.
[Online]. Available: http://developer.r-project.org/howMethodsWork.pdf

Chambers, J., Software for Data Analysis: Programming with R, 1st ed. Springer,
July 2008.

Ellis, G., Bertini, E., and Dix, A., “The sampling lens: making sense of saturated
visualisations,” in CHI ’05 extended abstracts on Human factors in computing
systems, CHI EA ’05. New York, NY, USA: ACM, 2005, pp. 1351–1354.

80

http://www.cis.hut.fi/research/refs/
http://en.wikipedia.org/wiki/Cardiotocography
https://r-forge.r-project.org/
https://r-forge.r-project.org/
http://prdownloads.sourceforge.net/weka/WekaManual-3-7-5.pdf?download
http://prdownloads.sourceforge.net/weka/WekaManual-3-7-5.pdf?download
http://sourceforge.net/projects/wekaclassalgos/
http://developer.r-project.org/howMethodsWork.pdf

Fisher, R. A., “The use of multiple measurements in taxonomic problems,” Ann.
Eugen, vol. 7, no. Part II, pp. 179–88, 1936.

Frank, A. and Asuncion, A., “UCI machine learning repository,” Accessed:
2011-02-18, 2010, university of California, Irvine, School of Information and
Computer Sciences. [Online]. Available: http://archive.ics.uci.edu/ml

Gastner, M. T. and Newman, M. E. J., “Diffusion-based method for producing
density-equalizing maps,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 101, no. 20, pp. 7499–7504, May 2004.

Gusein-Zade, S. M. and Tikunov, V. S., “A new technique for constructing contin-
uous cartograms,” Cartography and Geographic Information Science, vol. 20,
pp. 167–173, July 1993.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.,
“The WEKA data mining software: an update,” SIGKDD Explor. Newsl.,
vol. 11, no. 1, p. 1018, Nov. 2009.

Hamel, L. and Brown, C., “Improved interpretability of the unified distance matrix
with connected components,” in Proceeding of the 7th International Confer-
ence on Data Mining. Las Vegas Nevada, USA: CSREA Press, July 2011,
pp. 338–343.

Harrie, L., Sarjakoski, L. T., and Lehto, L., “A variable-scale map for small-display
cartography,” International Archives of Photogrammetry Remote Sensing and
Spatial Information Sciences, vol. 34, no. 4, pp. 237–242, 2002.

Himberg, J., “Enhancing the SOM based data visualization by linking different
data projections,” in Proceedings of the International Symposium on Intelli-
gent Data Engineering and Learning (IDEAL’98), Hong Kong, Oct. 1998, p.
427434.

House, D. H. and Kocmoud, C. J., “Continuous cartogram construction,” in Pro-
ceedings of the conference on Visualization ’98. Research Triangle Park,
North Carolina, United States: IEEE Computer Society Press, 1998, pp. 197–
204.

Hsu, C. C., “Generalizing self-organizing map for categorical data,” IEEE Trans-
actions on Neural Networks, vol. 17, no. 2, pp. 294–304, 2006.

Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F., Mitchell,
J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M.,
Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Takatsuka, M., and
Bui, M., “Parallel batch training of the Self-Organizing map using OpenCL,”
in Neural Information Processing. Models and Applications, Wong, K. W.,
Mendis, B. S. U., and Bouzerdoum, A., Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, vol. 6444, pp. 470–476.

81

http://archive.ics.uci.edu/ml

Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F., Mitchell,
J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Ter-
zopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Plzlbauer, G., Rauber, A.,
and Dittenbach, M., “A vector field visualization technique for self-organizing
maps,” in Advances in Knowledge Discovery and Data Mining, Ho, T. B., Che-
ung, D., and Liu, H., Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, vol. 3518, pp. 399–409.

Kaski, S., Kangasz, J., and Kohonen, T., “Bibliography of Self-Organizing map
(SOM) papers: 1981-1997,” Neural Computing Surveys, vol. 1, pp. 102–350,
1998.

Keahey, T. A., “Visualization of high-dimensional clusters using nonlinear magni-
fication,” Visual Data Exploration and Analysis VI, vol. 3643 of SPIE, 1999.

Keim, D. A., North, S. C., and Panse, C., “CartoDraw: a fast algorithm for
generating contiguous cartograms,” IEEE Transactions on Visualization and
Computer Graphics, vol. 10, no. 1, pp. 95–110, 2004.

Kohonen, T., Hynninen, J., Kangas, J., and Laaksonen, J., “SOM PAK: the self-
organizing map program package,” Report A31, Helsinki University of Tech-
nology, Laboratory of Computer and Information Science, 1996.

Kohonen, T., Self-Organizing Maps, 3rd ed., Springer Series in Information Sci-
ences. Berlin, Heidelberg, New York: Springer, 2001, no. 30.

Koua, E. L., “Using self-organizing maps for information visualization and knowl-
edge discovery in complex geospatial datasets,” in Proceedings of 21st Inter-
national Cartographic Renaissance (ICC), 2003, pp. 1694–1702.

Kraaijveld, M. A., Mao, J., and Jain, A. K., “A nonlinear projection method
based on Kohonen’s topology preserving maps,” IEEE Transactions on Neural
Networks, vol. 6, no. 3, pp. 548–559, May 1995.

Lay, D. C., Linear algebra and its applications, 3rd ed. Addison Wesley, Sept.
2005.

Murrell, P., R Graphics, 1st ed. Chapman and Hall/CRC, July 2005.

Myklebust, G. and Solheim, J. G., “Parallel self-organizing maps for actual ap-
plications,” in International Conference on Neural Networks, vol. 2. IEEE,
1995, pp. 1054–1059 vol. 2.

Newman, M. E. J., “Cart: Computer software for making cartograms,” Accessed:
2011-06-17, Nov. 2006. [Online]. Available: http://www-personal.umich.edu/
∼mejn/cart/

82

http://www-personal.umich.edu/~mejn/cart/
http://www-personal.umich.edu/~mejn/cart/

Newman, M., “Images of the social and economic world,” Accessed: 2012-02-26.
[Online]. Available: http://www-personal.umich.edu/∼mejn/cartograms/

Oja, M., Kaski, S., and Kohonen, T., “Bibliography of self-organizing map (SOM)
papers: 1998-2001 addendum,” Neural Computing Surveys, vol. 3, no. 1, pp.
1–156, 2003.

Pampalk, E., Rauber, A., and Merkl, D., “Using smoothed data histograms for
cluster visualization in Self-Organizing maps,” in Artificial Neural Networks
ICANN 2002, Dorronsoro, J. R., Ed., vol. 2415. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 871–876.

Park, Y., Crghino, R., Compin, A., and Lek, S., “Applications of artificial neu-
ral networks for patterning and predicting aquatic insect species richness in
running waters,” Ecological Modelling, vol. 160, no. 3, pp. 265–280, Feb. 2003.

Pebesma, E. J. and Bivand, R., “Classes and methods for spatial data in R,” R
News, vol. 5, no. 2, 2005.

Pll, M., Honkela, T., and Kohonen, T., “Bibliography of self-organizing map
(SOM) papers: 2002-2005 addendum,” Helsinki University of Technology,
Helsinki, Tech. Rep. TKK-ICS-R23, 2007.

Plzlbauer, G., Rauber, A., and Dittenbach, M., “Advanced visualization techniques
for self-organizing maps with graph-based methods,” Advances in Neural Net-
worksISNN 2005, pp. 813–813, 2005.

Plzlbauer, G., Rauber, A., and Dittenbach, M., “A vector field visualization tech-
nique for self-organizing maps,” in Advances in Knowledge Discovery and Data
Mining, 2005, pp. 399–409.

R Foundation for Statistical Computing,, “The comprehensive R archive network,”
Accessed: 2011-05-18. [Online]. Available: http://cran.r-project.org/

Raisz, E., “The rectangular statistical cartogram,” Geographical Review, vol. 24,
no. 2, pp. 292–296, Apr. 1934.

Rossi, F., “R-Forge: yasomi: Self-Organising Map in R: Project home,” Accessed:
2012-02-27, Feb. 2011. [Online]. Available: https://r-forge.r-project.org/
projects/yasomi/

Sammon, John W., J., “A nonlinear mapping for data structure analysis,” IEEE
Transactions on Computers, vol. C-18, no. 5, pp. 401–409, May 1969.

Sarkar, D., Lattice: Multivariate Data Visualization with R. New York: Springer,
2008, ISBN 978-0-387-75968-5.

83

http://www-personal.umich.edu/~mejn/cartograms/
http://cran.r-project.org/
https://r-forge.r-project.org/projects/yasomi/
https://r-forge.r-project.org/projects/yasomi/

Silva, B. and Marques, N., “A hybrid parallel SOM algorithm for large maps
in data-mining,” in Proceedings of the Portuguese Conference on Artificial
Intelligence, 2007.

Steinberg, S., “Front cover,” The New Yorker, p. OFC, Mar. 1976.

Team, R. D. C., R: A Language and Environment for Statistical Computing, Vi-
enna, Austria, 2011, ISBN 3-900051-07-0.

Temple Lang, D., “Rcartogram: Interface to mark newman’s cartogram software,”
Accessed: 2011-06-16, Nov. 2008, R package version 0.2-2. [Online]. Available:
http://www.omegahat.org/Rcartogram/

Tobler, W. R., “Pseudo-cartograms,” Cartography and Geographic Information
Science, vol. 13, no. 1, pp. 43–50, 1986.

Tobler, W. R., “Geographic area and map projections,” Geographical Review,
vol. 53, no. 1, pp. 59–78, Jan. 1963.

Tobler, W. R., “A continuous transformation useful for districting,” Annals, New
York Academy of Sciences, no. 219, pp. 215–220, 1973.

Trutschl, M., Grinstein, G., and Cvek, U., “Intelligently resolving point occlu-
sion,” in IEEE Symposium on Information Visualization, 2003. INFOVIS
2003. IEEE, Oct. 2003, pp. 131–136.

Ultsch, A., “Self-Organizing neural networks for visualisation and classification,”
in Information and classification: concepts, methods, and applications. Uni-
versity of Dortmund: Springer Verlag, 1993, pp. 307–313.

Ultsch, A., “Maps for the visualization of high-dimensional data spaces,” in Proc.
Workshop on Self organizing Maps, 2003, p. 225230.

Ultsch, A., U*-matrix: a tool to visualize clusters in high dimensional data. Fach-
bereich Mathematik und Informatik, 2003.

Vesanto, J., “SOM-based data visualization methods,” Intelligent Data Analysis,
vol. 3, no. 2, pp. 111–126, Aug. 1999.

Vesanto, J., Himberg, J., Alhoniemi, E., and Parhankangas, J., “Self-organizing
map in MATLAB: the SOM toolbox,” CiteSeerX, Tech. Rep., 1999.

Vesanto, J., Himberg, J., Siponen, M., and Simula, O., “Enhancing SOM based
data visualization,” in Proceedings of the International Conference on Soft
Computing and Information/Intelligent Systems (IIZUKA’98), Iizuka, Japan,
Oct. 1998, p. 6467.

84

http://www.omegahat.org/Rcartogram/

Ward, M. O., “A taxonomy of glyph placement strategies for multidimensional
data visualization,” Information Visualization, vol. 1, no. 3-4, pp. 194–210,
Dec. 2002.

Wehrens, R. and Buydens, L., “Self- and super-organising maps in R: the kohonen
package,” J. Stat. Softw., vol. 21, no. 5, 2007.

Yan, J., “som: Self-Organizing map,” Accessed: 2011-06-16, 2010, R package
version 0.3-5. [Online]. Available: http://CRAN.R-project.org/package=som

Yang, M. H. and Ahuja, N., “A data partition method for parallel self-organizing
map,” in International Joint Conference on Neural Networks, vol. 3. IEEE,
1999, pp. 1929–1933 vol. 3.

Yin, H., “Data visualisation and manifold mapping using the ViSOM,” Neural
Networks: The Official Journal of the International Neural Network Society,
vol. 15, no. 8-9, pp. 1005–1016, Nov. 2002, PMID: 12416690.

Zumbrunn, T., “R-Forge: diffusion-based cartograms,” Accessed: 2010-12-01,
Sept. 2010. [Online]. Available: https://r-forge.r-project.org/projects/cart/

85

http://CRAN.R-project.org/package=som
https://r-forge.r-project.org/projects/cart/

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Visualization of the SOM
	List of References

	Literature Review
	Self-Organizing Map
	Data occlusion
	Cartogram
	List of References

	Cartograms
	Introduction to cartograms
	Other variable-scale maps

	Selection of a cartogram algorithm
	Prioritization of constraints
	Shapes or sheet?
	Selecting available code

	List of References

	Important Structures of the Self-Organizing Map
	Properties of the Map
	Properties of the Data
	Training Data
	Dimensionality of the Data Space
	Normalization
	Best-Match Node

	Inherent Properties of Nodes
	Row-Column Grid Coordinates
	2D Plotting Center
	Neighboring Nodes
	Node Index
	Node cell and enclosing polygon

	Trained Properties of Nodes
	Rn value
	Unified distance, or U-Matrix
	Mapped Training Data
	Quantization Error

	List of References

	Data Projection Within the Cell
	Selecting the Best-matching Node
	Computational Complexity

	Finding Vectors to Neighbors
	Computational Complexity

	Orthogonal Projection
	Computational Complexity

	Calculate and scale the 2-D Offset
	Computational Complexity

	Overall Computational Complexity of Mapping
	Visual representation
	Point symbol
	Center trace

	List of References

	Development and Implementation in R
	R package architecture
	The somTools class
	Methods and functions of somTools

	Locating and Interpolating Between SOM Nodes
	Adaptation for Hexagonal Maps

	Cartogram Construction
	Computational complexity

	Plotting the map
	List of References

	Demonstrations and Experiments
	Solutions to Data Hiding
	Density Cartogram
	Detection of Poorly Converged Map
	Other Cartogram Applications
	Other information layers

	Further Experiments
	Time and Resources Required

	List of References

	Conclusions and Future Work
	Future Work
	Support Other SOM algorithms
	Handle missing data
	Projection scaling
	Optimization of calculations
	Further visualization techniques

	List of References

	Code Listings
	Description of the somTools class
	Initialization of the somTools object
	somTools.hexify.xy() – transform rectangular grid points to hexagonal
	somTools.node.polygon() – outline node plot areas
	somTools.grid.SpatialPolygons() – prepare node oulines for cartogram
	somTools.map.density() – calculate data density of SOM
	somTools.grid.cartogram() – construct the cartogram

	Iris Data
	List of References

	BIBLIOGRAPHY

