
A CONVERGENCE CRITERION FOR SELF-ORGANIZING MAPS

BY

BENJAMIN H. OTT

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2012

MASTER OF SCIENCE THESIS

OF

BENJAMIN H. OTT

APPROVED:

Thesis Committee:

Major Professor Lutz Hamel

Joan Peckham

Nancy Eaton

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2012

ABSTRACT

Currently, only computationally complex, probabilistic models for convergence

exist for self-organizing maps (SOMs). The complexity of these algorithms seems

to take away from the simple intuitive nature of SOMs in addition to making them

computationally unwieldy. The hypothesis proposed is that the basic SOM algo-

rithm is heuristic in nature and will almost always converge on a set of code vectors

(or neurons) which reflect the underlying distribution from which the original sam-

ple (or training) vectors were drawn. This study shows that this hypothesis is valid

for the basic SOM algorithm by imposing a convergence criterion on the basic SOM

algorithm. The convergence criterion (or convergence measure) imposed treats the

SOM as a conventional two sample test (i.e. one sample being the training data

and one sample being the code vectors). If the hypothesis holds, then imposing a

population based convergence criterion on SOMs will increase their accuracy and

utility by allowing an end user of the maps to differentiate between “good” maps

(which converged well) and “bad” maps (which did not converge well), hence allow-

ing only the best maps to be selected for use. The convergence criterion could also

be used as an indicator for the appropriate number of training iterations necessary

for a given set of training data. For instance, if a convergence check were to show

that a given SOM has not yet converged, then the number of training iterations

could be increased in the next SOM construction. Alternatively, the learning rate

could be increased in order to increase the SOM’s ability to capture the variance

of the training vectors.

In addition to testing this hypothesis via the calculation of the proposed con-

vergence measure (using the two sample, population based, approach), another

existing method of testing SOMs for reliability and organization (i.e. convergence

or “goodness”) is calculated and compared to the results of the convergence mea-

sure proposed in this study. What has been observed is that the SOM does indeed

converge and that the convergence measure proposed in this thesis is more con-

servative than the existing, and much more computationally intensive, algorithm

to which it is compared. Hence, when the convergence criterion proposed herein

is satisfied, the reliability and organization criterion are implied. In addition to

being more conservative, it also correlates better with lower quantization errors.

ACKNOWLEDGMENTS

As it turns out, a journey such as the writing of a thesis requires a bit of

support, and different kinds of support at that. There were some individuals

whose support and encouragement made the work within the pages that follow

possible. To these people, I am eternally grateful and I consider myself fortunate

to know them and to have earned their support.

First and foremost, I would like to thank my loving wife, Rebecca, for her

support of my research and for the saint like patience she exhibited those days and

nights that I spent researching and writing the contents of this thesis. Secondly,

I would like to thank my thesis advisor, Dr. Hamel, for allowing me to be a part

of this exceptional project, for challenging me, and for offering sage advice and

insightful guidance to me throughout the course of my research. I would also like

to thank the members of my research committee and my examining committee,

Dr. Peckham, Dr. Eaton and Dr. Dash, for reading and commenting on my thesis

and for being a part of my educational journey. Lastly, I would like to thank

my family and friends for their encouragement and for providing such a stalwart

support network. I would like to distinctly thank my parents for their words of

encouragement and for the wonderful example of perseverance that they set for

me. I would also like to thank my father-in-law and my mother-in-law for setting

great examples and encouraging me throughout my studies.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

CHAPTER

1 Introduction . 1

2 Background . 6

2.1 Self-Organizing Maps . 6

2.2 Bootstrap . 8

2.3 Principal Components . 10

3 A Conventional SOM Reliability Measure 15

3.1 Basis of existing criteria . 15

3.2 SOM Reliability Measures . 15

3.2.1 Quantization Error . 15

3.2.2 Neighborhood Stability 16

4 A New Approach to SOM Convergence 22

4.1 Overview . 22

4.2 Normalizing and Rotating Along the Principal Components . . . 22

4.3 A Measure for SOM Convergence 24

4.3.1 Mean Convergence . 25

v

Page

vi

4.3.2 Variance Convergence . 26

4.3.3 The Population Based Convergence Measure 26

5 Results . 28

5.1 Experiment Design . 28

5.2 Iris Experiment Results . 33

5.2.1 CV(SSIntra) . 33

5.2.2 Results Using 15× 8 SOMs 34

5.3 Wine Experiment Results . 37

5.3.1 CV(SSIntra) . 37

5.3.2 Results Using 14× 10 SOMs 38

5.4 Ionosphere Experiment Results 43

5.4.1 CV(SSIntra) . 43

5.4.2 Results Using 26× 18 SOMs 44

6 Conclusions and Future Work . 52

6.1 Conclusions . 52

6.2 Suggestions For Future Work . 53

LIST OF REFERENCES . 56

BIBLIOGRAPHY . 58

LIST OF FIGURES

Figure Page

1 The optimal fit, or best matching unit (BMU) in the SOM, is
the code vector which is most like the given input vector (i.e.
which has the smallest Euclidean distance to the input vector).
The above pictorial was given in [1]. 1

2 Projections onto a 4 x 5 SOM 17

3 7 x 9 SOM where the neurons which have the same sized r = 2
neighborhood are highlighted with the same color 18

4 CV(SSIntra) plotted as a function of map size 34

5 Population Based Convergence Measure Plotted Against Itera-
tions - Data averaged over the 200 bootstrapped maps (that is
the meaning of boot = TRUE) 35

6 Proportion of Non-Random Neighbors Plotted Against Itera-
tions. A neighborhood radius of three is used. The red line
does not take edge effects into account while the blue line does. 35

7 SSMean Plotted Against fConv, the Population Based Conver-
gence Measure. On the left, ssMean is plotted as a linear func-
tion of fConv while on the right, ssMean is plotted as an expo-
nential decay function of fConv. 36

8 SSMean Plotted Against the proportion of non-random neigh-
bors, cottNeigh. On the left, ssMean is plotted as a linear func-
tion of cottNeigh while on the right, ssMean is plotted as an
exponential decay function of cottNeigh. 36

9 CV(SSIntra) plotted as a function of map size 38

10 Population Based Convergence Measure Plotted Against Itera-
tions - Data averaged over the 200 bootstrapped maps (that is
the meaning of boot = TRUE) 39

11 Proportion of Non-Random Neighbors Plotted Against Itera-
tions. A neighborhood radius of four is used. The red line does
not take edge effects into account while the blue line does. . . . 39

vii

Figure Page

viii

12 SSMean Plotted Against fConv, the Population Based Conver-
gence Measure. On the left, ssMean is plotted as a linear func-
tion of fConv while on the right, ssMean is plotted as an expo-
nential decay function of fConv. 40

13 SSMean Plotted Against the proportion of non-random neigh-
bors, cottNeigh. On the left, ssMean is plotted as a linear func-
tion of cottNeigh while on the right, ssMean is plotted as an
exponential decay function of cottNeigh. 40

14 SSMean Plotted Against fConv, the Population Based Conver-
gence Measure with the one outlying point removed. On the
left, ssMean is plotted as a linear function of fConv while on
the right, ssMean is plotted as an exponential decay function of
fConv. 41

15 SSMean Plotted Against the proportion of non-random neigh-
bors, cottNeigh with the one outlier removed. On the left, ss-
Mean is plotted as a linear function of cottNeigh while on the
right, ssMean is plotted as an exponential decay function of cot-
tNeigh. 41

16 cottNeigh (green) and fConv (red) plotted as functions of itera-
tions. It is clear that fConv levels out after cottNeigh and hence
provides a more conservative measure of convergence. 42

17 CV(SSIntra) plotted as a function of map size 44

18 Population Based Convergence Measure Plotted Against Itera-
tions - Data averaged over the 200 bootstrapped maps (that is
the meaning of boot = TRUE) 45

19 Proportion of Non-Random Neighbors Plotted Against Itera-
tions. A neighborhood radius of seven is used. The red line
does not take edge effects into account while the blue line does. 45

20 SSMean Plotted Against fConv, the Population Based Conver-
gence Measure. On the left, ssMean is plotted as a linear func-
tion of fConv while on the right, ssMean is plotted as an ex-
ponential decay function of fConv. The maps trained for zero
iterations were excluded. 46

Figure Page

ix

21 SSMean Plotted Against the proportion of non-random neigh-
bors, cottNeigh. On the left, ssMean is plotted as a linear func-
tion of cottNeigh while on the right, ssMean is plotted as an
exponential decay function of cottNeigh. The maps trained for
zero iterations were excluded. 46

22 SSMean Plotted Against fConv, the Population Based Conver-
gence Measure with the outliers removed. Only maps trained
for 500 or more iterations are considered. On the left, ssMean is
plotted as a linear function of fConv while on the right, ssMean
is plotted as an exponential decay function of fConv. 47

23 SSMean Plotted Against the proportion of non-random neigh-
bors, cottNeigh with the outlier removed. Only maps trained
for 500 or more iterations are considered. On the left, ssMean
is plotted as a linear function of cottNeigh while on the right,
ssMean is plotted as an exponential decay function of cottNeigh. 48

24 cottNeigh (green) and fConv (red) plotted as functions of itera-
tions. It is clear that fConv levels out after cottNeigh and hence
provides a more conservative measure of convergence. 49

25 SOM achieving fConv = 1; trained for 375,000 iterations; noise
reduction performed (first few principal components used to
train the SOM) . 50

26 SOM achieving fConv = 0; trained for 15,100 iterations; noise
reduction not performed; note that cottNeigh indicated stability
after only 5,000-10,000 iterations even when no noise reduction
was utilized on the data - this map should be stable according
to cottNeigh . 51

CHAPTER 1

Introduction

Self-organizing maps (SOMs) are a common type of artificial neural network in

which training data is run iteratively through a training algorithm. The algorithm

matches a given training vector to its optimal fit (best matching unit) in the

SOM (see Figure 1) and then acts on the optimal fit and its neighbors using

a neighborhood function in order to preserve the general topology, or structure,

of the input space (training data). SOMs are used extensively as a method of

analysis in a broad variety of fields including bioinformatics, financial analysis,

signal processing, and experimental physics as they provide a simple yet effective

algorithm for clustering via unsupervised learning [2]. The simple nature of the

SOM algorithm and the way in which the visualization of the SOM can be easily

and intuitively interpreted make it appealing as an analysis tool. However, with

any analysis tool, and especially iterative learning-based tools, questions pertaining

to the reliability and the convergence of the tool naturally emerge.

Figure 1: The optimal fit, or best matching unit (BMU) in the SOM, is the code vector

which is most like the given input vector (i.e. which has the smallest Euclidean distance

to the input vector). The above pictorial was given in [1].

1

Several effective measures have been developed in order to analyze the effec-

tiveness of a given SOM. One such measure, quantization error, is the error function

proposed by Kohonen and is the de facto measure of the efficacy of a given SOM

at modeling the characteristics intrinsic to the sample data used for training[2].

The quantization error of a given training vector is the smallest distance between

that training vector and any neuron in the SOM. To get a feel for how well a

given SOM represents a data set, one can sum the quantization error over all of

the training data vectors or one can calculate the average quantization error of

the training data vectors. The goal of the SOM then, is to minimize this value.

Attempting to minimize the quantization error can lead to overfitted models which

are ineffective at classifying future samples because as the model fits the training

data better and better, it may end up modeling noise in the training data which is

not characteristic of the general population from which the training data sample

was drawn. Also, how does one determine when the quantization error is “good

enough”? One can make the quantization error arbitrarily small by increasing the

complexity of the model by adding neurons to the map.

Another approach is to modify the algorithm itself so that statistical measures

or other objective analysis techniques can be imposed. Bishop’s generative topo-

graphic mapping (GTM) [3] and Verbeek’s generative self-organizing map (GSOM)

[4] seem to fall into this category. The GTM and GSOM attempt to model the

probability density of a data set using a smaller number of latent variables (i.e.

the dimensionality of the latent space is less than or equal to that of the data

space). A non-linear mapping is then generated which maps the latent space into

the data space. The parameters of this mapping are learned using an expectation-

maximization (EM) algorithm [3, 5]. Algorithms in the class of the GTM and the

GSOM should be viewed as alternates to the SOM as opposed to modifications of

2

it, even though they share properties similar to the SOM. Other scholars have taken

an energy function approach, imposing energy functions on the neurons of the SOM

and then attempting to minimize these energy functions [6, 7], again seeming to

take away from the SOM’s simplicity. Both of these approaches, namely altering

the algorithm or imposing energy functions on the SOM, seem to take away from

the SOM’s appeal as a simple, fast algorithm for visualizing high dimensional data,

especially since the alterations tend to be much more complicated than the SOM

learning algorithm itself.

Yet another approach is to calculate the significance of neighborhood stabil-

ities in order to analyze whether or not inputs close in the sample space remain

close when projected on the SOM. In addition, checks are performed in order to

determine whether or not the neighborhood relationships are preserved from map

to map [i.e. if many SOMs are created using bootstrap samples of the training

data, and the training data is projected onto each of the SOMs, do the training

vectors appear to be randomly mapped within a defined neighborhood or is their

neighborhood relation significant][8]. While providing a sound set of statistical

tools to analyze SOMs, this reliability and stability based approach, is computa-

tionally unwieldy and drastically increases the amount of time associated with the

analysis of a given data set. The time cost comes from the creation of many maps

using the bootstrapped samples of training data (typically 100-200 maps; Efron

recommends using at least 200 samples when bootstrapping statistics [9]) and the

analysis of each pair of training data over each map after all of the maps have been

trained.

Here, we propose a population based approach for analyzing SOM conver-

gence. Yin and Allison [10] showed that the neurons in a SOM will converge on

the probability distribution of the training data in the limiting case (i.e. if the

3

SOM were trained forever). They imposed the assumption that at each iteration

t = 1, 2, ...,∞, there were no “dead” neurons in the map. In other words, each

neuron was assumed to be updated an infinite number of times. However, the

key insight is that the SOM, as Kohonen had claimed earlier, will in effect, model

the probability density of the training data in a fairly general setting. If we op-

erate under the assumption that the SOM will model the probability density of

the training data, then we can perform a simple two sample test in order to see if

the SOM has effectively modeled the training data. In other words, we can treat

the neurons of the map as one sample, treat the training data as another sample,

and then proceed to perform tests in order to see if it appears that the samples

were drawn from the same probability space. Thus, the SOM may be viewed as

a sample building algorithm. This population based approach lends to a fast con-

vergence criterion, based on standard statistical methods, which does not modify

the original algorithm, hence preserving its appeal as a simple and fast analysis

tool.

In this thesis, we first discuss some background material which is fundamental

to the convergence measure proposed here. Secondly, we introduce a conventional

convergence approach which examines the stability of neighborhood relationships

on the SOM. This stability based approach is the one proposed by Cottrell et al.

This approach is based on measures imposed on the map, which is typical for the

currently existing convergence criteria. Measures are imposed solely on the map

without comparing the neurons of the map to the training data in order to see

if the neurons adequately model the training data. Third, we discuss the conver-

gence measure proposed in this thesis. This measure uses conventional statistical

measures to compare the sample formed by the neurons of the SOM to the sample

formed by the training data in order to determine if it appears that the neurons

4

adequately model the training data (i.e. checks are performed in order to see if it

looks like the two samples are drawn from the same underlying probability space).

Each feature is checked and credit is given for each feature which is adequately

modeled by the SOM. Finally, results from experimentation comparing the con-

ventional measure to the convergence measure proposed in this body of work are

reported.

5

CHAPTER 2

Background

A basic understanding of Self-Organizing Maps (SOMs), the Bootstrap, and

Principal Components are necessary in order to provide the framework for the

convergence criterion later proposed in this work.

2.1 Self-Organizing Maps

Self-organizing maps are a common type of artificial neural network in which

training data is run repetitively through a training algorithm which matches each

training vector to its optimal fit in the SOM and then acts on the optimal fit and its

neighbors using a neighborhood function in order to preserve the general topology,

or structure, of the input space (training data). The code vectors, or neurons

in the network, can be initialized in any way and the SOM should ultimately

converge [10]. The basic SOM algorithm uses an optimal fit approach based on

the Euclidean distance to find the code vector upon which a given training vector

should act. Then, the optimal fit code vector and any code vectors within its

neighborhood are altered slightly using a scale factor (the learning rate - included in

the neighborhood function) times the difference between the given code vector and

the training vector. SOMs provide a simple yet effective algorithm for clustering

via unsupervised learning. As the name might indicate, clustering algorithms

are a method of unsupervised learning which have the goal of grouping similar

data together (i.e. data which are very similar should be grouped, or clustered,

together). Unsupervised learning essentially means that the algorithm is not given

any indicator regarding the group or cluster with which each training vector is

associated. In the case of the SOM algorithm, after the algorithm has been run,

each training vector is typically mapped onto the SOM and the associated neuron

6

is labeled with an ID indicating the cluster to which the vector belonged.

The SOM algorithm may be mathematically defined as follows. Let x denote

a training vector. The optimal fit, or best matching, code vector can be found

using the following simple test [2]:

c = arg mini ||x−mi|| (1)

or, equivalently,

||x−mc|| = min
i
||x−mi|| (2)

where the mi represent the neurons of the SOM. Next, the code vectors are updated

according to the following equation [2]:

mi(t+ 1) = mi(t) + hci(t)[x(t)−mi(t)] (3)

where t is an integer specifying the iteration (i.e. t=0,1,2,...), mi(t + 1) is the

updated code vector, mi(t) is the code vector prior to the update, x(t) is a randomly

chosen training vector, and hci(t) is a neighborhood function. In the context of

this work, the neighborhood function hci(t) is given by the following equation:

hci(t) =


α(t) if mi is in the neighborhood, Nc(t), of mc

0 otherwise

(4)

where α(t) is a monotonically decreasing function of time t and Nc(t) also decreases

with time. What this means is that code vectors in the neighborhood of mc, the

optimal fit code vector, will be updated to be a multiple of α(t) closer to the

training vector x. The neighborhood Nc(t) should be very wide in the beginning

of training and shrink monotonically with time until the optimal fit neuron is the

7

only neuron in neighborhood defined by Nc(t) [10]. A good global ordering may

then be formed [10].

The algorithm is run for many iterations while α(t) and Nc(t) decrease in order

to ensure a reasonable organization of the map. Typically, the number of iterations,

t, has to be reasonably large in order to have confidence that the resulting SOM

is reliably organized (i.e. the training data needs to be run through the algorithm

a substantial number of times). Depending on the complexity of the training data

sample, t may need to be in the 100,000s or greater in order to have confidence in

the resulting maps.

2.2 Bootstrap

The basic bootstrap provides a non-parametric method to measure a statis-

tic and its associated standard error. Suppose that there is a set of data

X = (x1, x2, · · · , xn), where each xi represents a random vector drawn from a

population. The basic bootstrap is performed by creating some number of boot-

strap samples from the sample X, calculating the statistic of interest for each

bootstrap sample (creating bootstrap replications of the statistic), and then cal-

culating the mean and the standard error of the bootstrap replications. The mean

and standard error of the bootstrap replications will serve as estimates for the

statistic itself and the standard error of the statistic respectively.

A bootstrap sample, say X∗, is created by randomly sampling n times with

replacement from the sample X [9]. For example, if X is a sample consisting of

five vectors, (x1, x2, x3, x4, x5), a bootstrap sample might look like the following:

X∗ = (x2, x5, x1, x3, x2). In order to bootstrap a statistic, B bootstrap samples

are created from the sample X. The bootstrap samples would be indexed as

X∗1, X∗2, · · · , X∗B. For each bootstrapped sample, the statistic of interest, say

s(x) is calculated, resulting in B bootstrap replications of the statistic of interest,

8

s(X∗1), s(X∗2), · · · , s(X∗B). The bootstrap estimate of the statistic, s(·) would

then be given by the following equation [9]:

s(·) =

∑B
b=1 s(X

∗b)

B
(5)

Put another way, the bootstrap estimate of the statistic is the average value of

the bootstrap replications of the statistic. Similarly, the bootstrap estimate of the

standard error is given by the standard deviation of the bootstrap replications [9].

The equation for the bootstrap estimate of standard error is as follows:

ŝeboot =

{∑B
b=1[s(X

∗b)− s(·)]2

B − 1

} 1
2

(6)

Efron and Tibshirani have shown that if one takes the limit of these equations

for the sample mean (i.e. where s(·) is the sample mean) as B tends towards infin-

ity, the equations approach the conventional definitions for the mean and standard

error of the sample [9]. The bootstrap extends to more general statistics as well. In

fact, the mean is generally not bootstrapped because standard statistical formulas

enable one to efficiently and quickly calculate the mean and standard error (or

standard deviation) of a sample. One example where the bootstrap is effective and

useful is in the calculation of the standard error of a sample median. The boot-

strap samples and their associated bootstrap replications lend to a nonparametric

method for calculating an estimate of this statistic. The term nonparametric is

used to describe a statistical method for which knowledge about the underlying

distribution of the statistic being estimated is unknown (or simply not used). The

bootstrap as described in this section is sometimes referred to as the nonparamet-

ric bootstrap. For most statistics, the limiting value of the standard error is not

known. However, the bootstrap still provides a good estimator for the standard

error of these statistics [9].

9

2.3 Principal Components

Principal components are based on a given distribution’s covariance matrix.

If there is a random sample from a population X, consisting of random vec-

tors, a covariance matrix, C, is a matrix whose entries are given by the following

equation[11]:

Ca,b = σxaxb = E[(Xa − µa)(Xb − µb)] =
1

N

N∑
i=1

(xai − µa)(xbi − µb) (7)

where xai denotes the ath dimension in the ith sample vector, µa denotes the mean

of the sample in the ath dimension, and E[...] is the standard notation for the

expected value. The expected value presented in Equation (7), for a randomly

chosen vector X, is the difference of X in dimension a to the mean of the pop-

ulation in dimension a times the difference of X in dimension b to the mean of

the population in dimension b. In this case, there would be N sample vectors.

Each entry of the covariance matrix should be read as the covariance between the

ath and bth features (or dimensions) of the sample. In the case where a is equal

to b (i.e. for the diagonal entries in the covariance matrix), the above equation

becomes, 1
N

∑N
i=1(xai − µa)2, and each diagonal entry, as given by this equation,

would be referred to as the variance in the ath dimension.

The covariance matrix essentially provides a measure for how the different

features of a potentially multi-dimensional sample are related to each other. A

positive covariance Ca,b indicates that when xa increases, xb also increases. In

other words, they are directly related. On the other hand, a negative covariance

indicates that when xa increases, xb decreases (i.e. they are inversely related).

The variance terms Ca,a in the covariance matrix are always positive and provide

a measure of the spread of the distribution in the direction of a.

The covariance matrix is a real symmetric matrix. This means that Ca,b =

10

Cb,a (as can easily be observed based on the formula used to compute the entries

of the covariance matrix) and that the entries in the matrix are real numbers.

Real symmetric matrices have one especially nice property, namely that they are

always diagonalizable. This is given by the spectral theorem [12] as applied to

real symmetric matrices. For a real symmetric matrix C, being diagonalizable

means that there exists an orthogonal matrix U such that the following holds true:

D = UTCU , where U is a matrix which has the eigenvectors of C as its columns

and D is a diagonal matrix (i.e. all entries not along the diagonal are zero) which

has the eigenvalues of C along its diagonal. Note that UT is a matrix which has

the eigenvectors of C as its rows. One significant property of orthogonal matrices

is that their inverse is their transpose, meaning that UT = U−1. This lends to the

following property, UUT = UTU = I, where I is the identity matrix.

If one wanted to construct the matrix D such that the eigenvalues descended

down the diagonal (i.e. for an NxN matrix, the D1,1 entry had the largest eigen-

value and the DN,N entry had the smallest eigenvalue), one would have to construct

the matrix U as follows:

U =


...

... · · · ...
v1 v2 · · · vN
...

... · · · ...

 (8)

where v1 is the eigenvector associated with λ1, the largest eigenvalue, v2 is the

eigenvector associated with λ2, the second largest eigenvalue, and so on with vN

being the eigenvector associated with λN , the smallest eigenvalue. If one were

to diagonalize a covariance matrix C by using the matrix U constructed in this

fashion, one would essentially be projecting the variance of the given population

onto the eigenspace formed by the eigenvectors of the covariance matrix. Hence,

one would discover how much variance existed along the coordinates specified by

v1, v2 and so on. It should be noted that the amount of variance projected onto

11

v1 is the greatest amount of variance that can be projected by the data [13], the

amount projected onto v2 is the second greatest amount of variance that can be

projected by the data and is in a direction orthogonal to v1 and so on. v1 is called

the first principal component, v2 is called the second principal component and so

on.

One can rotate a sample into the coordinate system specified by the principal

components by multiplying the sample data X on the left by UT (i.e. the matrix

which has the eigenvectors of C as rows). In the case that one were to multiply

all sample data by the matrix UT , the covariance matrix would also be rotated

according to the matrix UT . Let us examine what this rotation would cause to

occur to the covariance matrix.

The covariance equation can also be defined by the following equation: Cx =

E[(X − E(X))(X − E(X))T], where X is a vector of random variables. The

expected value presented here, for a randomly chosen vector X, is the difference

of X from the mean of the population (i.e. E(X) is estimated by the mean of the

population) times the transpose of the same. Let us examine what happens to the

covariance matrix C when the data is multiplied by an arbitrary matrix. We will

use the following two equations while examining the transformation process:

(AB)T = BTAT (9)

E(AX) = AE(X) (10)

where A, B, and C are matrices and X is a vector of random variables. Letting

y = Ax, where A is a matrix of constants, we have the following:

Cy = CAx

= E[(AX − E(AX))(AX − E(AX))T]

12

= E[(AX − AE(X))(AX − AE(X))T], using (10)

= E[(A(X − E(X)))(A(X − E(X)))T]

= AE[(X − E(X))(X − E(X))TAT], using (10) and (9)

= AE[(X − E(X))(X − E(X))T]AT , using (10)

= ACxA
T

Note that the above equation works in the case where A is any matrix of

constants. Now, let A be given by UT , then the last equation lends to Cy = CUT x =

UTCxU since the transpose of a transpose of a matrix will give you back the original

matrix. Now, UTCxU is the exact equation to diagonalize the covariance matrix,

since UT is the matrix which has the eigenvectors of C as its rows. Hence, when

the data is rotated into the coordinates specified by the principal components,

the covariance matrix of the rotated data is diagonalized. Hence, the covariance

between any two coordinates in the sample is zero, the correlation between any two

coordinates is zero, and, if the sample is assumed to be drawn from a multivariate

normal distribution where the variables are jointly normally distributed, then each

coordinate is independent of the other coordinates [14, 15].

Principal components are a powerful tool in that they can allow one to express

collected data using a set of uncorrelated coordinates. They also allow one to

express data in such a way that the direction along which the greatest amount

of variance occurs in the sample is given by the first coordinate, the direction

along which the second greatest amount of variance (which is orthogonal to the

variance provided by the first coordinate) is given by the second coordinate, and

so on. In other words, it does a least squares linear curve fit of the data to find

the first principal component (or first coordinate), then, excluding that coordinate,

does a least squares linear curve fit for the remaining data, and so on. Principal

component analysis (PCA) can also be used to reduce dimensionality in a way

13

which least impacts the data (for data compression) or to extract noise from a

signal by excluding those eigenvectors associated with the smallest eigenvalues

from the matrix U (i.e. by making U an NxM matrix which has the eigenvectors

associated with the M largest eigenvalues in descending order for its columns - so

M ≤ N , the number of dimensions in the original matrix) [16].

14

CHAPTER 3

A Conventional SOM Reliability Measure

3.1 Basis of existing criteria

SOM reliability criteria, as proposed by Cottrell, are based on measures per-

formed on the map itself, evaluating where pairs of training data fall on the map

with relation to each other [8]. The act of performing measurements on the map

itself in order to measure the stability or convergence of a map is a common prac-

tice [6, 7, 8]. Cottrell et al provided an elegant set of statistical tools to assess

the reliability and organization of SOMs. These tools are based on the stability

of neighborhood relations and the reliability of the quadratic quantization error

of a SOM [8]. The method works by creating many maps which are trained us-

ing bootstrap samples of training data and analyzing the quantization error and

neighborhood relationships in the resulting maps.

3.2 SOM Reliability Measures
3.2.1 Quantization Error

The quantization error of a given training vector may be defined for an ar-

bitrary metric as follows [2]: d(x,mc) = mini {d(x,mj)} , where x is a training

vector, mj is a neuron in the SOM, and c is the best matching neuron in the SOM.

Typically the Euclidean distance is used to compute the quantization error. The

Euclidean distance is defined as follows:
√∑N

i=1 (xi − yi)2 where the subscript i

indicates the ith coordinates in each of the vectors x and y. The quadratic quan-

tization error of a training vector is described as the squared Euclidean distance

from the training vector to its best matching neuron in the SOM (i.e. simply re-

move the square root in the Euclidean distance formula) [8]. If one were to sum

the quadratic quantization error over all training data, one would calculate the

15

intra-class sum of squares [8].

3.2.2 Neighborhood Stability

A stability criterion proposed by Cottrell et al introduces the idea of measur-

ing the significance of neighborhood stabilities in order to analyze whether or not

inputs close in the sample space remain close when projected on the SOM. In addi-

tion, checks are performed in order to determine whether or not the neighborhood

relationships are preserved from map to map [i.e. if many SOMs are created using

bootstrap samples of the training data, and the training data is projected onto

each of the SOMs, do the training vectors appear to be randomly mapped within

a defined neighborhood or is their neighborhood relation significant][8]. In order

to fully understand neighborhood stability, one needs to understand the NEIGH

function, the random map, and the STAB function, which are discussed in the

following sections.

The NEIGH Function

The neighborhood function is defined as follows [8]

NEIGHb
i,j(r) =


1 if xi and xj are neighbors within radius r

0 otherwise

(11)

This means that if training vectors xi and xj exist in bootstrap sample b, and,

for the map trained using bootstrap sample b, their best matching neurons on the

map are within radius r from each other, then they are neighbors. Within radius r

means that the neurons under consideration are within r from each other in each

dimension of the SOM. Typically, SOMs are two-dimensional, hence if there is a

given neuron, its neighbors would be defined by a square with sides of length 2r+1

which had the given neuron at its center. Consider the following example from

16

Cottrell et al [8].

Figure 2: Projections onto a 4 x 5 SOM

Following are some of the values of the NEIGH function as measured on

the example above: NEIGH1,2(0) = 1, NEIGH1,4(1) = 0, NEIGH3,4(1) =

1, NEIGH1,3(1) = 0, and NEIGH1,3(2) = 1.

The Random Map

The random map may be defined as a map onto which training data is mapped

in an entirely random way (i.e. the best matches appear to be completely random).

The probability of two training vectors being mapped as neighbors would, in most

cases, be given by p = τ
A

, where τ is the number of neurons in the neighborhood

anchored at one of the two training vectors and A is the number of neurons in the

SOM. This probability represents the odds of one training vector being randomly

mapped onto a neuron which lies in the neighborhood of the other. For a two

dimensional SOM, and a neighborhood radius r, p would be given by (2r+1)2

A
.

The probability p is actually a little more complicated than the simple formula

provided above due to edge effects. Neurons near the edge of a map may not have a

full neighborhood of size r. Consider the case where r = 2. A neuron in the middle

of the upper edge of a given SOM will not have any neighbors above it, hence the

r = 2 neighborhood for this neuron will extend two neurons down and two neurons

left and right (if possible). In other words, its r = 2 neighborhood, assuming that

the SOM had two neurons left, right, and down, would consist of (2∗2+1)(2∗2−1)

17

neurons (i.e. 15 neurons as opposed to the 25 neurons which would be implied by

the simple formula). In the following figure of a 7 by 9 SOM, those neurons which

share the same sized neighborhood where r = 2 are highlighted using the same

color. The grey neurons use the simple formula for τ (the numerator of p), namely

(2r + 1)2 = (2 · 2 + 1)2 = 25 and these neurons account for 15 out of the 63 total

neurons in the map. The other neurons have to take edge effects into account.

Figure 3: 7 x 9 SOM where the neurons which have the same sized r = 2 neighborhood

are highlighted with the same color

One can create a general probability p for a neighborhood of size r by taking

a weighted average of the percentage of neurons within radius r from a neuron

over the whole map. For instance, the weighted average for the above figure would

start out as follows: pmap = 15
63
∗ 25

63
+ 16

63
∗ 20

63
+ · · · . One could interpret this as 15

out of 63 neurons (they grey neurons) have a p value of 25
63

, 16 out of 63 neurons

(the light yellow neurons) have a p value of 20
63

, and so on. Notice that in pmap each

item in the sum will have the map size in the denominator twice. A formula to

generically compute pmap is as follows:

pmap = Center + Sides+Diagonal, such that

Center = (2r+1)2(x−2r)(y−2r)
A2

Sides = 2(x−2r)+2(y−2r)
A2

∑r
i=1(2r + 1)(2r + 1− i)

Diagonal = 4
A2{

∑r
i=1(2r + 1− i)2 +

∑r−1
i=1 (2r − i)

∑2r
j=2r−i+1 2j}

where x is the number of columns, y is the number of rows, and A is the number

of neurons in the SOM (i.e. A = xy). Note that each of the summations in

the above formulas will only make a contribution to pmap in the case where the

18

upper bound of the summation is greater than or equal to the lower bound of the

summation. In the case where the upper bound of the summation is less than the

lower bound of the summation, the summation will be excluded in the calculation

of pmap since the summation will not be valid in this case. The Center contribution

to pmap in the example provided above would come from the grey neurons. The

Sides contribution would come from the yellow and light green neurons. The

Diagonal contribution would come from the remaining neurons with the red and

blue neurons accounted for by the first summation of the Diagonal formula and

the magenta neurons accounted for by the second summation (which includes an

additional summation in its formula). For large SOMs, the edge effects become

less significant. In these cases, the simple formula p = (2r+1)2

A2 , serves an adequate

approximation for pmap and is easier to compute. It is important to note that pmap

represents the probability of two training vectors being randomly mapped onto

neurons which lie within radius r of each other (i.e. the probability that they are

mapped in the same r neighborhood in a completely unorganized or random map).

The STAB Function

The stability function is defined as follows [8, 17]

STABi,j(r) =

∑B
b=1NEIGH

b
i,j(r)

B
(12)

Recall that NEIGHb
i,j(r) means that if training vectors xi and xj exist in bootstrap

sample b, and, for the map trained using bootstrap sample b, their best matching

neurons on the map are within radius r from each other, then they are neighbors.

For each pair of training vectors, STABi,j(r) is computed over the B bootstrap

samples which include both xi and xj. Thus, B could be different for different pairs

of training vectors. STABi,j(r) essentially captures the fraction, or proportion, of

the number of times that xi and xj were neighbors in the bootstrapped maps.

19

Measuring Non-randomness of Neighborhood Relations of SOMs

When analyzing the neighborhood relationships of the SOM, one must ask

whether or not the relationships are significant. We know that for the random map,

the probability of two training vectors being randomly mapped as neighbors is pmap.

We can create a binomial random variable Y which has pmap as its probability

of success [8]. For each pair of training vectors xi and xj, we can treat the B

bootstrap samples that xi and xj appear in as the number of trials or samples

from the binomial distribution. If we hypothesize that xi and xj are only ever

randomly mapped as neighbors, then we would expect STABi,j(r) to fall into the

following interval (as given by the estimate of proportions [14]):

θ̂ − zα
2
·

√
θ̂(1− θ̂)

B
< θ < θ̂ + zα

2
·

√
θ̂(1− θ̂)

B
(13)

where θ̂, is given by pmap, the probability of a pair of training data randomly

being neighbors, and B is the number of bootstrap samples. Note that θ̂ is the

estimator of θ, the proportion of times xi and xj are randomly neighbors. The

95% confidence interval would be given by:

θ̂ − 1.96 ·

√
θ̂(1− θ̂)

B
< θ < θ̂ + 1.96 ·

√
θ̂(1− θ̂)

B
(14)

The confidence intervals above use the normal approximation for the bino-

mial distribution and are only valid when B is large enough. Miller provides the

following conditions as rules of thumb in order to determine when the normal

approximation to the binomial distribution may be used [14]

Bθ > 5 (15)

B(1− θ) > 5 (16)

20

Cottrell et al provide a different rule of thumb, which consists of simply using 10

instead of 5 on the right hand side of each of the inequalities given by (15) and

(16) [8]. The 95% confidence interval above is a 95% confidence interval for the

proportion of times that xi and xj would be mapped as neighbors in the random

case. Thus, we can conclude with a test level of 5%, that if STABi,j(r) lies outside

of the 95% confidence interval, then the neighbor relationship between xi and xj

is meaningful, or non-random.

21

CHAPTER 4

A New Approach to SOM Convergence

4.1 Overview

SOM convergence measures are usually based upon one of several common

methods. On method is measuring neighborhood relationships on the SOM, or a

family of SOMs created from the same training data. Another method is based on

imposing energy functions on the neurons of the SOM and minimizing these energy

functions. Still other methods are based on modifying the SOM algorithm itself

so that statistical measures or other objective analysis techniques can be imposed.

These methods tend to be more complicated than the SOM algorithm itself and/or

are time intensive and computationally unwieldy.

One interesting observation is that these convergence criteria do not impose

statistical tests to compare the training data to the neurons of the map which

are meant to model the probability density of the training data. In this chapter,

we propose a convergence measure which is based on such a comparison. The

convergence measure proposed is fast and provides an indicator of how well the

neurons in the SOM model the probability space spanned by the training data.

4.2 Normalizing and Rotating Along the Principal Components

In order to model the input data, we first remove any features which are

constant throughout the entire training data set as these features provide no clas-

sification power. Then, we normalize the input data in a standard fashion over each

dimension, or feature. Standard normalization essentially consists of subtracting

out the mean and dividing by the standard deviation. Hence, the mean along each

of the normalized dimensions is zero and both the standard deviation and variance

are one (note that the variance is simply the standard deviation squared). Nor-

22

malizing in this fashion enables us to create a SOM using dimensionless features

which are scaled similarly. In other words, we do not have to worry about the

scaling of each of the features. The SOM algorithm is sensitive to the scaling of

the training data.

Making the data in each feature standard normal allows each feature to be

treated equally during the SOM training. If feature i is measured in thousands of

inches with a standard deviations in the 10s of inches and feature j is measured

in tens of inches with a standard deviation in inches, then the SOM will model

feature i better than j. This makes sense since the SOM is trying to recreate the

probability density of the training data used to create it. Since, in this case, there

is a greater variance in dimension i, the updates performed by the SOM algorithm

will have more impact on dimension i than dimension j. If features i and j are

normalized, then the SOM will provide dimension i and j equal attention since

their variances are equal. Subtracting out the mean is common when performing

statistical analyses. Note that the impact of dividing by the standard deviation is

that the covariance matrix of the new data will be equal to the correlation matrix

of the original data (and the new data). Hence, correlation is preserved using this

type of normalization scheme.

Suppose we call the new training data, which has been normalized in each

dimension, Y . We now want to rotate this data into the dimensions specified by

the principal components in accordance with the procedure in section 2.3. Call the

transformed data, the training data which has been rotated into the dimensions

specified by the principal components, X. By definition, the covariance matrix of

the data set X will now be diagonalized, with the eigenvalues of the covariance

matrix of data set Y along the diagonal in descending order. In addition, the sum

of the diagonal entries (i.e. the trace of the matrix) will be equal to the number

23

of coordinates in the training data. This occurs because each of the diagonal

elements in the covariance matrix of the data set prior to rotation (i.e. of data set

Y) would be one. Hence, the trace of the covariance matrix of data set Y is equal

to the number of coordinates in the training data. Note that the trace of a matrix

is invariant under an orthogonal transformation [18]. Rotations are orthogonal

transformations.

Let the covariance of the data set X be given by C. C has zeros everywhere

except for the diagonal. Hence, the variables of X are uncorrelated. If we assume

that the random variables in X are jointly normally distributed, then we also have

that the variables in X are independent [14, 15]. In the case where the random

variables in X are not jointly normally distributed, we still have that each of these

variables are not correlated. In the case where the variables are jointly normally

distributed, we can justifiably treat each of the variables independently. In the

case where they are not, the fact that they are uncorrelated (i.e. that they do not

have a linear relationship), allows us to focus our analysis on the diagonal terms of

the covariance with the greatest attention, ignoring the off diagonal terms (since

they are all zero). Also, because Yin and Allison proved that, in a fairly general

setting, the SOM will converge on the probability density of the training data in

the limit, a converged SOM will have a covariance matrix which is very similar

to that of the training data[10]. Hence, the covariance matrix of the neurons of a

converged SOM should have zeros for the off diagonal terms, supporting our focus

on the diagonal terms. The features in X may be thought of as “PCA” features

which are linear combinations of the original features (normalized features).

4.3 A Measure for SOM Convergence

The SOM convergence measure proposed here uses the data X as given in the

previous section to train the SOM. In other words, we train the SOM using data

24

which has been normalized along each feature (i.e. dimension or coordinate) and

then rotated into the directions given by the principal components. Once the SOM

has been trained, we compare the training data to the SOM along each dimension

(or feature). If a SOM has adequately modeled both the mean and the variance

of the given feature, we will say that the SOM has converged on the feature. The

proportion of the total variance included in that feature will then be added to the

convergence measure. In order to better understand these concepts, we will clearly

define the mean convergence of a feature, the variance convergence of a feature,

and the population based convergence measure.

4.3.1 Mean Convergence

In the case where x̄1 and x̄2 are the values of the means from two random

samples of size n1 and n2, and the known variances of these samples are σ2
1 and σ2

2

respectively, the following formula provides (1− α) ∗ 100% confidence interval for

the difference between the means [14]:

(x̄1 − x̄2)− zα
2
·

√
σ2
1

n1

+
σ2
2

n2

< µ1 − µ2 < (x̄1 − x̄2) + zα
2
·

√
σ2
1

n1

+
σ2
2

n2

(17)

To test for SOM convergence, x̄1 is the sample mean of given feature in the training

data, x̄2 is the sample mean of the given feature in the neurons of the map, σ2
1 is

the sample variance of the feature in the training data, sample σ2
2 is the variance of

the feature in the map, n1 is the cardinality of the training data set, and n2 is the

number of neurons in the map. Note that x̄1−x̄2 is an estimator for µ1−µ2, the true

difference between the means of the two populations. We will say that the mean of

a particular feature has converged if zero lies in the confidence interval denoted by

equation (17). In other words, the confidence interval affords the possibility that

the means are equal.

25

4.3.2 Variance Convergence

The following is the formula for the (1−α) ∗ 100% confidence interval for the

ratio of the variances from two random samples [14]:

s21
s22
· 1

fα
2
,n1−1,n2−1

<
σ2
1

σ2
2

<
s21
s22
· fα

2
,n1−1,n2−1 (18)

where s21 and s22 are the values of the sample variances from two random samples of

sizes n1 and n2 respectively, and where fα
2
,n1−1,n2−1 is an F distribution with n1−1

and n2−1 degrees of freedom. To test for SOM convergence, s21 will be the sample

variance of the feature in the training data, s22 will be the sample variance of the

feature in the neurons of the map, n1 will be the number of training samples (i.e.

the cardinality of the training data set) and n2 will be the number of neurons in

the SOM. Note that
s21
s22

is an estimator for
σ2
1

σ2
2
, the ratio of the variances of the two

populations. We will say that the variance of a particular feature has converged (or

appears to be drawn from the same probability space) if one lies in the confidence

interval denoted by equation (18). In other words, the confidence interval affords

the possibility that the variances are equal.

4.3.3 The Population Based Convergence Measure

We will say that a SOM has converged on a feature, or that a feature has

converged, if both the mean and variance converged for that feature in accordance

with the above criterion. We can then form a measure for SOM convergence as

follows:

convergence =

∑N
i=1 ρi
N

, where ρi =


λi if feature i has converged

0 otherwise

(19)

where λi is the variance of the data in dimension i and N is the number of dimen-

sions in the training data (which is also the total amount of variance contained in

26

the training data). Hence, the convergence measure proposed here is essentially

the proportion of the total variance contained by those features which converged

(i.e. those “PCA” features whose mean and variance were adequately modeled by

the neurons in the SOM). Recall that λi will be the ith largest eigenvalue of the

normalized training data’s covariance matrix (since the data was normalized and

then rotated into the directions given by the principal components). This approach

views the SOM as a sample builder. This convergence measure provides an idea

of how well the SOM has replicated the structure of the probability density of the

training data.

27

CHAPTER 5

Results

5.1 Experiment Design

For the experimentation performed in support of this thesis, the proposed

convergence measure was compared to the neighborhood stability measure given

by Cottrell et al at different levels of training (i.e. for maps trained for different

numbers of iterations) [8]. For each data set analyzed and for each number of

training iterations considered, 200 bootstrap samples were created from the data

set being analyzed. These 200 samples were used to train 200 randomly initialized

SOMs for the given number of iterations. The 200 randomly initialized maps then

had the neighborhood relationships proposed by Cottrell calculated for them and

the average population based convergence measure calculated for them. The 200

maps were created primarily to support Cottrell’s neighborhood stability criterion.

Since the average population based convergence measure was calculated from the

200 maps created using 200 different bootstrap samples, the plots of the popula-

tion based convergence measure, called fConv in the plots, will indicate “boot =

TRUE” signifying that the values used to create the plots were averages over the

bootstrapped maps. The population based convergence measure does not rely on

the creation of a bootstrap sample of maps. The population based convergence

can be imposed upon a single map in order to see how accurately it reflects the

probability density of the training data used to create it. 95% confidence intervals

were used for all statistical tests.

Cottrell’s STAB indicator was calculated for each pair of training data vectors.

If the value of STAB indicated that the neighborhood relationship between the

pair was non-random in accordance with equation (13) [i.e. the value of STAB

was outside the 95% confidence interval given by the random neighborhood (the

28

confidence interval given by equation (14))], then the pair was counted as a non-

random pair. Each pair was checked in order to see whether or not the pair was

non-random. Then the proportion of non-random pairs was calculated (simply

the total number of non-random pairs divided by the total number of pairs). Only

pairs which were included in at least 50 of the 200 bootstrap samples were analyzed

(this included nearly all of the pairs) in order to ensure that the randomness

measurements were statistically significant. When the proportion of non-random

neighbors stabilizes, the indication is that the SOM is organized and is non-random.

Note that the proportion of non-random neighbors will rarely, if ever, be one (i.e.

100% of the pairs of training data have non-random neighborhood relationships)

because some pairs of training data will always be “border-lined”, meaning that

they may or may not be neighbors in a seemingly random fashion. For example,

consider data from different clusters. Depending on how the clusters are oriented

and where they are located on the map, the pairs of training data such that each

member of the pair maps onto a different cluster in the SOM may or may not be

neighbors in a seemingly random fashion, especially in the case where the SOM is

randomly initialized before training.

For the experimentation, 2-dimensional rectangular SOMs were created with

lengths chosen subject to the following constraints:

xy ≥M (20)

x

y
=

√
σ2
1

σ2
2

(21)

where x is the length of the SOM, y is the height of the SOM, M is the target

number of neurons, σ2
1 is the variance along the first principal component, and σ2

2

is the variance along the second principal component. Using these constraints, we

can compute the sizes of x and y as follows:

29

y =


√√√√ M√

σ2
1

σ2
2

 (22)

x =

⌈
y

√
σ2
1

σ2
2

⌉
(23)

Scaling the dimensions of the SOM in this way allows us to create a SOM with at

least M neurons which is scaled to optimally capture the variance in those dimen-

sions with the greatest variance (i.e. the first and second principal components).

Experimentation has shown M = 2N , where N is the cardinality of the training

data set, to be a good starting point, especially for smaller data sets. For larger

data sets, smaller maps are acceptable. We will refer to the usage of M = 2N

in the equations (22) and (23) as the M = 2N sizing method. Creating a SOM

using the M = 2N sizing method allows us to build a sample larger than the one

represented by the initial training data. A size of 2N will also result in a larger

SOM which is more capable of modeling the variance of the training data, which

is key to modeling a given probability distribution.

It should be noted the Cottrell et al proposed a measure for choosing the size

of (or the number of neurons in) a SOM. This method was used in conjunction

with equations (22) and (23) in order to ensure consistency with Cottrell’s stability

criterion. Cottrell’s method was based on calculating the intra class sum of squares,

SSIntra, for each of the bootstrapped maps created (200 in this case)[8]. Then, the

coefficient of variation would be calculated for these 200 values. The coefficient of

variation is computed as:

CV (SSIntra) = 100
σSSIntra
µSSIntra

(24)

where σSSIntra is the standard deviation of SSIntra over the 200 bootstrapped maps

and µSSIntra is the mean of SSIntra over the 200 bootstrapped maps. Recall that

30

SSIntra is the sum of the quadratic quantization error over all training data (see

Section 3.2.1). The value of CV(SSIntra) would be calculated for 200 maps of

different sizes (note that 200 maps would be created for each size under considera-

tion). Then, CV(SSIntra) would be plotted. The last size given before the largest

increase in CV(SSIntra) would be used as the appropriate size of the map. The

claim was that low values of CV(SSIntra) lead to values of SSIntra which were

close among the 200 maps, hence, there appeared to be stability in the quantiza-

tion error at this size and perhaps, at the next size up, centroids were switching

from one cluster to another in the input sample space potentially indicating some

sort of instability in the placement of the neurons of the SOM [8]. This appears

to be speculation without much proof. Cottrell et al admitted that this method

was very empirical in nature but argued that other empirical measures exist in the

realm of statistics, such as choosing the number of principal components to keep

when performing a principal component analysis. It should be noted that the co-

efficient of variation only provides a reasonable measure when all measurements of

a sample are positive and is intended to be a percentage of the standard deviation

with respect to the mean. However, since the intra class sum of squares is always

positive, we are guaranteed to only be dealing with positive measurements.

During the experimentation, maps were created using both Cottrell’s method

and using the M = 2N method described above. In all cases, the results were

similar. However, the M = 2N maps tended to have a higher population based

convergence measure as the additional neurons allowed the SOM more freedom to

model the variance of the training data sample.

CV(SSIntra) was analyzed for SOMs with different numbers of neurons but

which were scaled according to equations (22) and (23) with different values substi-

tuted for M (recall that M represents the number of neurons desired in the map).

31

Each map was trained for the same number of iterations. Hence, not surprisingly,

CV(SSIntra) sometimes trends upwards over time (especially in the case where

the training data is drawn from a more complicated probability space). This is

not unexpected. Larger maps need to be trained longer simply because they have

more neurons to train (think of teaching one student as opposed to 200 students,

clearly teaching 200 students will require more time). The larger maps, if trained

longer, would actually have consistently lower quantization errors as they have

more freedom to capture the variance inherent to the training data. Hence, the

upwards trend may be somewhat misleading and arbitrary. However, in order to

stay consistent with the method proposed by Cottrell et al, this method is used

regardless.

Note that in the following sections, each plot of the population based conver-

gence measure against the number of iterations also contains additional horizontal

lines. These lines represent the variance contained in the first several principal

components. The lowest of these lines represents the variance contained in the

first principal component, the second lowest line represents the amount of variance

contained in the first two components, and so on. “neighRad” appears in some

plots in the following sections and different values for neighRad can be observed

depending on the data set under analysis. neighRad represents the neighborhood

radius size used in the calculation of cottNeigh, the proportion of all neighbors

which have a non-random neighbor relationship. It should be noted that during

the experimentation for each data set, all neighborhood radii from zero up through

the numbers observed in the following plots were analyzed. The neighborhood radii

in the plots appearing in the following sections were chosen because they most re-

flect the underlying clustering of the SOM (given the SOM size used and the a

priori knowledge of the number of clusters which are in the data). They were also

32

chosen in order to ensure that Cottrell’s versions of the rules of thumb in Equa-

tions (15) and (16) were followed. Also, all results were qualitatively similar in

that cottNeigh leveled out after the same, relatively small numbers of iterations.

Hence, the additional results were excluded.

Three data sets were analyzed for the experimentation supporting this thesis.

The results of the analyses are reported in order of the complexity of the data used.

The iris data set is the least complicated data set, consisting of four dimensional

data with low variance. The wine data is the second most complicated data set,

consisting of thirteen dimensional data with differing variances. The ionosphere

data is the most complicated data set, consisting of thirty-three non-constant di-

mensions with differing variances. Each data set will be described in more detail

in the section containing its results.

5.2 Iris Experiment Results

For the following results, the Fisher/Anderson iris data set [19] was used. This

data set consists of four dimensional measurements which have a small variance.

The measurements are for the sepal length, the sepal width, the petal length, and

the petal width of three classes of irises. There are 150 training instances in this

data set. This data set is very easy to model due to its low dimensionality and its

small variance. The plot of CV(SSIntra) in this section will show how CV(SSIntra)

increases with the number of neurons in the SOM. However, this may be misleading

since the larger maps require more training in order to converge on a good solution.

5.2.1 CV(SSIntra)

For the iris data set, CV(SSIntra) was calculated for maps of increasing size

which were trained for 5,000 iterations. The results are as follows:

33

Figure 4: CV(SSIntra) plotted as a function of map size

The last major increase (and possibly the only major increase) appearing here

occurs in the jump from the 15 × 8 map to the 16 × 9 map. Hence, Cottrell’s

method for choosing the size of the SOM would lead one to choose the 15 × 8

SOM.

5.2.2 Results Using 15× 8 SOMs

Using 15×8 SOMs, both the population based converge measure and propor-

tion of non-random neighbors as given by Cottrell’s neighborhood stability method

were calculated. They were calculated for maps trained using different numbers of

iterations. For each number of iterations included in the following maps, 200 maps

were created so that these statistics could be performed. In the following plots,

fConv represents the population based convergence measure, cottNeigh represents

the proportion of all neighbors which have a non-random neighbor relationship,

and SSMean represents the average quadratic quantization error.

34

Figure 5: Population Based Convergence Measure Plotted Against Iterations - Data

averaged over the 200 bootstrapped maps (that is the meaning of boot = TRUE)

It should be observed that fConv levels out after around 10,000 iterations. In

addition, the variance in the first two principal components is captured at 10,000

iterations (i.e. this is where the black line crosses the green line).

35

Figure 6: Proportion of Non-Random Neighbors Plotted Against Iterations. A neigh-

borhood radius of three is used. The red line does not take edge effects into account

while the blue line does.

It should be observed that cottNeigh also levels out after around 10,000 iterations.

Recall that the variance in the first two principal components is captured at 10,000

iterations (as indicated in the plot of the population based convergence measure).

Here, cottNeigh and fConv do not appear to be very different.

Figure 7: SSMean Plotted Against fConv, the Population Based Convergence Measure.

On the left, ssMean is plotted as a linear function of fConv while on the right, ssMean

is plotted as an exponential decay function of fConv.

Figure 8: SSMean Plotted Against the proportion of non-random neighbors, cottNeigh.

On the left, ssMean is plotted as a linear function of cottNeigh while on the right, ssMean

is plotted as an exponential decay function of cottNeigh.

From Figures 7 and 8, it is clear that fConv tracks the SSMean better than

cottNeigh regardless of whether or not a linear or exponential decay fit is used.

36

Note that the closer the R-squared value is to one, the better the model. One

interesting observation is that in Figure 8, we see that when cottNeigh indicates

stability, the SSMean is not settled at all and takes on a wide range of values. How-

ever, when fConv indicates high levels of convergence (see Figure 7), the SSMean

is stable and takes on a more compact range of values. Also, as fConv increases,

SSMean decreases. With cottNeigh, there is no real correlation in the limiting

case.

A second round of experimentation was performed on the iris data set using

24 × 13 SOMs. This dimensionality is given by the M = 2N method proposed

earlier. However, the results were not qualitatively different from those reported

using the 15× 8 SOMs and hence were excluded.

5.3 Wine Experiment Results

For the following results, the wine data set from the UCI machine learning

repository [20] was used. This data set consists of thirteen dimensional measure-

ments which have differing and unique variances. The measurements consist of dif-

ferent chemical properties of three different wines. There are 178 training instances

in this data set. This data set is moderately difficult to model because it contains

thirteen dimensions with differing variances. Hence, the plot of CV(SSIntra) in

this section will have an increase with the number of neurons in the SOM. This

will occur for this data set primarily because the data set is moderately difficult to

model. Hence, the larger maps need more training iterations in order to converge

on a good solution.

5.3.1 CV(SSIntra)

For the wine data set, CV(SSIntra) was calculated for maps of increasing size

which were trained for 5,000 iterations. The results are as follows:

37

Figure 9: CV(SSIntra) plotted as a function of map size

The last major increase appearing here occurs in the jump from the 14×10 map to

the 16×11 map. Hence, Cottrell’s method for choosing the size of the SOM would

lead one to choose the 14 × 10 SOM. Note that this method is quite subjective.

While this was the author’s interpretation of the CV(SSIntra), another individual

may disagree.

5.3.2 Results Using 14× 10 SOMs

Using 14×10 SOMs, both the population based converge measure and propor-

tion of non-random neighbors as given by Cottrell’s neighborhood stability method

were calculated. They were calculated for maps trained using different numbers of

iterations. For each number of iterations included in the following maps, 200 maps

were created so that these statistics could be performed. In the following plots,

fConv represents the population based convergence measure, cottNeigh represents

the proportion of all neighbors which have a non-random neighbor relationship,

and SSMean represents the average quadratic quantization error.

38

Figure 10: Population Based Convergence Measure Plotted Against Iterations - Data

averaged over the 200 bootstrapped maps (that is the meaning of boot = TRUE)

It should be observed that fConv levels out after around 75,000 iterations. In

addition, the variance in the first two principal components is captured at 10,000

iterations.

39

Figure 11: Proportion of Non-Random Neighbors Plotted Against Iterations. A neigh-

borhood radius of four is used. The red line does not take edge effects into account while

the blue line does.

It should be observed that cottNeigh levels out after only 5,000-10,000 iterations.

Here, cottNeigh and fConv do appear to be different.

Figure 12: SSMean Plotted Against fConv, the Population Based Convergence Mea-

sure. On the left, ssMean is plotted as a linear function of fConv while on the right,

ssMean is plotted as an exponential decay function of fConv.

Figure 13: SSMean Plotted Against the proportion of non-random neighbors, cot-

tNeigh. On the left, ssMean is plotted as a linear function of cottNeigh while on the

right, ssMean is plotted as an exponential decay function of cottNeigh.

From these plots it is clear that in the limiting case (i.e. when the measures

fConv and cottNeigh indicate that the map is converged), fConv tracks the SSMean

better than cottNeigh regardless of whether or not a linear or exponential decay

40

fit is used. The R-squared value in the above plots is misleading because there

is one major outlier in all plots. This outlier is from the first data point which

represents a completely random SOM (i.e. a randomly initialized SOM trained

for zero iterations). If this outlier is removed, the updated plots would more fully

show how well fConv tracks the SSMean and how poorly cottNeigh does the same.

The plots with the outlier removed are shown.

Figure 14: SSMean Plotted Against fConv, the Population Based Convergence Measure

with the one outlying point removed. On the left, ssMean is plotted as a linear function

of fConv while on the right, ssMean is plotted as an exponential decay function of fConv.

Figure 15: SSMean Plotted Against the proportion of non-random neighbors, cottNeigh

with the one outlier removed. On the left, ssMean is plotted as a linear function of

cottNeigh while on the right, ssMean is plotted as an exponential decay function of

cottNeigh.

From Figures 14 and 15 it is clear that fConv tracks the SSMean better than

cottNeigh. Again in Figure 15, we see that when cottNeigh indicates stability,

41

the SSMean is not settled at all and takes on a wide range of values. However,

when fConv indicates high levels of convergence (see Figure 7), the SSMean is

stable and takes on a more compact range of values. Also, as fConv increases,

SSMean decreases. With cottNeigh, there is no real correlation in the limiting case.

It should also be noted that fConv is a more conservative convergence measure,

only indicating convergence after cottNeigh has indicated stability in the map (i.e.

fConv implies cottNeigh but the converse is not true). Consider the following plot

of both fConv and cottNeigh plotted as a function of iterations.

Figure 16: cottNeigh (green) and fConv (red) plotted as functions of iterations. It

is clear that fConv levels out after cottNeigh and hence provides a more conservative

measure of convergence.

A second round of experimentation was performed on the wine data set using

24 × 17 SOMs. This dimensionality is given by the M = 2N method proposed

earlier. However, the results were not qualitatively different from those reported

using the 14 × 10 maps and hence were excluded. The main difference was that

fConv achieved a higher level of convergence in the limiting case (i.e. it reached

over 85% convergence after 200, 000 iterations when the 24 × 17 maps were used

42

as opposed to the 70% convergence obtained via the usage of the 14× 10 SOMs).

This makes sense since larger maps give the model more freedom to capture the

variance contained in the training data.

5.4 Ionosphere Experiment Results

For the following results, the ionosphere data set from the UCI machine learn-

ing repository [21] was used. This data set consists of thirty-three non-constant

measurements which have differing variances (there are actually 34 dimensions but

one of them is constant and hence was excluded in the experimentation). The mea-

surements are constructed from radar returns from the ionosphere. The returns

are classified in a binary fashion based on whether or not the returns indicated

that there was some structure in the ionosphere. There are 351 training instances

in this data set. This data set is very difficult to model because of its high dimen-

sionality and the noise in the measurements. Hence, the plot of CV(SSIntra) in

this section will have an increase with the number of neurons in the SOM. This

will occur for this data set primarily because the data set is difficult to model.

Hence, the larger maps need more training iterations in order to converge on a

good solution.

5.4.1 CV(SSIntra)

For the ionosphere data set, CV(SSIntra) was calculated for maps of increasing

size which were trained for 10,000 iterations. The results are as follows:

43

Figure 17: CV(SSIntra) plotted as a function of map size

The last major increase appearing here occurs in the jump from the 26× 18 map

to the 28 × 19 map. Hence, Cottrell’s method for choosing the size of the SOM

would lead one to choose the 26× 18 SOM. One could argue that there is another

reasonably major increase between the 28 × 19 map and the 29 × 20 map; how-

ever, since the choice of map size is empirical, and somewhat arbitrary using the

CV(SSIntra) method, the 26× 18 map is chosen by the author in this case.

5.4.2 Results Using 26× 18 SOMs

Using 26×18 SOMs, both the population based convergence measure and the

proportion of non-random neighbors as given by Cottrell’s neighborhood stability

method were calculated. They were calculated for maps trained using different

numbers of iterations. For each number of iterations included in the following

maps, 200 maps were created so that these statistics could be performed. In the

following plots (and as in the previous sections), fConv represents the population

based convergence measure, cottNeigh represents the proportion of all neighbors

which have a non-random neighbor relationship, and SSMean represents the aver-

44

age quadratic quantization error.

Figure 18: Population Based Convergence Measure Plotted Against Iterations - Data

averaged over the 200 bootstrapped maps (that is the meaning of boot = TRUE)

It should be observed that fConv levels out after around 75,000 iterations (it con-

tinues upwards but the derivative decreases to a small value around this point).

The variance in the first two principal components is captured at 50,000 iterations.

45

Figure 19: Proportion of Non-Random Neighbors Plotted Against Iterations. A neigh-

borhood radius of seven is used. The red line does not take edge effects into account

while the blue line does.

It should be observed that cottNeigh levels out after only 5,000-10,000 iterations.

Here, cottNeigh and fConv appear to be very different. cottNeigh indicates stabil-

ity after only 5,000-10,000 iterations while the variance along the first two principal

components has not even been captured until around 50,000 iterations. Capturing

the variance in at least these two components is important since the SOM itself is

a 2-dimensional visual representation.

Figure 20: SSMean Plotted Against fConv, the Population Based Convergence Mea-

sure. On the left, ssMean is plotted as a linear function of fConv while on the right,

ssMean is plotted as an exponential decay function of fConv. The maps trained for zero

iterations were excluded.

46

Figure 21: SSMean Plotted Against the proportion of non-random neighbors, cot-

tNeigh. On the left, ssMean is plotted as a linear function of cottNeigh while on the

right, ssMean is plotted as an exponential decay function of cottNeigh. The maps trained

for zero iterations were excluded.

From these plots it appears that in the limiting case (i.e. when the measures

fConv and cottNeigh indicate that the map is converged), fConv tracks the SSMean

better than cottNeigh regardless of whether or not a linear or exponential decay

fit is used. The R-squared value in the above plots is misleading because there are

several major outliers in all plots where the ssMean is plotted against either fConv

or cottNeigh. These outliers are from the first few data points where SOMs which

were not trained enough to even remotely model the very complex ionosphere

data set were used. If these outliers are removed, the updated plots would more

fully show how well fConv tracks the SSMean in the limiting case and how poorly

cottNeigh does the same. The plots with the outliers removed are shown below.

Figure 22: SSMean Plotted Against fConv, the Population Based Convergence Measure

with the outliers removed. Only maps trained for 500 or more iterations are considered.

On the left, ssMean is plotted as a linear function of fConv while on the right, ssMean

is plotted as an exponential decay function of fConv.

47

Figure 23: SSMean Plotted Against the proportion of non-random neighbors, cottNeigh

with the outlier removed. Only maps trained for 500 or more iterations are considered.

On the left, ssMean is plotted as a linear function of cottNeigh while on the right, ssMean

is plotted as an exponential decay function of cottNeigh.

From Figures 22 and 23 it is clear that fConv tracks the SSMean more effi-

ciently than cottNeigh in the limiting case. Again in Figure 23, we see that when

cottNeigh indicates stability, the SSMean is not settled at all and takes on a wide

range of values. However, when fConv indicates high levels of convergence (see Fig-

ure 7), the SSMean is stable and takes on a more compact range of values. Also, as

fConv increases, SSMean decreases. With cottNeigh, there is no real correlation to

SSMean in the limiting case. Also, fConv is a more conservative convergence mea-

sure, only indicating convergence after cottNeigh has indicated stability. Consider

the following plot of both fConv and cottNeigh plotted as a function of iterations.

48

Figure 24: cottNeigh (green) and fConv (red) plotted as functions of iterations. It

is clear that fConv levels out after cottNeigh and hence provides a more conservative

measure of convergence.

In Figure 24 we can see that cottNeigh indicated convergence after only a few

thousand iterations. However, fConv did not indicate complete convergence even

after 200,000 iterations (the curve still had a fairly steep slope around 200,000

iterations and fConv was well short of one, which would indicate full convergence).

If one were seeking a higher convergence level, several approaches could be used,

including: training the map longer, increasing the training rate, or increasing the

size of the map (thereby giving the map greater freedom to model the variance

of the training data). Also, a lower convergence rate could indicate noise in the

data. Removing some of the noise and re-training the data may result in a higher

convergence score. One approach to removing noise involves expressing the training

data in terms of its principal components and only keeping those components which

have a significant variance [16]. Using only those components which have a variance

greater than or equal to one is a common practice. The author was able to get

an fConv value of one for the ionosphere data (i.e. 100% converged) by training

49

longer and using only the first few principal components of the training data to

train the SOM.

Figure 25: SOM achieving fConv = 1; trained for 375,000 iterations; noise reduction

performed (first few principal components used to train the SOM)

50

Figure 26: SOM achieving fConv = 0; trained for 15,100 iterations; noise reduction not

performed; note that cottNeigh indicated stability after only 5,000-10,000 iterations even

when no noise reduction was utilized on the data - this map should be stable according

to cottNeigh

Note that when fConv indicates convergence, the clusters are contiguous

whereas when cottNeigh indicates convergence, they are not. cottNeigh appears to

indicate stability too early. The cluster representations in Figures 25 and 26 were

created using a slightly modified version of the connected components approach as

given in [22].

A second round of experimentation was performed on the ionosphere data

set using 34 × 23 SOMs. This dimensionality is given by the M = 2N method

proposed earlier. However, the results were not qualitatively different from those

reported using the 26× 18 maps and hence were excluded.

51

CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

From the results presented in the previous chapter, we can conclude that

fConv, the population based convergence measure proposed in this thesis, provides

a reliable statistical measure of the “goodness” of a SOM. It also shows that the

SOM is capable of modeling the probability densities of even very complex, noisy

data sets. Since fConv is based on a simple two sample test, it is fast and easy

to compute. fConv is more conservative as a measure of convergence than the

approach using neighborhood stability which was proposed by Cottrell et al. In

addition, fConv is a much less expensive method for determining how well a map

models the training data since it can be computed on a map by map basis. It

has no need for a bootstrapped collection of maps nor does it entail checking each

pair of training data in order to determine if their neighborhood relationship is

significant.

Cottrell’s statistical analysis of neighborhood relationships may be useful in

the case where one is trying to determine whether or not a given pair of train-

ing vectors are neighbors or not, and in either case, whether that relationship is

significant. However, it does not appear to be useful as a measure for the overall

convergence of a SOM. It is very expensive and is much more optimistic than the

fConv method proposed in this thesis. In addition, fConv tracks the ssMean, a

traditional measure of convergence, far better than cottNeigh, especially in the

limiting case (which is the primary case that we are concerned with in a study

pertaining to convergence).

fConv is a fast, effective method for determining how well a SOM has modeled

the probability density of the training data. Its simplicity seems to increase its

52

appeal as a convergence measure since the SOM algorithm itself is quite simple.

This also makes fConv preferable to other convergence methods which impose

energy functions or modifications to the SOM which are much more complicated

than the SOM algorithm itself. The results in this paper demonstrate that fConv

is also correlated to the ssMean and tracks it well especially in the limiting cases.

Hence, once an fConv value of one, or close to one is achieved, one would not expect

to be able to decrease ssMean significantly with further training or an increase in

the size of the map. In fact, attempting to decrease the ssMean in such a case

would likely lead to an overfitted model. Hence, fConv may be used to determine

when a given ssMean is “good enough”. If fConv is much lower than one, then the

map can either be trained longer, its size can be increased, or the learning rate can

be increased in order to allow the map greater freedom to capture the variance in

the training data. An fConv value much lower than one may also indicate that

there is a substantial amount of noise in the data. In this case, a noise reduction

technique can be applied to the training data before it is used to train the SOM.

6.2 Suggestions For Future Work

fConv provides a simple, elegant method for computing a measure indicative

of how well a given SOM has modeled the probability density of the training data.

However, it relies on both normalizing the data and rotating it into the direction

of the principal components in order to increase its validity (since principal com-

ponents are uncorrelated the PCA features can be treated separately and the cross

terms in the covariance matrix can more justifiably be ignored). The normalization

is strongly encouraged since the SOM is sensitive to scale. However, checking the

variance convergence of each feature independently method does not account for

the cross terms of the covariance matrix (which the SOM may not have modeled

properly). While Yin and Allison’s paper seems to indicate that this is not likely, it

53

may happen in practice, since SOMs are not trained for an infinite number of iter-

ations and hence dead neurons will exist (Yin and Allison’s paper required infinite

training and no dead neurons). A future study could produce a test which tested

the cross terms of the covariance matrix also and incorporated them into the con-

vergence score. Cross terms may not be zero simply because a rotation occurred

in a pair of dimensions which had similar variance (these do happen during SOM

training, usually in cases where the two dimensions have a similar variance). The

updated convergence measure would also penalize the convergence score less for

rotations of this nature. If the whole covariance matrix is checked, one would also

not have to rotate the training data into the directions of the principal components

which would save some time up front.

Despite not accounting for cross terms of the covariance matrix, the fConv

convergence measure proposed in this paper is demonstrably effective. Because

training data expressed in terms of principal components is used to train the SOM,

the SOM can model the data well. Most of the variance is usually captured in the

first few principal components while the last few principal components usually

just contain the noise in the data. The SOM will model the first two principal

components with the greatest ease since it is a 2-dimensional grid, especially in

the case where the M = 2N sizing rule is used to determine the length and

width of the map. Since the variance along the first component is usually much

larger than the variance along the second principal component, rotations in these

dimensions are rare in SOMs. Hence, fConv will at least capture these even in

the case where cross terms are not examined. Generally the first few principal

components of a high dimensional data set will contain most of the variance and

the neurons of the SOM will not rotate along them unless the variance along some

of the components are close in value. However, if the whole covariance matrix were

54

checked, one would not have to worry about the case where a rotation occurred.

The convergence algorithm would penalize the convergence measure because some

difference in the cross terms of the covariance matrix would be discovered.

55

LIST OF REFERENCES

[1] C. Hung, Y.-L. Chi, and T.-Y. Chen, “An attentive self-organizing neural
model for text mining,” Expert Systems with Applications, vol. 36, no. 3, Part
2, pp. 7064 – 7071, 2009.

[2] T. Kohonen, Self-organizing maps, ser. Springer series in information sciences.
Springer, 2001.

[3] C. Bishop, M. Svensn, and C. Williams, “Gtm: A principled alternative to
the self-organizing map,” Artificial Neural NetworksICANN 96, pp. 165–170.

[4] J. J. Verbeek, N. Vlassis, and B. Krse, “The generative self-organizing map:
a probabilistic generalization of kohonen’s som,” Tech. Rep., 2002.

[5] H. Kobayashi, B. Mark, and W. Turin, Probability, Random Processes,
and Statistical Analysis: Applications to Communications, Signal Processing,
Queueing Theory and Mathematical Finance. Cambridge University Press,
2011.

[6] T. Heskes, “Energy functions for self-organizing maps,” Kohonen maps, p.
303316.

[7] E. Erwin, K. Obermayer, and K. Schulten, “Self-organizing maps: ordering,
convergence properties and energy functions,” Biological cybernetics, vol. 67,
no. 1, pp. 47–55, 1992.

[8] E. De Bodt, M. Cottrell, and M. Verleysen, “Statistical tools to assess the re-
liability of self-organizing maps,” Neural Networks, vol. 15, no. 8-9, p. 967978,
2002.

[9] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. New York:
Chapman & Hall, 1993.

[10] H. Yin and N. M. Allinson, “On the distribution and convergence of feature
space in self-organizing maps,” Neural computation, vol. 7, no. 6, pp. 1178–
1187, 1995.

[11] “Covariance matrix - wikipedia, the free encyclopedia.” Jan. 2012. [Online].
Available: http://en.wikipedia.org/wiki/Covariance matrix

[12] J. B. Fraleigh and R. A. Beauregard, Linear Algebra. Massachusetts:
Addison-Wesley Publishing Company, 1995.

56

http://en.wikipedia.org/wiki/Covariance_matrix

[13] “Principal component analysis - wikipedia, the free encyclopedia.”
Jan. 2012. [Online]. Available: http://en.wikipedia.org/wiki/Principal
component analysis

[14] I. Miller and M. Miller, John E. Freund’s Mathematical Statistics with Appli-
cations (7th Edition), 7th ed. Prentice Hall, 2003.

[15] “Normally distributed and uncorrelated does not imply independent
- wikipedia, the free encyclopedia.” Feb. 2012. [Online]. Avail-
able: http://en.wikipedia.org/wiki/Normally distributed and uncorrelated
does not imply independent

[16] L. Smith, “A tutorial on principal components analysis,” Cornell University,
USA, vol. 51, p. 52, 2002.

[17] M. Cottrell, E. De Bodt, and M. Verleysen, “A statistical tool to assess the
reliability of self-organizing maps,” Advances in self-organising maps, p. 714,
2001.

[18] D. Ballard, An Introduction to Natural Computation. Massachusetts: MIT
Press, 1999.

[19] “UCI machine learning repository: Iris data set.” Feb. 2012. [Online].
Available: http://archive.ics.uci.edu/ml/datasets/Iris

[20] “UCI machine learning repository: Wine data set.” Feb. 2012. [Online].
Available: http://archive.ics.uci.edu/ml/datasets/Wine

[21] “UCI machine learning repository: Ionosphere data set.” Feb. 2012. [Online].
Available: http://archive.ics.uci.edu/ml/datasets/Ionosphere

[22] L. Hamel and C. Brown, “Improved interpretability of the unified distance
matrix with connected components.”

57

http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Normally_distributed_and_uncorrelated_does_not_imply_independent
http://en.wikipedia.org/wiki/Normally_distributed_and_uncorrelated_does_not_imply_independent
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Ionosphere

BIBLIOGRAPHY

“Self-organizing map - wikipedia, the free encyclopedia.” Dec. 2011. [Online].
Available: http://en.wikipedia.org/wiki/Self-organizing map

“Coefficient of variation - wikipedia, the free encyclopedia.” Feb. 2012. [Online].
Available: http://en.wikipedia.org/wiki/Coefficient of variation

“Covariance matrix - wikipedia, the free encyclopedia.” Jan. 2012. [Online].
Available: http://en.wikipedia.org/wiki/Covariance matrix

“Generative topographic map - wikipedia, the free encyclopedia.” Feb. 2012.
[Online]. Available: http://en.wikipedia.org/wiki/Generative topographic
map

“LinAlgReviewAndSpectral.pdf.” Feb. 2012. [Online]. Avail-
able: http://web.williams.edu/go/math/sjmiller/public html/OSUClasses/
683L/LinAlgReviewAndSpectral.pdf

“MVA Section3.pdf.” Feb. 2012. [Online]. Available: http://www.maths.
manchester.ac.uk/∼mkt/MT3732%20(MVA)/Notes/MVA Section3.pdf

“Normally distributed and uncorrelated does not imply independent
- wikipedia, the free encyclopedia.” Feb. 2012. [Online]. Avail-
able: http://en.wikipedia.org/wiki/Normally distributed and uncorrelated
does not imply independent

“Principal component analysis - wikipedia, the free encyclopedia.” Jan. 2012. [On-
line]. Available: http://en.wikipedia.org/wiki/Principal component analysis

“Principal components and factor analysis.” Jan. 2012. [Online]. Available:
http://www.statsoft.com/textbook/principal-components-factor-analysis/

“Statistics part 3: Covariance and correlation.” Jan. 2012. [Online]. Available:
http://investing.calsci.com/statistics3.html

“UCI machine learning repository: Ionosphere data set.” Feb. 2012. [Online].
Available: http://archive.ics.uci.edu/ml/datasets/Ionosphere

“UCI machine learning repository: Iris data set.” Feb. 2012. [Online]. Available:
http://archive.ics.uci.edu/ml/datasets/Iris

“UCI machine learning repository: Wine data set.” Feb. 2012. [Online]. Available:
http://archive.ics.uci.edu/ml/datasets/Wine

58

http://en.wikipedia.org/wiki/Self-organizing_map
http://en.wikipedia.org/wiki/Coefficient_of_variation
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Generative_topographic_map
http://en.wikipedia.org/wiki/Generative_topographic_map
http://web.williams.edu/go/math/sjmiller/public_html/OSUClasses/683L/LinAlgReviewAndSpectral.pdf
http://web.williams.edu/go/math/sjmiller/public_html/OSUClasses/683L/LinAlgReviewAndSpectral.pdf
http://www.maths.manchester.ac.uk/~mkt/MT3732%20(MVA)/Notes/MVA_Section3.pdf
http://www.maths.manchester.ac.uk/~mkt/MT3732%20(MVA)/Notes/MVA_Section3.pdf
http://en.wikipedia.org/wiki/Normally_distributed_and_uncorrelated_does_not_imply_independent
http://en.wikipedia.org/wiki/Normally_distributed_and_uncorrelated_does_not_imply_independent
http://en.wikipedia.org/wiki/Principal_component_analysis
http://www.statsoft.com/textbook/principal-components-factor-analysis/
http://investing.calsci.com/statistics3.html
http://archive.ics.uci.edu/ml/datasets/Ionosphere
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Wine

Ballard, D., An Introduction to Natural Computation. Massachusetts: MIT Press,
1999.

Bilodeau, M. and Brenner, D., Theory of multivariate statistics, ser. Springer texts
in statistics. Springer, 1999.

Bishop, C., Svensn, M., and Williams, C., “Gtm: A principled alternative to the
self-organizing map,” Artificial Neural NetworksICANN 96, pp. 165–170.

Bishop, C., Svensn, M., and Williams, C., “Developments of the generative topo-
graphic mapping,” Neurocomputing, vol. 21, no. 1-3, p. 203224, 1998.

Cottrell, M., De Bodt, E., and Verleysen, M., “A statistical tool to assess the
reliability of self-organizing maps,” Advances in self-organising maps, p. 714,
2001.

De Bodt, E., Cottrell, M., and Verleysen, M., “Statistical tools to assess the reli-
ability of self-organizing maps,” Neural Networks, vol. 15, no. 8-9, p. 967978,
2002.

Efron, B. and Tibshirani, R. J., An Introduction to the Bootstrap. New York:
Chapman & Hall, 1993.

Erwin, E., Obermayer, K., and Schulten, K., “Self-organizing maps: ordering,
convergence properties and energy functions,” Biological cybernetics, vol. 67,
no. 1, pp. 47–55, 1992.

Fraleigh, J. B. and Beauregard, R. A., Linear Algebra. Massachusetts: Addison-
Wesley Publishing Company, 1995.

Hamel, L. and Brown, C., “Improved interpretability of the unified distance matrix
with connected components.”

Heskes, T., “Energy functions for self-organizing maps,” Kohonen maps, p. 303316.

Hung, C., Chi, Y.-L., and Chen, T.-Y., “An attentive self-organizing neural model
for text mining,” Expert Systems with Applications, vol. 36, no. 3, Part 2, pp.
7064 – 7071, 2009.

Kinouchi, M., Takada, N., Kudo, Y., and Ikemura, T., “Quick learning for
batch-learning self-organizing map,” GENOME INFORMATICS SERIES, p.
266267, 2002.

Kobayashi, H., Mark, B., and Turin, W., Probability, Random Processes, and Sta-
tistical Analysis: Applications to Communications, Signal Processing, Queue-
ing Theory and Mathematical Finance. Cambridge University Press, 2011.

Kohonen, T., Self-organizing maps, ser. Springer series in information sciences.
Springer, 2001.

59

Laaksonen, J. T., Markus Koskela, J., and Oja, E., “Class distributions on som
surfaces for feature extraction and object retrieval,” Neural Networks, vol. 17,
no. 8-9, pp. 1121–1133, 2004.

Lampinen, J. and Kostiainen, T., “Generative probability density model in the
self-organizing map,” STUDIES IN FUZZINESS AND SOFT COMPUTING,
vol. 78, pp. 75–94, 2002.

Lin, S. and Si, J., “Weight-value convergence of the som algorithm for discrete
input,” Neural computation, vol. 10, no. 4, pp. 807–814, 1998.

Miller, I. and Miller, M., John E. Freund’s Mathematical Statistics with Applica-
tions (7th Edition), 7th ed. Prentice Hall, 2003.

Smith, L., “A tutorial on principal components analysis,” Cornell University, USA,
vol. 51, p. 52, 2002.

Ultsch, A., “Self-organizing neural networks for visualisation and classification,”
in Information and classification: concepts, methods, and applications: pro-
ceedings of the 16th Annual Conference of the” Gesellschaft für Klassifikation
eV,” University of Dortmund, April 1-3, 1992, vol. 16. Springer Verlag, 1993,
p. 307.

Ultsch, A., U*-matrix: a tool to visualize clusters in high dimensional data. Fach-
bereich Mathematik und Informatik, 2003.

Verbeek, J. J., Vlassis, N., and Krse, B., “The generative self-organizing map: a
probabilistic generalization of kohonen’s som,” Tech. Rep., 2002.

Yin, H. and Allinson, N. M., “On the distribution and convergence of feature space
in self-organizing maps,” Neural computation, vol. 7, no. 6, pp. 1178–1187,
1995.

60

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	Introduction
	Background
	Self-Organizing Maps
	Bootstrap
	Principal Components

	A Conventional SOM Reliability Measure
	Basis of existing criteria
	SOM Reliability Measures
	Quantization Error
	Neighborhood Stability

	A New Approach to SOM Convergence
	Overview
	Normalizing and Rotating Along the Principal Components
	A Measure for SOM Convergence
	Mean Convergence
	Variance Convergence
	The Population Based Convergence Measure

	Results
	Experiment Design
	Iris Experiment Results
	CV(SSIntra)
	Results Using 158 SOMs

	Wine Experiment Results
	CV(SSIntra)
	Results Using 1410 SOMs

	Ionosphere Experiment Results
	CV(SSIntra)
	Results Using 2618 SOMs

	Conclusions and Future Work
	Conclusions
	Suggestions For Future Work

	LIST OF REFERENCES
	BIBLIOGRAPHY

