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ABSTRACT

The Belief-Desire-Intention (BDI) agent framework is a reactive agent frame-

work based on the idea of intentionality. A known weaknesses of BDI is its lack of

learning capabilities resulting from its dependence on an a-priori library of plans.

BDI plans are designed by human experts on the domain to which BDI is being

applied and are fixed. Any situation the BDI agent encounters which does not have

a matching plan can result in erroneous agent operation and even agent failure.

Researchers have augmented the BDI framework with various learning

frameworks including decision trees, self-organizing neural networks, hybrid-

architectures using low level learners, and metaplans for plan hypothesis abduc-

tion and plan modifications. Other relevant research tackled the use of a-priori

knowledge, previously learned knowledge and the learning of plans without a-

priori knowledge on planning systems, and the integration of learning, planning

and execution. These studies were, however, not investigated in relation to BDI

systems.

This study explores the successful use of Reinforcement Learning (RL), a

computational learning framework based on the idea of learning from repeated in-

teractions with the environment, to generate plans in BDI systems without relying

on a-priori knowledge.
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CHAPTER 1

Introduction

1.1 Motivation

The lack of learning capabilities for BDI systems was recognized as far back

as 2004 [1]. Researchers tackled this by augmenting the BDI framework with var-

ious learning frameworks including decision trees, self-organizing neural networks,

hybrid-architectures using low level learners, and metaplans for plan hypothesis

abduction and plan modifications. Other relevant research tackled the use of a-

priori knowledge, previously learned knowledge and the learning of plans without

a-priori knowledge on planning systems, and the integration of learning, planning

and execution. These studies were, however, not investigated in relation to BDI

systems.

Recent research relied on Markov Decision Processes (MDPs) to generate

BDI plans from optimal policies for completely specified MDPs [2]. Pereira’s

work was augmented to work with Partially Observable Markov Decision Processes

(POMDPs) [3]. These two studies come closest to the proposed study with the

difference that for the proposed study neither fully specified MDPs nor POMDPs

will be considered.

The problem selected for study is justified by the lack of research exploring

the generation of plans in BDI systems using reinforcement learning that does not

rely on a-priori knowledge.

1.2 Thesis Organization

Chapter 2 Planning and Learning discusses the close relationship be-

tween planning and learning. In this work, RL represents the learning aspect

and BDI represents the planning aspect. Chapter 3 Reinforcement Learn-

1



ing introduces the computational RL framework and provides an introduction to

the rigorous mathematical notions that underlie learning from repeated interac-

tions with the environment. Chapter 4 Belief-Desire-Intention (BDI) Agent

Systems Framework introduces the BDI framework and highlights its known

weakness of relying on an a-priori plan library. The logic BDI programming

language AgentSpeak is also examined as well. Chapter 5 Differences Be-

tween Proposed Study and Previous Research provides the previous research

that justifies this thesis. The coding implementation for the RL and BDI parts

is discussed in Chapter 6 Experimental Implementation. The results are

discussed in Chapter 7 Results. Finally, a discussion of the results, limitations,

and ways to enhance the ideas in this thesis in future work are part of Chapter

8 Discussion.

2



List of References

[1] A. Guerra-Hernández, A. E. Fallah-Seghrouchni, and H. Soldano, “Learning in
bdi multi-agent systems,” in CLIMA, 2004, pp. 218–233.

[2] D. R. Pereira and G. P. Dimuro, “Um algoritmo para extração de um plano bdi
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CHAPTER 2

Planning and Learning

2.1 Introduction

Planning and learning are closely connected. It is difficult to think of one

without thinking of the other. Zimmerman considers them to be the ”most broadly

recognized hallmarks of intelligence” and defines them as:

planning - solving problems in which one uses beliefs about actions and their

consequences to construct a sequence of actions that achieve one’s goals.

learning - using past experience and precepts to improve one’s ability to act

in the future. [1]

2.2 Zimmerman’s Model

Zimmerman introduces a 5 dimensional model to characterize automated plan-

ning systems that are augmented with a learning component, including an exten-

sive survey of planning and learning [1]. The model allows us to compare, within

the model limitations, the different approaches researchers have pursued to com-

bine planning and learning in a graphical way.

The 5 dimensions of the model are:

1. Problem Type. The problem type is a function of the environment.

Static, propositional, deterministic, fully observable environments, in which

effects of actions are instantaneous fall under classical planning. Dynamic,

continuous, partially observable environments, in which actions take time to

be executed fall under full-scope planning.

2. Planning Approach. The planning approach describes how planning is

achieved. There are two planning approaches: search and model check-

ing. Search planners can search in state space or plan space. Model

4



checking planners transform the planning problem representation into one for

which efficient algorithms exists, including satisfiability (SAT), constraint-

satisfaction problems (CSPs), and integer linear programming (IP).

3. Planning-learning Goal. The planning-learning goal describes the aim

of learning. There are 3 aims for learning:(a) Planning speedup, (b) Im-

proving planning domain theory which is concerned with using failures

related to deficiencies of the world model and domain theory through plan

failures as feedback opportunities to improve the world model and domain

theory for the planner, and (c) Improving the quality of plans pro-

duced.

4. Learning Phase. The learning phase describes when in the planning

process the learning occurs. Learning can occur in 3 phases: (a) before

planning, (b) during the process of finding valid plan, and (c) during the

execution of plan

5. Type of Learning. The type of learning describes the learning used by

the planner. There are 3 types of learning: (a) inductive learning, (b)

analytic learning, and (c) multistrategy learning is the category for

approaches that do not clearly fit in the two other types of learning. RL falls

under multistrategy learning.

Besides providing a useful model to characterize planning and learning re-

search, the survey discovered few research attempts that used RL for planning.

These included a hybrid approach combining explanation based learning (EBL)

with RL into an explanation base reinforcement learning (EBRL) algorithm and

tested on chess endgames and synthetic maze tasks [2]. Incremental dynamic pro-

gramming (DYNA) was proposed as an RL architecture that split learning and

5



planning by having actions generated by a reactive system with a planning system

acting ”independently and conceptually in parallel” [3]. Learning by Observation

in Planning Environments (LOPE) was proposed as an architecture integrating

learning, planning and execution [4]. LOPE’s learning is focused on learning opera-

tor definitions, plans using the operators, and executes plans that modify acquired

operators.

List of References

[1] T. Zimmerman and S. Kambhampati, “Learning-assisted automated
planning: Looking back, taking stock, going forward,” AI Mag.,
vol. 24, no. 2, pp. 73–96, June 2003. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=960150.960160

[2] T. G. Dietterich and N. S. Flann, “Explanation-based learning and reinforce-
ment learning: A unified view,” in Machine Learning, 1995, pp. 176–184.

[3] R. S. Sutton, “Planning by incremental dynamic programming,” in In Pro-
ceedings of the Eighth International Workshop on Machine Learning. Morgan
Kaufmann, 1991, pp. 353–357.

[4] R. Garcia-Martinez and D. Borrajo, “An integrated approach of learning, plan-
ning, and execution,” Journal of Intelligent and Robotic Systems, vol. 29, pp.
47–78, 2000.

6

http://dl.acm.org/citation.cfm?id=960150.960160
http://dl.acm.org/citation.cfm?id=960150.960160


CHAPTER 3

Reinforcement Learning

3.1 Introduction

Reinforcement learning (RL) is a computational learning framework based

on the idea of learning from repeated interactions with the environment [1, 2, 3].

RL agents seek to maximize a reward signal from the environment. As the agent

explores the environment it learns the actions that maximize the reward from

particular states. The agent does this by selecting the action that will bring the

greatest reward, known as the greedy action. Once an agent has completed a start-

state to goal-state cycle, the agent has two choices: exploitation or exploration.

An agent can exploit the knowledge it learned interacting with the environment

by choosing the greedy action or it can explore the environment by choosing

an untried action or trying again a sub-optimal action. This is known as the

exploration-exploitation dilemma.

Choosing the greedy action all the time, however, is not an effective strategy.

Immediate high rewards can be followed by low rewards that outweigh the initial

high rewards. Immediate low rewards can, conversely, be followed by high rewards

that outweigh the initial low rewards. To overcome myopic behavior, RL agents

need to balance exploitation with exploration.

3.2 RL Problem

To apply reinforcement learning to a problem requires that the problem be

characterized as a RL problem. RL problems can be characterized by four ele-

ments:

1. a policy

2. a reward function

7



3. a value function

4. a model

The policy maps actions to states. Given a state it will provide the action

that the agent needs to perform if it wants to maximize the reward. The policy is

created by the interaction of the agent and the environment. The policy answers

the agent’s question What do I do in this state? It is the map for getting what

is good and avoiding what is bad. Policies are stochastic in general.

The reward function provides feedback from the environment in response

to actions taken by an agent in particular states. Because immediate rewards only

provide partial answers regarding what is the best course of action, the reward

function has little to say about the value of particular states in the long run. Low

rewards can follow high rewards and viceversa. Only by keeping track of this fact

will the agent be able to prevent myopic behavior. The reward function answers

the agent’s question What do I get if I do X in this state? It is what is good

in the short run. Reward functions are stochastic in general.

The value function is the expected rewards averaged over many exploration-

exploitation trials. It provides an approximation of the value of particular states.

It answers the agent’s question: What can I expect if I start in this state

and follow what I have learned? It is “what is good in the long run” [2].

The model provides a model of the environment and of how it reacts to

specific actions by the agent. It is used for planning by simulating actions in

particular states and observing the rewards, in effect experiencing the environment

through a simulation. In many domains, however, a model is not available or

unfeasible to obtain. Fortunately, RL can learn the world model empirically by

interacting with the environment.

8



Figure 1 presents a notional diagram summarizing the process through which

an RL agent learns a policy through its interaction with the environment.

Interaction with 
the environment 

Immediate  
reward(s) 

Value 
function Policy 

Figure 1. RL Notional Process

3.3 RL Problem Formalization

This section introduces a formalization of the RL problem.

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

Figure 2. Agent-Environment Model [2]

In RL problems we will always have an agent situated in an environment.

“An agent is anything that can be viewed as perceiving its environment through

sensors and acting upon the environment through actuators.” [4]

agent: the RL agent, is the part of the system that is learning, the learner

action: at ∈ A (st), the action chosen by the agent at a particular state and a

particular time

environment: everything outside the agent or what the agent interacts with

state: st ∈ S, where the agent finds itself after choosing an action and receiving

the corresponding reward

task: complete specification of the environment

9



reward: numerical value that the agent tries to maximize received after choosing

an action

policy: πt (s, a) , mapping from states to probabilities of selecting each possible

action

The agent in state st selects action at ∈ A (st), which results in reward rt+1 and

state st+1 ∈ S, leading to the following sequence:

s0a0r1 → s1a1r2 → s2a2r3 → · · · → statrt+1 → st+1at+1rt+2 → st+2at+2rt+3 → · · ·

As the agent moves from state to state it collects rewards. The sum of all rewards

defines the returns.

3.4 Returns

RL agents seek to maximize the rewards received, the returns. Returns are

defined differently depending on whether the task is episodic or continuing.

Episodic tasks can be broken in discrete and finite episodes. In other words, they

do not go on forever. In this case the return would be the sum of rewards from

the beginning of the episode, at time t + 1 until time T that the episode finishes.

In this straightforward case, the return Rt can be defined as:

Rt = rt+1 + rt+2 + rt+3 + · · ·+ rT

Continuing tasks are not so easily broken into distinct episodes and can potentially

go on for a long time, even “forever”. In this case, rewards received immediately

are more valuable than rewards received later. Multiplying each reward by a

decreasing factor provides a way to specify the value of immediate rewards. This

factor is called the discounting factor γ, for 0 < γ < 1. The value for the

discounting factor provides a way to specify how short-term or forward-looking we

10



want the agent to be. The discounted return Rt is defined as:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1

3.5 Markov Property

The Markov property is important in RL because it defines systems that

do not need to keep history. In other words, what matters is the current state

of the system and not the history of how it got there. For some systems

there might be infinite ways of getting to a particular state. In problems where

keeping history is necessary to predict future actions, the state space would be

orders of magnitude bigger. In such cases the problem would be consequently

much more complex and difficult to analyze, model and simulate.

Formally, the Markov property is exhibited by systems in which the following

two equations are equivalent:

Pr {st+1 = s′, rt+1 | st, at, rtst−1, at−1, . . . , r1, s0, a0} (1)

Pr {st+1 = s′, rt+1 | st, at} (2)

for all s′, rt+1, and histories, st, at, rtst−1, at−1, . . . , r1, s0, a0. [2] Equation (1) shows

the probability of state st+1 being s′ and reward being rt+1 given the previous

sequence of states, actions and rewards st, at, rtst−1, at−1, . . . , r1, s0, a0. Equation

(2) shows probability of state st+1 being s′ and reward being rt+1 given only the

previous state and previous action st, at. If these 2 equations are equivalent, it

means that state, action and reward history is not a factor in determining the

probability of the next state and its reward. This leads to one-step dynamics

that allows to predict the next state and the expected next reward based on the

current state and the current action.
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A RL task that satisfies the Markov property is Markov Decision Process

(MDP). For finite MDPs, the probability of each possible state, s′, is:

P a
ss′ = Pr {st+1 = s′ | st = s, at = a}

The expected value of the next reward is:

Ra
ss′ = E {rt+1 | st = s, at = a, st+1 = s′}

For the purposes of this research, a finite MDP is assumed.

3.6 Value Functions

The value function is the expected rewards averaged over many exploration-

exploitation trials. Value functions have two equivalent representations: value

functions of states, typically denoted V , and value functions of state-action

pairs, typically denoted Q. These functions are evaluated for a given policy π.

State-value function for policy π

V π (s) = Eπ {RT | st = s} = Eπ

{
∞∑
k=0

γkrt+k+1 | st = s

}

V π is called the state-value function for policy π , it represents “the expected

return when starting in s and following π thereafter”.

Action-value function for policy π

Qπ (s, a) = Eπ {RT | st = s, at = a} = Eπ

{
∞∑
k=0

γkrt+k+1 | st = s, at = a

}

Qπ is called This equation represents the action-value function for policy π ,

it represents “the expected return starting from s, taking action a, and thereafter
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following policy π”.

V π (s) = Eπ {RT | st = s} = Eπ

{
∞∑
k=0

γkrt+k+1 | st = s

}

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s

}

=
∑
a

π (s, a)
∑
s′

P a
ss′

[
Ra
ss′ + γEπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2 | st+1 = s′

}]

=
∑
a

π (s, a)
∑
s′

P a
ss′ [R

a
ss′ + γV (s′)]

One useful way of visualizing these equations is through the use of backup

diagrams. In backup diagrams, states are denoted by white circles and actions

are denoted by smaller black circles. Figure 3(a) shows the diagram for V π. It is

intuitive that the value for state s will depend on all possible actions a available

at state s. These actions provide a reward r and take the agent to state s′.

Since policies are stochastic and agents have to balance exploration-exploitation,

the value for state s will be an approximation. The more the agent explores the

environment, the closer the value for state s will come to its true value. Figure

3(b) shows the diagram for Qπ. In this case, similar to V π, the value for action-

value s, a will depend on the reward r and the value for s′ and the next action a′

constituting the next action-value s′, a′.

s,as

a

s'

r

a'

s'

r

(b)(a)

Figure 3. Backup Diagrams for (a) V π and (b) Qπ [2]
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3.7 Optimal Functions

Value functions are evaluated for particular policies. It should not be surpris-

ing that some policies perform better than others. Given two policies π and π′, π

is a better policy than π′, π ≥ π′, if and only if V π (s) ≥ V π′ (s) for all s ∈ S. A

policy that performs equal or better than all other policies is an optimal policy,

denoted by π∗.

Using the optimal policy, an optimal state-value function can be defined

as:

V ∗ (s) = max
π

V π (s)

for all s ∈ S.

The optimal action-value function can be defined as:

Q∗ (s, a) = max
π

Qπ (s, a)

for all s ∈ S, a ∈ A (s).

The optimal state-value function equation above can be rewritten without

referencing a policy:

V ∗ (s) = max
a∈A(s)

Qπ (s, a)

= max
a

Eπ∗ {Rt | st = s, at = a}

= max
a

Eπ∗

{
rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s, at = a

}

= max
a

E {rt+1 + γV ∗ (st+1) | st = s, at = a}

= max
a

∑
s′

P a
ss′ [R

a
ss′ + γV (s′)]

The last equation is the Bellman equation for V ∗, or the Bellman opti-

mality equation.
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Similarly, the optimal state-value function equation can as the Bellman

optimality equation for Q∗:

Q∗ (s, a) = E
{
rt+1 + γ max

a
Q∗ (st+1,, a

′) | st = s, at = a
}

=
∑
s′

P a
ss′

[
Ra
ss′ + γ max

a′
Q∗ (s′, a′)

]
The backup diagrams forV ∗ and Q∗ are shown in figure 4.

s,as

a

s'

r

a'

s'

r

(b)(a)

max

max

Figure 4. Backup Diagrams for (a) V ∗ and (b) Q∗ [2]

3.8 Learning Tasks

Before RL and its algorithms can be used on a particular problem, the problem

needs to be expressed as a learning task.

A learning task is a complete specification of the agent and the environment

and its is defined by 3 sets.

1. The state set S.

2. The action set A.

3. The reward set R.

The environment is generally concerned with the state and the states st ∈ S.

The state only changes as a result of actions selected by the agent.

In any learning task the goal is for the agent to learn what to do in any

particular situation that it encounters, to learn a mapping from states to actions,
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a policy. The collection of all the situations that the agent may encounter define

the state-space of the task. For example, an agent in a 2-dimensional gridworld

has at least two pieces of information that it would have to track if we are to

hope for any helpful and significant learning: where it is on the X coordinate and

where it is on the Y coordinate. Furthermore, if the X coordinate has a maximum

dimension of 10 and the Y coordinate has a maximum dimension of 10, then we

know that there are 100 possible combinations of < x, y > values. This is the

state-space for the problem. The X and Y coordinate are state-variables. They

define a state because we find it useful to distinguish < xt, yt > from < xt+1, yt+1 >

and they are variables because they change dynamically depending on the action

chosen by the agent.

The agent is generally concerned with the action set and the actions at ∈

A (st). When the agent chooses an action at ∈ A (st) at a particular state st ∈ S

and a particular time t, the result will be a reward rt+1 ∈ R and new state

st+1 ∈ S.

The reward is provided by the environment as a result of the agent selecting an

action. Since many implementations of RL have synthetic, simulated environments,

it is contingent upon the RL researcher to define a reward set in a manner that

is conducive to learning. Usually this involves some amount of trial and error in

selecting the reward structure in a way that will bias the learning task to learn the

actual behaviors we want learned.

Once a problem specified as a learning task, it is ready to learn but, how

does the learning happen? The cross product SxA defines the action values or

Q values for the learning task. These are state-action tuples. Action values are

initialized arbitrarily since no learning has taken place and the true value is not

yet known. As the agent interacts with the environment the RL algorithm updates
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the value of the corresponding state-action tuple by backing up a fraction of the

value of latter states to preceding states to better reflect their true value. Selecting

the state-action tuples with maximum value defines a policy.

3.9 RL Algorithms

A number of algorithms have been developed to implement RL. An important

development in RL was the development of Q learning by Watkins in 1989 [2],

[5]. In its simplest form the update rule for Q learning, also known as one-step

Q learning, has the form:

Q (s, a)← Q (s, a) + α [r + γmaxaQ (s′, a′)−Q (s, a)]

In 1992 Watkins and Dayan proved that Q learning “converges to the opti-

mum action-values with probability 1 so long as all actions are repeatedly sampled

in all states and the action-values are represented discretely” [6]. In other words

“the learned action-value function, Qπ, directly approximates Q∗” [2].

Some of the benefits of Q learning include:

1. It is model-free. It does not need the probability distributions for transi-

tions from state s to state s′.

2. It can handle stochastic transitions.

The algorithmic representation for Q learning is taken from [2] and is shown

in table 1.
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Q Learning Algorithm

Initialize Q (s, a)arbitrarily
Repeat (for each episode):

Initialize s
Repeat (for each episode):

Choose a from s using policy derived from Q (ε-greedy)
Take action a, observe r, s′

Q (s, a)← Q (s, a) + α [r + γmaxaQ (s′, a′)−Q (s, a)]
s← s′

until s is terminal

Table 1. Q Learning Algorithm

3.10 RL and Planning

A detailed survey of RL and automated planning system is presented by Parta-

las [7]. Partalas argues that “there is a close relationship between those two areas

as they both deal with the process of guiding an agent, situated in a dynamic

environment, in order to achieve a set of predefined goals.”

Because RL combines planning and learning the distinctions above blur in

practice if not in theory. Since a relevant part of the research for this study will

be the selection of feasible RL approaches to generate plans for BDI systems, only

a quick summary of the research detailed by Partalas will be given here except

in cases where research is directly related to the problem for this study. Partalas

describes the possible approaches to combining planning with RL as:

1. Planning for RL. The approaches to planning for RL are categorized in 3

groups:

(a) Based on Dyna [8] - Dyna is an architecture that extends reinforcement

learning by including a world model. Sutton summarized some of the

limitations of RL stating that “Reinforcement learning architectures are

effective at trial-and-error learning, but no more. They can not do any
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of the things that are considered “cognitive,” such as reasoning or plan-

ning. They do not learn an internal model of the world’s dynamics, of

what-causes-what, but only of what-to-do (policy) and how-good-is-it

(return predictions). This is an important limitation because poten-

tially much more can be learned in the form of a world model than can

be learned by trial and error; the reward signal is just a scalar, while

the sensory input signal is a much richer potential source of training

information. And what if the goal changes? Typically, a world model

can remain relatively intact over goal changes and can assist in achiev-

ing the new goal, whereas policy and return predictions must be totally

changed.” [9] Approaches based on Dyna include:

i. Dyna-Q Combines the Dyna architecture with Q-learning. It

learns a world model to generate hypothetical experience and

achieve planning. [10]

ii. Queue-Dyna Value function estimates are prioritized. The ones

with the highest priority are put on a queue and performed. Places

where the value function needs to be update are identified as “up-

date candidates” . Two methods are proposed: prediction dif-

ference in which the priority depends on the magnitude of the

predicted difference in value and effect on start-state value in

which the priority depends on the contribution of update candidates

to the the value of a fixed start-state. [11]

iii. AHC-Relaxation Planning Combines an adaptive heuristic

critic (AHC) architecture with relaxation planning. AHC is

an architecture to take into account the effect of delayed rewards.

[12] “Relaxation planning, which is closely related to dynamic pro-
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gramming, is an incremental planning process that consists of a

series of shallow (usually one-step look-ahead) searches and ulti-

mately produces the same results as a conventional deep search.”

[13]

iv. Q-Relaxation Planning Is “similar to Sutton’s Dyna-Q architec-

ture except that only the currently visited state is used to start

hypothetical experiences.” [13]

v. Exploration Planning [14]

(b) Based on Prioritized Sweeping [15] - The idea is to work backwards

from states that have big changes in their value estimation. As state-

action pairs are estimated, predecessing states are put on priority queue

according to the size of their potential back-up value. This is repeated

a number of times or until the queue is empty.

i. Generalized Prioritized Sweeping [16] - Introduces the Gen-

eralized Prioritized Sweeping Principle (GenPS) which states

“Update states where the approximation of the value function will

change the most. That is, update the states with the largest Bell-

man error, E (s) =
∣∣∣V̂ (s)−maxa∈A Q̂ (s, a)

∣∣∣
ii. Structured Prioritized Sweeping [17]

(c) Based on Other - Other interesting approaches include PLANQ-

learning [18], Reinforcement Learnt-TOPs [19], Teleo-Reactive

Q-Learning [20, 21]. These, however, differ in the planning component

which is different from the BDI model.

2. RL for Planning. The approaches to RL for planning are:

(a) Forward and bidirectional planning based on RL [22] - Presents a
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Dyna architecture implementing AHC using neural networks. A forward

and backward planner are used. The backward planner functions in a

similar fashion to prioritized sweeping, the main difference being the

knowledge of specific goal states from which to plan backwards.

(b) Extraction of Planning Knowledge from Reinforcement Learn-

ers - A process for extracting plans is presented after using an RL

algorithm to learn a policy [23, 24]. The process presented is “con-

cerned with the ability to plan in an uncertain environment where usu-

ally knowledge about the domain is required. Sometimes is difficult to

acquire this knowledge, it may impractical or costly and thus an alterna-

tive way is necessary to overcome this problem. [7]” Plans are extracted

by successively calculating the probabilities of each action reaching the

goal state from an initial state. The plan is selected greedily from the

probabilities calculated.

(c) RL Approach to Production Planning [25] - RL through the use of

Q-learning and Monte Carlo simulation are used to “solve a multi-period

production planning problem in a two stage hybrid manufacturing pro-

cess (a combination of build-to-plan with build-to-order) with a capacity

constraint.”

All references are as cited on [7].

Partalas ends the survey summarizing the approaches for combining learn-

ing and planning as “first learn then plan”, “first plan then learn” or

“interchange learning and planning”.
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CHAPTER 4

Belief-Desire-Intention (BDI) Agent Systems Framework

4.1 Introduction

BDI is a reactive agent framework based on the idea of intentionality [1]. BDI

agents have beliefs, desires and intentions [1],[2]. Beliefs are representations of

what the agent believes true in its world. Desires represent the state of the world

that the agent would like to achieve. Intentions represent what the agent intends

to do.

BDI implementations have a library of plans that are triggered depending on

the belief and desires of the agents. The plans are designed by human experts on

the domain to which BDI is being applied.

One of the weaknesses of BDI is its lack of learning capabilities. Researchers

have addressed this weakness by augmenting the BDI framework with various

learning frameworks including decision trees [3], self-organizing neural networks

[4],[5], hybrid-architectures using low level learners, and metaplans for plan hy-

pothesis abduction and plan modifications [4].

4.2 AgentSpeak

AgentSpeak is a programming language for BDI agents, based on logic pro-

gramming, proposed by Rao [6]. It was inspired by the Procedural Reasoning Sys-

tem (PRS), an early BDI architecture with a plan library and explicit symbolic

representations of beliefs, desires, and intentions, [7], the distributed Multi-Agent

Reasoning System (dMARS) [8], and BDI Logics [2].

The specific version of AgentSpeak used in this reseach is the one augmented

by Jomi F. Hübner and Rafael H. Bordini for use in Jason [9], [10], [11], [12].
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4.3 AgentSpeak Components

The architecture of an AgentSpeak agent has four main components as shown

in table 2.

AgentSpeak Components

Belief Base
Plan Library
Set of Events

Set of Intentions

Table 2. AgentSpeak Components

A known weaknesses of BDI is its lack of learning capabilities resulting from

its dependence on an a-priori plan library. BDI plans are designed by human

experts on the domain to which BDI is being applied and are fixed. Any situation

the BDI agent encounters which does not have a matching plan can result in

erroneous agent operation and even agent failure.

This study is motivated at precisely this weakness of a fixed a-priori plan

library. The idea is to find ways of generating plans without relying on a-priori

knowledge.

4.4 AgentSpeak Constructs

The main language constructs of AgentSpeak are shown in table 3.

AgentSpeak Constructs

Beliefs
Goals
Plans

Table 3. AgentSpeak Constructs
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4.5 AgentSpeak Syntax

AgentSpeak is based on logical programming. Its syntax for belief, desires

(goals), and intentions (plan) reflect the underlying logical programming paradigm.

Beliefs represent the information available to an agent about the environment

or other agents. Beliefs are represented in symbolic form by predicates.

The representation of the belief that wiley is the publisher, for example, is

represented as:

publisher(wiley)

Goals represent states of of fairs the agent wants to bring about (come to be-

lieve, when goals are used declaratively). There are two types of goals: achieve-

ment goals and test goals as show in table 4.

AgentSpeak Types of Goals

Achievement
Test

Table 4. AgentSpeak Types of Goals

Achievement goals are used when attempting to change the belief base. An

example of an achievement goal is shown below.

!write(book)

The ! makes the goal an achievement goal. In this case, the agent’s goal is

to write a book.

Test goals are used when attempting to retrieve information from the belief

base. An example of a test goal is show below.

?publisher(P)
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The ? makes the goal an test goal. In this case, the agent wants to find the

publisher and bound it to variable P.

A BDI agent reacts to events in the environment by executing plans. Events

happen as a consequence to changes in the agents beliefs or goals. Plans are

“recipes for action, representing the agents know-how”.

An AgentSpeak plan has the following general structure:

triggering_event : context <- body.

The triggering event denotes the events that the plan is meant to handle.

The context represent the circumstances in which the plan can be used. The

body is the course of action to be used to handle the event if the context is

believed true at the time a plan is being chosen to handle the event.

Consider the AgentSpeak’s plan fragment shown below.

+state(0,0,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

For this plan, if the agent finds itself in state(0,0,0,0) and the context

calculation(done) is true, the the agent will drop the belief calculation(done),

it will perform action(n) and add the achievement goal !calculateReturn.

4.6 Jason

Jason is an Java-based interpreter for an extended version of AgentSpeak. It

implements the operational semantics of AgentSpeak, and provides a platform for

the development of multi-agent systems. Jason was developed and is currently

maintained by Jomi F. Hübner and Rafael H. Bordini [9], [10], [11], [12].
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CHAPTER 5

Previous Research

5.1 Introduction

The research described in Chapters 2, 3, and 4 explores several of the elements

proposed as part of this thesis: use of RL, learning plans on BDI systems,

and extraction of BDI plans from MDPs and POMDPs.

A more detailed overview of previous research whose elements come closest to

the work done as part of this thesis will be discussed on Section 5.2. Section 5.3

will summarize the research and highlight the key differences.

5.2 Research on BDI and Learning

An extensive review of the existing literature in RL and BDI did not uncover

any research that made use of RL to learn BDI plans without relying on a-priori

knowledge.

As discussed in the Introduction on Chapter 1, the lack of learning capa-

bilities for BDI systems was recognized as far back as 2004 [1]. Researchers tackled

this by augmenting the BDI framework with various learning frameworks includ-

ing decision trees, self-organizing neural networks, hybrid-architectures

using low level learners, and metaplans for plan hypothesis abduction

and plan modifications. Other relevant research tackled the use of a-priori

knowledge, previously learned knowledge and the learning of plans without a-

priori knowledge on planning systems, and the integration of learning, planning

and execution. These studies were, however, not investigated in relation

to BDI systems.

Recent research relied on Markov Decision Processes (MDPs) to generate BDI

plans from optimal policies for completely specified MDPs [2]. Pereira’s work
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was augmented to work with Partially Observable Markov Decision Processes

(POMDPs) using the Witness algorithm. [3]. These two studies come closest

to the work done in this thesis. The difference is that neither fully specified MDPs

nor POMDPs were considered in this thesis.

Besides the Pereira work, the research done by Karim, Plans as Products of

Learning [4] is also very similar to the idea studied in this thesis. The difference

is that Karim used a learning approach that did not rely on RL.

The next sections describe the details of the work done by Karim, Singh,

Dixon, Tan, and Pereira.

Plans as Products of Learning [4]

• Target: plan learning and plan improvement

• Model: hybrid, inductive

• Learning Element: self-organizing neural network (FALCON), hypothesis

abduction

• Goal: plan learning via plan extraction using PGS and plan improvement

using hypothesis abduction

The study investigated a hybrid approach combining a low-level learner with high-

level BDI based knowledge extractor and executor called plan generation subsystem

(PGS). A PGS algorithm is presented that relies on a-priori clues provided by

domain expert. The low-level learned used was FALCON which is a self-organizing

neural network. Also investigated was a second approach that used a hypothesis

generator to amend existing BDI plans by way of suggesting and executing plans

and updating intentions accordingly.

Two examples were investigated. In the hybrid approach a predator-prey

(or pursuit) task was used. Four predator agents and one prey agent in non-
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toroidal grid. The task to be learned was for the four predator agents to learn

to surround the prey agent on all four sides without any communication. In the

hypothesis generator a rat world (operant conditioning) task was used. A

special BDI interpreter that supported the generation of metaplans for abductions

and plan modifications at runtime was used.

Learning Context Conditions for BDI Plan [5]

• Target: conditions for plan selection

• Model : probabilistic

• Learning Element : decision trees

• Goal: learn the probability of success for plans

This study highlights the lack of learning from experience particular to the BDI

framework as well as the limitations of plan selection that relies on boolean for-

mulas specified at design/implementation time and part of a plan library. It

explores intelligent plan selection using feedback from plan success or failure to

build decision trees that provide the probability of success of plans.

Other relevant research, not directly related to BDI systems, tackled the use of

a-priori knowledge, previously learned knowledge and the learning of plans without

a-priori knowledge on planning systems, and the integration of learning, planning

and execution.

Incorporating Prior Knowledge and Previously Learned Information
into Reinforcement Learning Agents [6]

• Target: off-policy controller

• Model: hybrid

• Learning Element: hybrid
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• Goal: incorporate prior knowledge and previously learned information into

RL agents

This study is concerned with the limits and appropriateness of tabula rasa learning

and suggests a framework to incorporate a-priori knowledge and previously learned

knowledge. The author points that learning tabula rasa might not be “appropriate”

for two reasons:

1. system designers may have already embedded some domain-specific knowl-

edge

2. the agent may have learned the task

To solve this problem the author proposes an off-policy controller that uses

modularized “prior knowledge sources” (PKSs) as inputs to an “exploration

control module”. An additional contribution of this study is the discussion of

two terms that are of interest when designing RL systems:

1. state-space deficiency - refers to features of the state-space that the agent

is not able to observe and thus unable learn when instructed by a PKS

2. representational deficiency - refers to PKS that use a history of events

to make a decision. Reactive RL agents will not be able to learn this task.

The study proposed two approaches, incremental learning in which a “large,

complex task is decomposed into smaller sub-tasks” with the idea that “solving

the sub-tasks may be easier than solving the entire task” and composable skill

synthesis in which “a problem is broken down into a set of basic skills that the

agent must possess in order to complete a task”.

Two examples were investigated. For the incremental learning process a sim-

ulated robot domain task was used which consisted of mobile robot tag. In this
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task, the agents learn a controller that is then used as a PKS to the next step

in the learning process. The task was incrementally learned by first learning how

to score with no defense then learning how to score with a single runner and a

single defender, and finally by learning how to score with two runners and a single

defender. No communication was allowed between the two runners.

In the composable skill synthesis approach a grid world task was used. The

task’s goal was for the agent to move from its start state to a goal state with-

out bumping into any walls. The set of source skills used as PKSs was object

avoidance (a priori) and goal homing (learned in wall-less gridworld).

FALCON: A Fusion Architecture for Learning, COgnition, and Naviga-
tion [7]

• Target: fusion architecture

• Model: connectionist

• Learning Element: self-organizing neural network with fuzzy logic

• Goal: learn cognitive codes across multi-modal patterns involving sensory

input, actions, and rewards

This study describes a cognitive model based on Adaptive Resonance Asso-

ciative Map (ARAM) which is an extension of Adaptive Resonance Theory

(ART) that fuses sensory input, actions and rewards. ARAM processes a state

vector and produces an action vector. When the environment provides a reward

vector, ARAM then uses it to associate the state vector, the action vector and the

reward vector. ARAM uses fuzzy ART operations.

A simulated minefield navigation task was used to test FALCON. In the task,

an autonomous vehicle (AV) started in a random position. The objective was to

navigate to randomly selected target position in a specified time frame without
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hitting a mine. The AV was equipped with five sonar sensors that provided coarse

sonar sensor data. The target and mines were stationary.

Um Algoritmo para Extração de um Plano BDI que Obedece uma
Poĺıtica Ótima (An Algorithm for Extracting BDI Plans from an Opti-
mal Policy) [2]

Pereira presents an analysis of hybrid approach BDI-MDP and introduces

algorithm policyToIplan that extracts BDI plans from optimal policies. The

analysis is based on completely specified MDPs.

• Target: BDI plans

• Model: hybrid BDI-MDP

• Learning Element: completely specified MDP

• Goal: extract BDI plans from optimal policies

Constructing BDI Plans from Optimal POMDP Policies, with an Ap-
plication to AgentSpeak Programming [3]

Pereira presents an analysis of hybrid approach BDI-MDP and introduces al-

gorithm policyToBDIplan that extracts BDI plans from optimal POMDP poli-

cies.

• Target: BDI plans

• Model: hybrid BDI-MDP (POMDPs)

• Learning Element: POMDP using the Witness algorithm

• Goal: extract BDI plans from optimal POMDP policies

5.3 Differences Between Proposed Study and Previous Research

Section 5.2 discussed the research whose elements come closest to the work

done under this thesis. There are, however, several key differences.
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The goal of this thesis is to use reinforcement learning to generate plans with-

out a-priori knowledge on BDI agent systems. The key idea is that the result of

reinforcement learning is a policy, or policies in the general case. Since policies

map states to actions, the policies can then be used as input to generate plans in

BDI agents systems. The approach can then be summarized as a two step process:

1. Use reinforcement learning as the learning module.

2. Use policies learned as input to generate BDI plans.

None of the previous work combines the elements of RL for plan generation

on BDI agent systems. The problem selected for study in this thesis is justified

by this lack of research exploring the generation of plans in BDI systems using

reinforcement learning that does not rely on a-priori knowledge.

Table 5 summarizes previous research and shows the differences to the ap-

proach taken in this thesis.
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Study Summary Differences to
Proposed Study

Karim2006 [4] Target: plan learning and
plan improvement
Model: hybrid, inductive
Learning Element:
self-organizing neural
network (FALCON),
hypothesis abduction
Goal: plan learning via plan
extraction using PGS and
plan improvement using
hypothesis abduction

Uses self-organizing
neural network instead
of reinforcement
learning. Uses
hypothesis abduction
(inductive method)
instead of value
functions

Singh2010 [5] Target: conditions for plan
selection
Model: probabilistic
Learning Element:
decision trees
Goal: learn the probability
of success for plans

Uses decision trees
instead of
reinforcement learning.
Learns probability of of
success for plans
instead of new plans.

Dixon2000 [6] Target: off-policy controller
Model: hybrid
Learning Element: hybrid
Goal: incorporate prior
knowledge and previously
learned information into RL
agents

Research was not tied
to BDI plan learning

Tan2004 [7] Target: fusion architecture
Model: connectionist
Learning Element:
self-organizing neural
network with fuzzy logic
Goal: learn cognitive codes
across multi-modal patterns
involving sensory input,
actions, and rewards

Uses self-organizing
neural network with
fuzzy logic instead of
reinforcement learning.

36



Study Summary Differences to
Proposed Study

Pereira2007 [2] Target: BDI plans
Model: hybrid BDI-MDP
Learning Element:
completely specified MDP
Goal: extract BDI plans
from optimal policies

Uses completely
specified MDPs instead
of MDPs that are not
completely specified

Pereira2008 [3] Target: BDI plans
Model: hybrid BDI-MDP
(POMDPs)
Learning Element:
POMDP using the Witness
algorithm
Goal: extract BDI plans
from optimal POMDP
policies

Uses POMDPs instead
MDP that are not
completely specified.
Uses the Witness
algorithm instead of
reinforcement learning.

Table 5: Differences Between Proposed Study and Pre-
vious Research
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CHAPTER 6

Experimental Implementation

6.1 RL Problem Selection

The RL problem selected was based on the problem by Poole and Mack-

worth1[1] described at:

http://artint.info/html/ArtInt_262.html#davids-simple-game-ex

Figure 5. RL problem

6.2 RL Problem Description

The original version of the new RL problem description is included verbatim

from Poole and Mackworth:

“There are 25 grid locations the agent could be in. A prize could be on
one of the corners, or there could be no prize. When the agent lands
on a prize, it receives a reward of 10 and the prize disappears. When
there is no prize, for each time step there is a probability that a prize
appears on one of the corners. Monsters can appear at any time on
one of the locations marked M. The agent gets damaged if a monster
appears on the square the agent is on. If the agent is already damaged,
it receives a reward of -10. The agent can get repaired (i.e., so it is no
longer damaged) by visiting the repair station marked R.

1In the spirit of academic integrity and honesty, I disclose that Poole and Mackworth
provide an applet implementation for this problem, their code was not studied, referenced or
consulted at all. All RL code implementation is my own.
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In this example, the state consists of four components: < X, Y, P,D >,
where X is the X-coordinate of the agent, Y is the Y-coordinate of
the agent, P is the position of the prize (P=0 if there is a prize on
P0, P=1 if there is a prize on P1, similarly for 2 and 3, and P=4
if there is no prize), and D is Boolean and is true when the agent
is damaged. Because the monsters are transient, it is not necessary to
include them as part of the state. There are thus 5∗5∗5∗2 = 250 states.
The environment is fully observable, so the agent knows what state it
is in. But the agent does not know the meaning of the states; it has no
idea initially about being damaged or what a prize is.

The agent has four actions: up, down, left, and right. These move the
agent one step - usually one step in the direction indicated by the name,
but sometimes in one of the other directions. If the agent crashes into
an outside wall or one of the interior walls (the thick lines near the
location R), it remains where is was and receives a reward of -1.

The agent does not know any of the story given here. It just knows
there are 250 states and 4 actions, which state it is in at every time,
and what reward was received each time.

This game is simple, but it is surprisingly difficult to write a good
controller for it.”

6.3 RL Problem Terminology Changes

For this research I changed some of the terminology. The following term are

used:

Prizes are referred to as rewards. While this term is also used as part of the

RL terminology, it should be clear from the context when it refers to RL rewards

in general (which can be negative) and when it refers to rewards as the main goal

for the agent. Monsters were replaced by damage positions.

Action set A = {WEST,NORTH,EAST, SOUTH} replaces action set A =

{up, down, left, right} .

State component D is replaced by AgentStatus = {U,D} where U stands for

undamaged and D stands for damaged.

Rewards set R = {reward = 10, wall bump = −1, damage = −1000}.
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6.4 RL Problem Implementation

The RL problem was implemented in Java following the RL learning model

seen in chapter 1 and in figure 6.

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

Figure 6. Agent-Environment Model [2]

The code contains 4 main classes:

1. Agent

2. Environment

3. Simulation

4. GUI

The agent is initialized and then used to initialize the environment. The

simulation thread runs the loop that implements the learning functionality by

having the agent interact with the environment under diverse control parameters.

The GUI is the entry point because it provides visualization of the agent actions,

rewards, resulting states, and learning process.

Figure 7 shows the the environment grid with the agent at position (2, 2). The

reward is shown at position (4, 4). The damage positions are shown at positions

(2, 1), (4, 2) (0, 3), (1, 3) and (3, 3).
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Figure 7. Grid of new RL problem (Agent in green, reward in yellow, damage
positions in gray)

The learning functionality for the RL agent was implemented using the Q

learning algorithm. Refer to Section 3.9, Table 1 for the pseudocode for Q

learning.

Once the simulation starts, the following events take place:

1. An equiprobable initial policy is generated.

2. The agent explores the environment for 1000 episodes. Each episode

lasts 1000 steps.

3. The learned policy is written in text format to a file. The policy is also

serialized and written to file for use in the BDI environment.

4. The agent does ε− greedy selection of actions. For a 1000 episodes. The

agent select the greedy action 90% of the time. The agent still explores the

environment the remaining 10% of the time.

5. The simulation stops at 2000 episodes.
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6.5 RL Initial Policies

The initial equiprobable policy is the same for all configurations. The effect

of this policy is that when the simulation runs the agent starts without any bias

for any of the possible actions. All actions are equally possible and have the same

utility.

Figure 8. Initial Equi-probable Policy for All Learning Configurations

6.6 BDI Implementation

The BDI functionality was implemented in Jason. The code contains 4 main

classes:

1. BdiEnvironment

2. EnvironmentMechanics

3. AgentGenerator

4. GUI

The BdiEnvironment class extends Jason’s Environment class and is the

entry point into Jason’s infrastruture. The EnvironmentMechanics class is
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reused from the RL implementation to provide actual feedback from the environ-

ment resulting from the BDI agent’s actions. The AgentGenerator class imple-

ments the main functionality of this research, its purpose is to convert learned RL

policies into BDI agents. The GUI class is also reused from the RL implementation

to provide visualization of the BDI agent actions, rewards, and resulting states.

6.7 BDI Agent Generation

The AgentGenerator class takes the serialized policy learned by the RL

agent and converts it into a a BDI agent.
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CHAPTER 7

Results

This chapter presents the results of RL agents learning using the Q learning

algorithm and the use of such learned policies to generate plans for BDI agents

without relying on a-priori knowledge.

The Q learning algorithm resulted in RL learned policies that are presented

and discussed in Section 7.1 RL Learned Policies. These policies map the

greedy action(s) agents need to select in each state and encapsulate the knowledge

learned through exploration-exploitation of the environment. Learned policies

can show interesting, even counter-intuitive behavior that might not make sense

at first. Interpreting learned policies requires keeping track of the actual state of

the agent to be able to reference the applicable policy. Section 7.2 Interpre-

tation of RL Learned Policies discusses how to interpret policies and what

could happen when it is done incorrectly. Learned policies are highly dependent

on the structure of the reward set and this affects the agent’s behavior. The inter-

relationship of these factors is explored in Section 7.3 Reward Set, Learned

Policies, and Agent Behavior. Three environment-agent configurations were

tested. These are shown in Table 6. The performance of RL agents during the

1000 episode exploration phase (random action selection) and 1000 (ε-greedy)

phase (90% greedy and 10% random action selection), for all three config-

urations tested, is shown in Section 7.4 RL Results. The successful use of RL

learned policies to generate BDI agents without relying on a-priori knowledge is

the topic of Section 7.5 BDI Agent Generation. It includes the generation

process and provides an example fragment of the AgentSpeak code generated. The

performance of the BDI agents is presented and discussed in Section 7.6 BDI
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Agent Results. The results of a randomly generated BDI agent, to examine what

happens when a BDI agent blindly follows plans without being able to learn, is

presented and discussed in Section 7.7 Random BDI Agent. Finally, a sum-

mary of the results for this thesis are presented in Section 7.8 Thesis Research

Results.
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Configuration Damage Probability Description

000 p(damage) = 0 Agent status does NOT
change from undamaged to
damaged when stepping on
damage position. Agent
receives no damage when
stepping on damage position.

001 p(damage) = 0.5 Agent status changes from
undamaged to damaged
50% of the time when
stepping on damage position.
Agent receives damage 50%
of the time when stepping on
damage position if it is in
damaged status.

002 p(damage) = 1 Agent status changes from
undamaged to damaged
100% of the time when
stepping on damage position.
Agent receives damage 100%
of the time when stepping on
damage position if it is in
damaged status.

003 p(damage) = 1 Agent status changes from
undamaged to damaged
100% of the time when
stepping on damage position.
Agent receives damage 100%
of the time when stepping on
damage position if it is in
damaged status. Used for
random BDI agent.

Table 6: Environment-Agent Configurations

7.1 RL Learned Policies

Running the Q learning algorithm resulted in learned policies through re-

peated exploration-exploitation of the environment. Starting from an equi-

probable policy the agent-environment interactions resulted in changes to the ac-
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tion values for most of the actions in the action set. The selection of the greedy

action for every state then determined the policies approximating the optimal poli-

cies.

The resulting learned policies are different for all RL agents. This is no surprise

given that the RL agents tested were working in different environments. Visual

examination of the polices shows that the actions for many states have collapsed

to a single optimal action. States with more that one action result from those

actions having action values that are tied or the agent being unable to

explore the environment enough to select an optimal action.

The learned policies for all three configurations tested are shown in figures 9

to 20. The figures show how the learned policies change as the reward position

and the status of the agent change.

7.1.1 Configuration 000 Learned Policies

Figures 9 to 12 show the learned policies for configuration 000. Examination

of the policies as the reward position changes from reward position 0 to reward

position 3 shows that the policies guide the agent to select the action that moves

the agent in the direction of the reward position.

In general, when the reward position is at position 0, the agent tends to move

WEST and NORTH. When the reward position is at position 1, the agent tends

to move EAST and NORTH. When the reward position is at position 2, the

agent tends to move WEST and SOUTH. Finally, when the reward position is

at position 3, the agent tends to move EAST and SOUTH.

7.1.2 Configuration 001 Learned Policies

Figures 13 to 16 show the learned policies for configuration 001. Just as in

configuration 000, examination of the policies as the reward position changes from
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reward position 0 to reward position 3 shows that the policies guide the agent to

select the action that moves the agent in the direction of the reward position.

The difference for this configuration is that the agent can receive damage from

the damage position 50% of the time. How does this affect the agent’s behavior?

The agent learns how to deal with the damage positions in the environment. For

example, an agent with damaged status starting at position (0, 4) with reward

position at 0 would first move EAST two steps, then NORTH two steps to avoid

the damage positions. Only then it would move two steps WEST and NORTH

until it gets to the reward position.

7.1.3 Configuration 002 Learned Policies

Figures 17 to 20 show the learned policies for configuration 002. Just as in

configuration 000 and 001, examination of the policies as the reward position

changes from reward position 0 to reward position 3 shows that the policies guide

the agent to select the action that moves the agent in the direction of the reward

position.

In this configuration the agent, similarly to configuration 001, learns how

to deal with the damage positions in the environment. The difference between

configurations 001 and 002 is that in configuration 001, when the agents steps on

a damage position, there is 50% probability that the agent will not change from

undamaged to damaged status. This allows the agent to follow the shortest

routes between rewards positions as long as it continues to have undamaged

status. In configuration 002, stepping on a damage position changes the agent

from undamaged to damaged status with 100% probability. As a result, the

agent learns to avoid the damage positions at the cost of having to follow longer

routes between the reward positions.
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Figure 9. Learned Policies for Configuration 000, Reward at 0, Undamaged and
Damaged

Figure 10. Learned Policies for Configuration 000, Reward at 1, Undamaged and
Damaged
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Figure 11. Learned Policies for Configuration 000, Reward at 2, Undamaged and
Damaged

Figure 12. Learned Policies for Configuration 000, Reward at 3, Undamaged and
Damaged
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Figure 13. Learned Policies for Configuration 001, Reward at 0, Undamaged and
Damaged

Figure 14. Learned Policies for Configuration 001, Reward at 1, Undamaged and
Damaged
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Figure 15. Learned Policies for Configuration 001, Reward at 2, Undamaged and
Damaged

Figure 16. Learned Policies for Configuration 001, Reward at 3, Undamaged and
Damaged
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Figure 17. Learned Policies for Configuration 002, Reward at 0, Undamaged and
Damaged

Figure 18. Learned Policies for Configuration 002, Reward at 1, Undamaged and
Damaged
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Figure 19. Learned Policies for Configuration 002, Reward at 2, Undamaged and
Damaged

Figure 20. Learned Policies for Configuration 002, Reward at 3, Undamaged and
Damaged
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7.2 Interpretation of RL Learned Policies

One must be careful when interpreting the RL learned policies. Let us examine

an example to show how the policies work and how easy it can be to miss a state

change that changes the policy in use.

Consider the case of the RL agent in configuration 0002 [p(damage) = 1]

with initial agent state = D and position (1, 0) [the repair position] and reward

position 3 at (4, 4). If we follow the policies in figure 20 we end up the the following

sequence < X, Y, P, S >, where X is the agent’s X position, Y is the agent’s Y

position, P is the reward position, and S is the agent’s status:

< 1, 0, 3, U >,< 1, 1, 3, U >,< 2, 1, 3, U >,< 3, 1, 3, U >,< 3, 2, 3, U >,< 4, 2, 3, U >

Suddenly the agent finds itself in a loop between the following two states:

< 3, 2, 3, U >←→< 4, 2, 3, U >

What happened? We overlooked that when the agent gets to position (2, 1)

the agent changes status to damaged because position (2, 1) is a damage

position with damage happening with p = 1. Instead, the correct sequence

is:

< 1, 0, 3, U >,< 1, 1, 3, U >,< 2, 1, 3, D >,< 2, 2, 3, D >,< 2, 3, 3, D >,< 2, 4, 3, D >

· · · , < 3, 4, 3, D >,< 4, 4, 3, D >

which gets the reward at reward position 3, position (4, 4).

Learned policies can show interesting, even counter-intuitive behavior that is

highly dependent on the structure of the reward set. This is the topic discussed

more thoroughly in the next section, section 7.3.
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7.3 Reward Set, Learned Policies, and Agent Behavior

Applying RL to learning tasks can result in interesting and sometimes even

counter-intuitive policies that are highly dependent on the structure of the reward

set. RL researchers and practitioners need to be careful in selecting the reward

structure such that the right behavior is learned.

The following example comes directly from the research done for this thesis.

The RL task description has a repair station where the agent can repair itself if it

is damaged. During one of the learning experiments, a reward was set to reward

the agent’s action consisting of reaching the repair station when damaged. The

problem with this approach was that it assigned a high reward to the repair action

in relation to the reward for the agent getting damage. The agent learned to

exploit this reward differential to get higher rewards. In other words:

reward(D → U) + reward(damage position) > reward(reward position)

This resulted in the following clever behavior by the agent. The agent would

get damage which would change its status from undamaged (U) to damaged (D).

It would follow by going to the repair position to get repaired and receive the

reward for changing its status from damaged (D) to undamaged (U). The reward

positions were being ignored. The agent learned a behavior that maximized it

average returns even though it was not learning what I was intending it to learn.

“The agent always learns to maximize its reward. If we want it to do
something for us, we must provide rewards to it in such a way that in
maximizing them the agent will also achieve our goals. It is thus critical
that the rewards we set up truly indicate what we want accomplished.
In particular, the reward signal is not the place to impart to the agent
prior knowledge about how to achieve what we want it to do. For
example, a chess-playing agent should be rewarded only for actually
winning, not for achieving subgoals such taking its opponent’s pieces or
gaining control of the center of the board. If achieving these sorts
of subgoals were rewarded, then the agent might find a way
to achieve them without achieving the real goal. For example,
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it might find a way to take the opponent’s pieces even at the cost of
losing the game. The reward signal is your way of communicating to
the robot what you want it to achieve, not how you want it achieved.”
[emphasis added] [1]

7.4 RL Results

All three RL agents learned policies policies approximating the optimal poli-

cies after 1, 000 steps of simulation experience (1000 episodes lasting 1000 steps

each).

The results for the RL agent in configuration 000 is shown in figure 21.

In this configuration all damage probabilities were set to 0. The effect of dam-

age probabilities being 0 is that the agent is free to move around and the only

negative rewards come from the agent bumping into the walls in the

environment. As a result, the average returns for this agent are higher than

for those in configuration 001 and 002. The agent shows an average return of

approximately −100 in the exploration phase and 2750 in the ε-greedy phase.

The results for the RL agent in configuration 001 is shown in figure 22. In

this configuration all damage probabilities were set to 0.5. In this configuration

with damage probabilities > 0, the agent is not free to move around without

the possibility of having negative rewards due to damage and bumping

into the walls. The average returns clearly show it with approximately −9500 in

the exploration phase and −1000 in the ε-greedy phase.

The results for the RL agent in configuration 002 is shown in figure 23.

In this configuration all damage probabilities are set to 1. The agent is certain

to have negative rewards due to damage and bumping into the walls.

This results in even lower average returns of −19000 in the exploration phase and

−2500 in the ε-greedy phase.

Why the negative returns when operating in the ε-greedy phase for all three

59



configurations? The negative returns result from the implementation of the ε-

greedy phase with 90% greedy and 10% random action selection. Even though the

agents are acting greedily they do so only 90% of the time. The remaining 10%

they are choosing random actions.

The results for all 3 RL agents combined in a single graph are shown in figure

24.
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7.5 BDI Agent Generation

An AgentGenerator class takes the serialized policy learned by the RL agent

and converts it into a a BDI agent. A fragment of the the generated code for

bdi agent000 is shown.

// Agent bdi_agent000 generated from Q values

/* Initial beliefs and rules */

return(0).

calculation(done).

/* Initial goals */

/* Plans */

+state(0,0,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,0,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

...

+!calculateReturn : not calculation(done)

<- ?reward(R);

.print("Reward is: ", R);

?return(Rt);

Return = Rt+R;

-reward(R);

-+return(Return);

.print("Total return is: ", Return);

+calculation(done);

?state(X,Y,P,S);

-+state(X,Y,P,S).
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Initial beliefs return(0) and calculation(done) are used to indicate that the

agent believes its reward return is 0 and that it is done calculating reward returns.

The plans consists of observing the state, performing the optimal action (ties

are randomly broken for tied actions during agent generation), observation of the

reward and calculation of the return.

A total of 3 agents were generated: bdi agent000, bdi agent001, and

bdi agent002. The full listings are included as an appendix.

7.6 BDI Agent Results

After generating the BDI agents, they were evaluated in their environments

for 200 episodes lasting 1000 steps each.

The results for bdi agent000, generated from the learned policy of RL agent

000, are shown in figure 25. In this configuration all damage probabilities are set

to 0. The average return was approximately 3100.

The results for bdi agent001, generated from the learned policy of RL agent

001 are shown in figure 26. In this configuration all damage probabilities are set

to 0.5. The average return was approximately 2250.

The results for bdi agent002, generated from the learned policy of RL agent

002, are shown in figure 27. In this configuration all damage probabilities are set

to 1. The average return was approximately 2250.

The results for all 3 BDI agents combined in a single graph are shown in figure

28.

Why are the average returns positive for the BDI agents and negative for

the RL agents? This results from the implementation of the BDI AgentGener-

ator class. The RL agents use ε-greedy phase with 90% greedy and 10% random

action selection, meaning that they still perform random actions that can result

in negative rewards. The BDI agents were implemented by selecting the greedy
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action for all possible states; they do not perform any random action selection.

In other words, the RL agents used an exploration-exploitation strategy while the

BDI agents only used an exploitation strategy.

The difference in average returns for configuration 000 versus 001 and 002

can be explained by fact that the agent is not concerned with damage positions

in configuration 000, it will never get damage. In contrast, the agents have to

learn how to maneuver between the damage positions for configurations 001 and

002. This learned behavior ends up increasing the travel distance between reward

positions and results in less overall average returns because the number of steps

per episode is fixed.
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7.7 Random BDI Agent

A random BDI agent was created by randomly selecting the best action from

the actions available. After a few iterations it became clear how easy it was for

the resulting agent to have loops that were not just sub-optimal but completely

bad. The agent gets in a 2 step cycle stepping over a damage position over and

over. Because the agent’s behavior is hard-coded into its plan, the agent is unable

to learn. The end result is a pathological loop with returns of −500, 000.

Figure 29 shows the initial sequence that ends in a fatal loop for the random

BDI agent.

Figure 29. Random BDI Agent Sequence Steps 0,1

Figures 30 and 31 show the returns for the random BDI agent and its com-

parison with the returns for the other BDI agents.
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7.8 Thesis Research Results

The use of RL as a way to to generate plans for BDI agents without relying

on a-priori knowledge was sucessfully demonstrated.

The RL agents explored and exploited their environment resulting in poli-

cies that approximated optimal policies and performed much better than random

walks. The BDI agents did not exist until they were generated by the AgentGen-

erator using the polices learned by the RL agents. Once the BDI agent’s plans

could be tested against the environment they were shown to perform successfully.
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CHAPTER 8

Discussion

This chapter discusses the contributions of this research, its limitations and

future work that can expand and augment the work done as part of this thesis.

8.1 Contributions

The major contribution of this research is the demonstration of the practical

and successful use of RL, a computational learning framework based on the

idea of learning from repeated interactions with the environment, to generate

plans in BDI systems without relying on a-priori knowledge.

The ability to learn and not follow the same plans over and over is arguably a

key characteristic of intelligent systems. The results of this thesis provide another

tool to augment BDI agents with learning capabilities. One of the benefits of using

RL is that plans need not be fixed. RL can learn online and plans generated can

change in response to changes in the environment.

8.2 Limitations

Even though the generation of BDI plans without relying on a-priori knowl-

edge was successfully demonstrated, there remains a big limitation: how to express

the BDI plans from learned RL policies. Human input is still necessary to decide

the plans’ expression or representation. There are arguably infinite ways to express

an equivalent plan.

The situation is analogous to the case of writing a compiler for a higher level

language, somebody needs to decide what is the target language that the source

is being compiled into.
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8.3 Future Work

The research conducted in this thesis can be improved in a number of ways.

1. Co-located RL learning and BDI plan generation (Online learning)

2. Apply to problems which require advanced RL techniques: Kanerva proto-

types, function approximation, neural networks and others.

3. Focus on task decomposition and independent task learning to learn in more

challenging state-spaces.

4. Automatic BDI plan generation by focusing on the gram-

mar/architecture/organization of the plans. There are many ways

that plans can be expressed. This can include Domain Specific Languages

(DSLs) for combining RL and BDI planning.
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APPENDIX

Generated BDI Agents

The generated AgentSpeak BDI agent code for each of the 3 configurations

evaluated is show in the next 3 sections.

A.1 Configuration 000
// Agent bdi_agent000 generated from Q values

/* Initial beliefs and rules */

return(0).

calculation(done).

/* Initial goals */

/* Plans */

+state(0,0,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,0,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,0,0,0) : calculation(done)

<- -calculation(done);
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action(w);

!calculateReturn.

+state(0,1,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,1,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,1,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,2,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,2,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,2,0,0) : calculation(done)
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<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,3,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,3,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,3,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,3,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,4,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.
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+state(2,4,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,4,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,0,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,0,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,0,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,1,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.
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+state(1,1,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,1,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,1,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,1,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,2,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,2,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,2,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,2,1,0) : calculation(done)

<- -calculation(done);

action(n);
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!calculateReturn.

+state(0,3,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,3,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,3,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,3,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,3,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,4,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,4,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,1,0) : calculation(done)

<- -calculation(done);
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action(n);

!calculateReturn.

+state(4,4,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,0,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,0,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,1,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,2,0) : calculation(done)
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<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,2,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,2,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,2,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,2,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.
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+state(1,3,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,3,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,3,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,3,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,4,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(1,4,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,4,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,4,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,4,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.
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+state(0,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,1,3,0) : calculation(done)

<- -calculation(done);

action(s);
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!calculateReturn.

+state(4,1,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,2,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,2,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,2,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,2,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,3,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,3,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,3,3,0) : calculation(done)

<- -calculation(done);
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action(e);

!calculateReturn.

+state(3,3,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,3,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,4,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,4,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,4,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,4,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,4,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(0,0,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,0,4,0) : calculation(done)

90



<- -calculation(done);

action(e);

!calculateReturn.

+state(2,0,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,0,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,1,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,1,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,1,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,1,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,1,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.
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+state(0,2,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,2,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,2,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,2,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,2,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,3,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,3,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,3,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.
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+state(4,3,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,4,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,4,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,4,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,4,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(0,0,0,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,0,0,1) : calculation(done)

<- -calculation(done);

action(s);
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!calculateReturn.

+state(3,0,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,0,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,1,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,1,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,1,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,1,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,1,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,2,0,1) : calculation(done)

<- -calculation(done);
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action(w);

!calculateReturn.

+state(2,2,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,2,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,3,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,3,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,3,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,3,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,4,0,1) : calculation(done)
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<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,4,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,4,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,4,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,0,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,0,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.
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+state(4,0,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,1,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,1,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,1,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,2,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,2,1,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.
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+state(3,2,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,2,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,3,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,3,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,3,1,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,3,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,3,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,4,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,1,1) : calculation(done)

<- -calculation(done);

action(n);
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!calculateReturn.

+state(2,4,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,4,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,4,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,0,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,2,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,0,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,2,1) : calculation(done)

<- -calculation(done);
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action(s);

!calculateReturn.

+state(1,1,2,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,1,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,1,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,1,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,2,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,2,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,2,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,2,1) : calculation(done)
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<- -calculation(done);

action(s);

!calculateReturn.

+state(0,3,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,3,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,3,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,3,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,3,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(1,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.
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+state(3,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,0,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,0,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,0,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,3,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.
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+state(2,1,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,1,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,2,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,2,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,2,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,2,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,3,3,1) : calculation(done)

<- -calculation(done);

action(e);
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!calculateReturn.

+state(1,3,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,3,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,3,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,3,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,4,3,1) : calculation(done)

<- -calculation(done);
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action(s);

!calculateReturn.

+state(0,0,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,0,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,0,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,0,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,1,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,1,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,1,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,4,1) : calculation(done)
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<- -calculation(done);

action(n);

!calculateReturn.

+state(4,1,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,2,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,2,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,2,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,3,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(1,3,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.
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+state(2,3,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,3,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,3,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,4,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,4,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,4,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,4,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+!calculateReturn : not calculation(done)

<- ?reward(R);

.print("Reward is: ", R);

?return(Rt);
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Return = Rt+R;

-reward(R);

-+return(Return);

.print("Total return is: ", Return);

+calculation(done);

?state(X,Y,P,S);

-+state(X,Y,P,S).

A.2 Configuration 001
// Agent bdi_agent001 generated from Q values

/* Initial beliefs and rules */

return(0).

calculation(done).

/* Initial goals */

/* Plans */

+state(0,0,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,0,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,0,0) : calculation(done)

<- -calculation(done);
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action(w);

!calculateReturn.

+state(0,1,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,1,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,1,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,2,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,2,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,2,0,0) : calculation(done)
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<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,3,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,3,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,3,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,3,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,4,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.
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+state(2,4,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,4,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,0,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,0,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,0,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.
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+state(1,1,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,1,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,1,1,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,1,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,2,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,2,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,2,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,2,1,0) : calculation(done)

<- -calculation(done);

action(w);
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!calculateReturn.

+state(0,3,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,3,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,3,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,3,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,3,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,4,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,4,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,1,0) : calculation(done)

<- -calculation(done);
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action(n);

!calculateReturn.

+state(4,4,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,0,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,0,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,1,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,2,0) : calculation(done)
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<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,1,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,2,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,2,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,2,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.
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+state(1,3,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,3,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,3,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,3,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,4,2,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,4,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,4,2,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,4,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.
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+state(0,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,1,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,3,0) : calculation(done)

<- -calculation(done);

action(s);
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!calculateReturn.

+state(4,1,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,2,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,2,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,2,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,2,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,2,3,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,3,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,3,3,0) : calculation(done)

<- -calculation(done);
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action(e);

!calculateReturn.

+state(3,3,3,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,3,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,4,3,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,3,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,4,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,4,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,4,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,0,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,0,4,0) : calculation(done)
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<- -calculation(done);

action(e);

!calculateReturn.

+state(2,0,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,0,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,0,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,1,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,1,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,1,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,1,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.
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+state(0,2,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,2,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,2,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,2,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,3,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,3,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,3,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,3,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.
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+state(4,3,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,4,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,4,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,4,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,4,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,4,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(0,0,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(1,0,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,0,0,1) : calculation(done)

<- -calculation(done);

action(e);
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!calculateReturn.

+state(3,0,0,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,1,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,1,0,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,1,0,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,2,0,1) : calculation(done)

<- -calculation(done);
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action(w);

!calculateReturn.

+state(2,2,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,2,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,3,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,3,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,3,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,3,0,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,4,0,1) : calculation(done)

124



<- -calculation(done);

action(e);

!calculateReturn.

+state(1,4,0,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,4,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,4,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,0,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,1,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,0,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,0,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.
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+state(4,0,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(0,1,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,1,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,1,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,2,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,2,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.
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+state(3,2,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,2,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,3,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,3,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,3,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,3,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,3,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,4,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,4,1,1) : calculation(done)

<- -calculation(done);

action(e);
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!calculateReturn.

+state(2,4,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,1,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,4,1,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,0,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,2,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,0,2,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,0,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,1,2,1) : calculation(done)

<- -calculation(done);
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action(s);

!calculateReturn.

+state(1,1,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,2,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,2,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,2,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,2,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,2,1) : calculation(done)
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<- -calculation(done);

action(s);

!calculateReturn.

+state(0,3,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,3,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,3,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,3,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,3,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(1,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.
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+state(3,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,0,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,0,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,3,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,1,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.
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+state(2,1,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,3,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,2,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,2,3,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,3,3,1) : calculation(done)

<- -calculation(done);

action(s);
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!calculateReturn.

+state(1,3,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,3,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,3,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,3,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,4,3,1) : calculation(done)

<- -calculation(done);
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action(e);

!calculateReturn.

+state(0,0,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(1,0,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,0,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,0,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,0,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,1,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(1,1,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,1,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,4,1) : calculation(done)
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<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,2,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,2,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,2,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,2,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,2,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(0,3,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,3,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

135



+state(2,3,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,3,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,3,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(0,4,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,4,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,4,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,4,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,4,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+!calculateReturn : not calculation(done)

<- ?reward(R);

.print("Reward is: ", R);

?return(Rt);
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Return = Rt+R;

-reward(R);

-+return(Return);

.print("Total return is: ", Return);

+calculation(done);

?state(X,Y,P,S);

-+state(X,Y,P,S).

A.3 Configuration 002
// Agent bdi_agent002 generated from Q values

/* Initial beliefs and rules */

return(0).

calculation(done).

/* Initial goals */

/* Plans */

+state(0,0,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,0,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,0,0,0) : calculation(done)

<- -calculation(done);

action(s);
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!calculateReturn.

+state(0,1,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,1,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,1,0,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,2,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,2,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,2,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,2,0,0) : calculation(done)

<- -calculation(done);
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action(w);

!calculateReturn.

+state(4,2,0,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(0,3,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(1,3,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,3,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,3,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,3,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,4,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,4,0,0) : calculation(done)
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<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,0,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,4,0,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,0,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(0,1,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.
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+state(1,1,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,1,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,1,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,1,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,2,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,2,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,2,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,2,1,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.
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+state(0,3,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,3,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,3,1,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,3,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,3,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,4,1,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,4,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,4,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,1,0) : calculation(done)

<- -calculation(done);

action(n);
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!calculateReturn.

+state(4,4,1,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,0,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,2,0) : calculation(done)

<- -calculation(done);
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action(w);

!calculateReturn.

+state(3,1,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,1,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,2,2,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,2,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,2,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,2,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,2,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,3,2,0) : calculation(done)
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<- -calculation(done);

action(e);

!calculateReturn.

+state(2,3,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,3,2,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,3,2,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,4,2,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,2,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,4,2,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,2,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,4,2,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.
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+state(0,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,1,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.
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+state(4,1,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,2,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,2,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,2,3,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,2,3,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,3,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(1,3,3,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,3,3,0) : calculation(done)

<- -calculation(done);

action(e);
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!calculateReturn.

+state(3,3,3,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,3,3,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,4,3,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,4,3,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,4,3,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,3,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,4,3,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,0,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,4,0) : calculation(done)

<- -calculation(done);
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action(n);

!calculateReturn.

+state(2,0,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,0,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,0,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,1,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,1,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,1,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(0,2,4,0) : calculation(done)
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<- -calculation(done);

action(w);

!calculateReturn.

+state(1,2,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,2,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,2,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,2,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(1,3,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,3,4,0) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,3,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.
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+state(4,3,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,4,4,0) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,4,4,0) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,4,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,4,4,0) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,0,0,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,0,0,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,0,0,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.
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+state(3,0,0,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,0,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,1,0,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,1,0,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,2,0,1) : calculation(done)

<- -calculation(done);

action(w);
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!calculateReturn.

+state(2,2,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,2,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,3,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,3,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,3,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,3,0,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,4,0,1) : calculation(done)

<- -calculation(done);

153



action(e);

!calculateReturn.

+state(1,4,0,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,4,0,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,4,0,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,0,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,1,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,0,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,0,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,0,1,1) : calculation(done)
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<- -calculation(done);

action(n);

!calculateReturn.

+state(0,1,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,1,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,1,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,1,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,2,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,2,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.
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+state(3,2,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,2,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,3,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,3,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,3,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,3,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,3,1,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,4,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,4,1,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.
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+state(2,4,1,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(3,4,1,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,4,1,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,0,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,0,2,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,0,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,2,1) : calculation(done)

<- -calculation(done);

action(s);
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!calculateReturn.

+state(1,1,2,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,1,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,2,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,2,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,2,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,2,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,2,1) : calculation(done)

<- -calculation(done);
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action(s);

!calculateReturn.

+state(0,3,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,3,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,3,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,3,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,3,2,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(1,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,4,2,1) : calculation(done)
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<- -calculation(done);

action(w);

!calculateReturn.

+state(4,4,2,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,0,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,0,3,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,0,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,0,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,1,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.
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+state(2,1,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,1,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,1,3,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,2,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,2,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,2,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,2,3,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,2,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,3,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.
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+state(1,3,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,3,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,3,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,3,3,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,4,3,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(4,4,3,1) : calculation(done)

<- -calculation(done);

action(w);
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!calculateReturn.

+state(0,0,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,0,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(2,0,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(3,0,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,0,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(0,1,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(1,1,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,1,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,1,4,1) : calculation(done)

<- -calculation(done);
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action(n);

!calculateReturn.

+state(4,1,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(0,2,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,2,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(2,2,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(3,2,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(4,2,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,3,4,1) : calculation(done)

<- -calculation(done);

action(n);

!calculateReturn.

+state(1,3,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(2,3,4,1) : calculation(done)
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<- -calculation(done);

action(s);

!calculateReturn.

+state(3,3,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(4,3,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(0,4,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(1,4,4,1) : calculation(done)

<- -calculation(done);

action(e);

!calculateReturn.

+state(2,4,4,1) : calculation(done)

<- -calculation(done);

action(s);

!calculateReturn.

+state(3,4,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+state(4,4,4,1) : calculation(done)

<- -calculation(done);

action(w);

!calculateReturn.

+!calculateReturn : not calculation(done)

<- ?reward(R);

.print("Reward is: ", R);

?return(Rt);

Return = Rt+R;
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-reward(R);

-+return(Return);

.print("Total return is: ", Return);

+calculation(done);

?state(X,Y,P,S);

-+state(X,Y,P,S).

166



BIBLIOGRAPHY

Andre, D., Friedman, N., and Parr, R., “Generalized prioritized sweeping,” in
Advances in Neural Information Processing Systems. MIT Press, 1998.

Baldassarre, G., “Forward and bidirectional planning based on reinforcement learn-
ing and neural networks in a simulated robot,” in ABiALS, 2003, pp. 179–200.

Bauer, T., Erwig, M., Fern, A., and Pinto, J., “Adaptation-based programming in
haskell,” in DSL, 2011, pp. 1–23.

Bertoli, P. and Cimatti, A., “Improving heuristics for planning as search in belief
space,” in AIPS, 2002, pp. 143–152.
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planning into bdi systems,” Scalable Computing: Practice and Experience,
vol. 8, no. 1, 2007.

Moore, A. W. and Atkeson, C. G., “Prioritized sweeping: Reinforcement learning
with less data and less time,” in Machine Learning, 1993, pp. 103–130.

Nair, R. and Tambe, M., “Hybrid bdi-pomdp framework for multiagent teaming,”
J. Artif. Int. Res., vol. 23, no. 1, pp. 367–420, Apr. 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1622503.1622512

169

http://dl.acm.org/citation.cfm?id=1757898.1757924
http://dx.doi.org/10.1109/IAT.2006.99
http://dl.acm.org/citation.cfm?id=1622503.1622512


Nason, S. and Laird, J. E., “Soar-rl: Integrating reinforcement learning with soar,”
in Cognitive Systems Research, 2004, pp. 51–59.

Nilsson, N. J., “Teleo-reactive programs for agent control,” J. Artif. Intell. Res.
(JAIR), vol. 1, pp. 139–158, 1994.

Nunes, L. and Oliveira, E., “On learning by exchanging advice,” CoRR, vol.
cs.LG/0203010, 2002.

Partalas, I., Vrakas, D., and Vlahavas, I., “Reinforcement learning and automated
planning: A survey,” in Advanced Problem Solving Techniques, Vrakas, D. and
Vlahavas, I., Eds. IGI Global, 2008.

Peng, J. and Williams, R. J., “Efficient learning and planning within the dyna
framework,” in Adaptive Behavior, 1993, pp. 437–454.

Pereira, D. R. and Dimuro, G. P., “Um algoritmo para extração de um plano bdi
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