
DEEP BELIEF NETWORKS IN CLOJURE

BY

JAMES CHRISTOPHER SIMS

ADVISOR

DR. LUTZ HAMEL

UNIVERSITY OF RHODE ISLAND

2016

AN IMPLEMENTATION OF DEEP BELIEF NETWORKS USING

RESTRICTED BOLTZMANN MACHINES IN CLOJURE

BY

JAMES CHRISTOPHER SIMS

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2016

ABSTRACT

In a work that ultimately heralded a resurgence of deep learning as a

viable and successful machine learning model, Dr. Geoffrey Hinton described

a fast learning algorithm for Deep Belief Networks [1]. This study explores

that result and the underlying models and assumptions that power it.

The result of the study is the completion of a Clojure library (deebn)

implementing Deep Belief Networks, Deep Neural Networks, and Restricted

Boltzmann Machines. deebn is capable of generating a predictive or classifi-

cation model based on varying input parameters and dataset, and is available

to a wide audience of Clojure users via Clojars1, the community repository

for Clojure libraries. These capabilities were not present in a native Clojure

library at the outset of this study.

deebn performs quite well on the reference MNIST dataset with no dataset

modification or hyperparameter tuning, giving a best performance in early

tests of a 2.00% error rate.

1https://clojars.org/deebn

https://clojars.org/deebn

ACKNOWLEDGMENTS

I’d like to first thank Dr. Lutz Hamel for his tremendous help and support

of this work, and his patience during my many questions. His guidance from

topic selection and refinement to technical feedback was invaluable and made

this study possible.

I’d like to thank my committee members Dr. Gavino Puggioni and Dr.

Haibo He for their help in technical review of this study, and Dr. Resit

Sendag for agreeing to serve as a committee member on such short notice!.

I’d also like to thank Dr. Cheryl Foster for serving as Chair of my thesis

committee.

I’d also like to thank Lorraine Berube, who helped me in a myriad of

different ways throughout my time as a student at the University of Rhode

Island. She was always available with a helpful smile, and I am grateful for

it.

I’d like to finally thank my loving wife Kasey, who was a constant and

unending source of support and determination. She was there every day to

keep me on track with patience and encouragement.

ii

Table of Contents

Abstract . i

Acknowledgments . ii

Table of Contents . iii

1 Introduction 1

1.1 Summary of Remaining Chapters 2

2 Review of Literature 4

2.1 Machine Learning . 4

2.1.1 Leading to a Deep Belief Network 4

2.2 Probabilistic Graphical Models 5

2.2.1 Conditional Independence 5

2.2.2 Inference . 5

2.2.3 Markov Random Fields 6

2.3 Energy-Based Models . 8

2.3.1 Learning a Markov Random Field 8

2.3.2 Boltzmann Machines 9

2.4 Artificial Neural Networks . 9

2.4.1 The Perceptron . 11

iii

2.4.2 Activation Functions 11

2.4.3 Cost Function . 13

2.4.4 Backpropagation . 14

2.5 Clojure . 15

3 Deep Learning Models 16

3.1 Restricted Boltzmann Machines 17

3.1.1 Training a Restricted Boltzmann Machine 17

3.1.2 Contrastive Divergence 19

3.2 Deep Belief Networks . 20

3.2.1 Greedy By-Layer Pre-Training 20

3.3 Deep Neural Networks . 24

3.4 Training a Better Restricted Boltzmann Machine 24

3.4.1 Initialization . 25

3.4.2 Momentum . 25

3.4.3 Monitoring the Energy Gap for an Early Stop 26

3.5 Training a Better Neural Network 26

3.5.1 Cross-Entropy Error 27

3.5.2 L2 Regularization . 27

3.6 Related Work . 28

3.6.1 Deep Boltzmann Machines 28

3.6.2 Deep Autoencoders . 28

4 Implementation 30

4.1 deebn . 30

iv

4.2 An Abundance of Matrix Operations 31

4.2.1 core.matrix . 31

4.2.2 vectorz-clj . 31

4.2.3 Clojure Records . 32

4.3 Restricted Boltzmann Machines 32

4.3.1 Creating a Restricted Boltzmann Machine 32

4.3.2 Learning a Restricted Boltzmann Machine 33

4.4 Deep Belief Networks . 34

4.4.1 Creating a Deep Belief Network 34

4.4.2 Learning a Deep Belief Network 35

4.5 Deep Neural Networks . 35

4.5.1 Creating a Deep Neural Network 36

4.5.2 Learning a Deep Neural Network 36

4.6 Using the Library . 37

5 Performance 39

5.1 Preliminary Performance on MNIST Dataset 39

5.2 Cross-Validated Results . 40

6 Conclusion 42

6.1 Future Work . 42

6.1.1 Java Interoperability 42

6.1.2 Visualization . 43

6.1.3 Using Different Matrix Libraries 43

6.1.4 Persistent Contrastive Divergence 44

v

6.1.5 Mutation and Performance 45

6.2 A Stepping Stone . 45

A Algorithms 46

A.1 Deep Belief Network Learning 46

A.2 Restricted Boltzmann Machine Learning 47

vi

List of Figures

2.1 Markov random field . 7

2.2 Artificial Neural Network with one hidden layer 10

2.3 A single perceptron . 12

2.4 The logistic function . 13

2.5 The hypertangent function . 13

3.1 Restricted Boltzmann Machine 17

3.2 Deep Belief Network . 20

3.3 An infinite logistic belief net with tied weights [1] 22

3.4 Pre-training and fine-tuning a deep autoencoder [9] 29

6.1 Exact log likelihood with 25 hidden units on MNIST dataset [42] 44

vii

List of Tables

3.1 Default RBM element values 25

4.1 Default RBM hyperparameters 34

4.2 Default DBN hyperparameters 36

4.3 Default DNN hyperparameters 37

5.1 Preliminary Results on MNIST dataset 41

5.2 10-Fold Cross-Validated Results on MNIST dataset 41

viii

Chapter 1

Introduction

Machine Learning is an extensive field of research, and this study delves into

one corner of it, especially pertaining to research conducted by Dr. Geoffrey

Hinton.

Hinton has contributed a number of important advances to the field

of machine learning, including his work with Boltzmann machines [2]–[5],

bringing attention to the backpropagation training algorithm [6], describing

the “wake-sleep” algorithm [7], introducing “contrastive divergence” [8], and

most relevant to this study, his work with Restricted Boltzmann Machines

(RBMs) and Deep Belief Networks (DBNs) [1], [9]–[12].

His most recent work with Deep Belief Networks, and the work by other

luminaries like Yoshua Bengio, Yann LeCun, and Andrew Ng have helped to

usher in a new era of renewed interest in deep networks.

In light of the initial Deep Belief Network introduced in Hinton, Osindero,

and Teh [1], and Hinton and Salakhutdinov [9], pioneering work has been

completed using these models to produce winning models for various machine

learning competitions, problems and datasets [13], [14].

1

To capitalize on the breakthroughs that these models represent, it’s vital

to use these ideas and reference implementations to create a library that in-

dustry practitioners can leverage in different settings. This study will outline

and document the implementation of Restricted Boltzmann Machine, Deep

Belief Network, and Deep Neural Network machine learning models in the

Clojure programming language. In addition to the base models as outlined

by Hinton, et al., additional model features developed by others have been

integrated to increase model performance.

1.1 Summary of Remaining Chapters

Chapter 2: Literature Review This chapter presents an overview of the

work and research necessary to understand the concepts behind the

Restricted Boltzmann Machine, the Deep Belief Network, and the Deep

Neural Network. We also describe our language of choice, Clojure, and

the benefits it offers in this application.

Chapter 3: Deep Learning Models Given the theory covered in chap-

ter 2, we now outline the baseline model and algorithm described

in Hinton and Salakhutdinov [9] and Hinton, Osindero, and Teh [1]

along with improvements described in Hinton [10] for RBMs and im-

provements in Nielsen [15] for neural networks.

Chapter 4: Implementation This chapter describes deebn, the library

released as a result of the work described in this thesis. We cover the

data structures and algorithms in detail used to train RBMs, DBNs,

2

and Deep Neural Networks (DNNs). Finally, instructions on using the

library are included.

Chapter 5: Performance As a simple test case to ensure the fitness of the

library, we compare its performance on a reference data set compared

to other classification machine learning models.

Chapter 6: Conclusion To conclude the thesis, we outline future work

that could be completed related to the deebn library.

3

Chapter 2

Review of Literature

2.1 Machine Learning

A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P , if

its performance at tasks in T , as measured by P improves with

experience E.[16]

Machine learning describes this basic task with which humans are innately

familiar. Scholars and scientists have come from many different fields of

thought in an attempt to find the best approach to building effective machine

learning models.

2.1.1 Leading to a Deep Belief Network

Restricted Boltzmann Machines (section 3.1), Deep Belief Networks (sec-

tion 3.2), and Deep Neural Networks (section 3.3) pre-initialized from a Deep

Belief Network can trace origins from a few disparate fields of research: prob-

abilistic graphical models (section 2.2), energy-based models (section 2.3),

4

and neural networks (section 2.4).

2.2 Probabilistic Graphical Models

Probabilistic graphical models provide a concise and information-dense method

to communicate different properties of a joint probability distribution, as well

as efficient methods for inference and sampling. The layout of a graphical

model efficiently and explicitly codifies independence between random vari-

ables and allows for powerful inference in large joint distributions.

2.2.1 Conditional Independence

Two distributions are conditionally independent if and only if the conditional

joint distribution is equal to the product of each of the marginal conditional

distributions. In other terms, where X, Y, Z are probability distributions:

X ⊥ Y | Z ⇐⇒ p(X, Y | Z) = p(X | Z)p(Y | Z)

This facilitates factorization over large joint distributions, and is essential

to making operations on these large distributions tractable.

The graphical model codifies random variables as nodes in the graph, and

conditional independence as a lack of edge between two nodes.

2.2.2 Inference

One of the primary uses of probabilistic graphical models (and the primary

use in this study) is in probabilistic inference. In the general case, there

5

are nodes whose state is known, called “visible” nodes, and there are nodes

whose state is sought, known as “hidden” nodes. Given a joint distribution

p(x1:v | θ), where the random variables are split into the visible set xv and

the hidden set xh, then to infer the state of the hidden variables, given the

visible variables[17]:

p(xh | xv, θ) =
p(xh, xv | θ)
p(xv | θ)

2.2.3 Markov Random Fields

Markov Random Fields (MRF), or undirected graphical models, form a model

of conditional independence that may be more appropriate for modeling prob-

lems that inhabit a spatial or relational domain.

To model conditional independence in an MRF, the concept of graph

separation is used: for sets of nodes A,B,C, B separates A and C iff there is

no longer a path from A to C after B has been removed from the graph. This

maps directly to conditional independence in the nodes. If nodes A, B, and

C represent joint distributions, A is said to be conditionally independent of

C given B. This is known as the global Markov property: A ⊥G C | B =⇒

A ⊥ C | B. Two examples of nodes that separate two joint distributions in

the graph are shown in 2.1.

A Markov blanket is the smallest set of nodes that renders a node con-

ditionally independent of the rest of the graph. In an MRF, the Markov

blanket for a node is its neighbors, and this is known as the local Markov

property. As an extension of the local Markov property, it’s simple to dis-

6

cern that any two nodes that are not connected in the graph structure are

conditionally independent given the rest of the graph. This is known as the

pairwise Markov property.

c e

a

b

d

f

g

Figure 2.1: Markov random field

Either of the nodes c or e separate any of the nodes a, b, d from f, g.

Hammersley-Clifford Theorem

The Hammersley-Clifford theorem [17] provides a general factorization of a

joint distribution modeled with an MRF. This defines non-negative potential

functions or factors for each maximal clique in the graph: ψc for each maximal

clique c in the set of all cliques C. Then, the joint distribution can be found

by:

p(x) =
1

Z

∏
c∈C

ψc(x),

where Z is the partition function, given by Z =
∑

x

∏
c∈C ψc(x), and acts

as a normalization constant to ensure the resulting distribution sums to 1.

7

2.3 Energy-Based Models

Energy-based models are different from the models reviewed so far in that

they associate each permutation of the parameters being trained with a scalar

energy level.

Borrowing from statistical physics, there are many ways to define a po-

tential function — the only limitation is that potential functions must be

non-negative. There is a particular distribution used in statistical physics

that is used to build a training algorithm for Boltzmann machines — the

Gibbs distribution.

The Gibbs distribution takes the form [18]:

p(x) =
1

Z
e−E(x),

where E =
∑

c∈C lnψc(xc) is referred to as the energy function, and ψc

represents the potential function for a particular maximal clique c.

2.3.1 Learning a Markov Random Field

It’s typically not possible to find the optimal parameters for an MRF directly

using something like maximum likelihood estimation (due to the partition

function), so approximation methods like gradient ascent/descent are used

instead. An equivalent method to maximizing the likelihood of the model

distribution is minimizing the distance between the data distribution and the

model distribution in terms of the Kullback-Leibler (KL) divergence [8]. The

KL divergence equivalency will become important during the discussion of

learning rules for Restricted Boltzmann Machines.

8

2.3.2 Boltzmann Machines

A Boltzmann machine builds off an MRF by specifying that some nodes in

the graph are latent or hidden variables — variables that are not directly

observed but contribute to the joint distribution of the model. The nodes of

the graph are then split into the “visible” and the “hidden” variables. The

visible nodes are typically the only nodes we’re interested in (because it’s not

possible to directly model the hidden nodes and the dependencies that they

represent), and the easiest way to find the value of the visible nodes is by

finding the marginal over the hidden nodes. Using the Gibbs distribution,

this is found by:

p(v) =
∑
h

p(v, h) =
1

Z

∑
h

e−E(v,h)

However, it’s still intractable to sample over a Boltzmann machine that

allows arbitrary connections between any nodes in the graph, including be-

tween nodes that are both hidden or both visible. A key advance to making

this a tractable problem was to restrict the connectivity between nodes in

the same set of visible or hidden nodes. This leads to Restricted Boltzmann

Machines, discussed in section 3.1.

2.4 Artificial Neural Networks

The field of artificial neural network research grew from pursuing an under-

standing of the brain and its learning process. This started with approxi-

mations of a single neuron, and progressed to deep neural networks that are

9

winning modern machine learning competitions.

Figure 2.2 illustrates a simple artificial neural network with a single input

neuron, a single hidden layer with 10 hidden nodes and a single bias node,

and a single output node with its own bias node. This trivial network has

learned to produce the square root of an input number.

There are a few key building blocks to reach this point: the nodes them-

selves, how they relate to neurons in the human brain (and why they lend

their names to artificial neural networks), the structure of the network graph,

and a method to train the network.

0.06075
−0.10438

0.02591

−0.0243

−0.02505

−0.01842−0.32144

−0
.0

29
4

0.
03

32

−0
.0

38
86

Input

2.
74

61
2

−1
.1

85
27

5.
52

89
2

−1.55061

−1.58219

−1.57265

−1.18764

−1.70134

2.57767

−0.69199

Output

1.41901
1.12514

−2.06852
0.45388

0.06817
−1.58103

1.0389

−0.00001

0.34563

−0.643771

1.70383

1

Figure 2.2: Artificial Neural Network with one hidden layer

10

2.4.1 The Perceptron

McCulloch and Pitts were the first to model the human neuron in a form

that modern-day practitioners will recognize [23]. They postulated that the

output of a neuron could be computed as a function of its inputs, mul-

tiplied by weights, and subjected to some form of a threshold function:

y = I(
∑

iwixi > θ), where θ is some threshold, and I is the indicator func-

tion. This gives a model with a binary output, which could be used as a

simple binary classifier.

Frank Rosenblatt’s perceptron algorithm[24] was an initial attempt at

training the model that McCulloch and Pitts postulated. The result was a

type of linear classifier that could model simple relationships, but a problem

like modeling an exclusive OR gate was beyond the reach of a perceptron[25].

2.4.2 Activation Functions

The original model proposed in [23] and [24] used a step activation function,

with the resulting binary output. However in order to model more complex

functions, a non-linear activation function needs to be used [15]. There are

two functions that are commonly used as activation functions — the logistic

activation function and the hypertangent activation function. Both of these

functions have two important qualities needed for the backpropagation al-

gorithm described in subsection 2.4.4: they are both sigmoid functions (an

“S” shape, clamped between some maximum and minimum value), and are

continuously differentiable for all real values.

11

activation

function

ŷ
∑

w2x2

...
...

wnxn

w1x1

w01

inputs weights

Figure 2.3: A single perceptron

In this model, there are inputs (nominally from some form of input vector, or

sampled from a data distribution in probability terms), weights to influence the

effect that any particular input has on the output of the model, a bias, and the

threshold function to determine the model’s output.

Logistic Activation Function

The logistic function has the form: σ(x) =
(

1
1+e−x

)
and produces a clean

sigmoidal output between 0 and 1, as seen in Figure 2.4. Its first derivative

is d
dx
σ(x) = σ(x)(1− σ(x)).

Hypertangent Activation Function

The hyperbolic tangent function is defined as tanhx = sinhx
coshx

= 1−e−2x

1+e−2x , and

produces a sigmoidal output between -1 and 1, as seen in Figure 2.5. Its first

derivative is d
dx

tanhx = 1− tanh2 x.

12

x

y

Figure 2.4: The logistic function

x

y

Figure 2.5: The hypertangent function

2.4.3 Cost Function

To cast the learning process as an optimization problem, it’s necessary to use

some sort of cost or loss function to easily determine how well the model is

performing for a given data vector[15].

Quadratic Error

The quadratic or mean squared error cost function is likely the simplest way

to measure error:

13

C(θ) =
1

2n

∑
x

(ŷ − y)2

where n is the number of observations in the batch, and ŷ is the model’s

prediction. This provides a measure of error that is always positive, and in-

creases as the model’s prediction is “more wrong”: the greater the difference

between the prediction and the expected value, the greater the cost.

2.4.4 Backpropagation

With a non-linear activation function and a cost function, the remaining piece

to build a learning model is an algorithm to modify the free parameters of

the model.

Rosenblatt’s perceptron was limited to classifying datasets that were lin-

early separable. In order to get over this hurdle, multiple layers of perceptrons

were proposed, and it was later found that with minor assumptions about

the activation function, a multi-layer perceptron with at least one hidden

layer was a universal approximator[26], [27].

Multi-layer perceptrons were powerful models, but until the backpropa-

gation algorithm gained attention in [6] there was no feasible method to train

them. The backpropagation algorithm provided a novel method to propa-

gate the errors present in the output neurons to the preceding layers, as well

as provide a method to adjust the weights of the network towards a more

accurate output.

Backpropagation is still a limited algorithm in the sense that it only

14

adjusts parameters based on knowledge of the input and output nodes, and

not based on any state for hidden nodes. In a traditional neural network,

the hidden nodes are truly hidden in the sense that it’s not possible to know

what their output values should be.

2.5 Clojure

Clojure1 is a dynamic functional language that originally targeted the Java

Virtual Machine (JVM), and is a dialect of Lisp.

Clojure was chosen for this study because of its support for matrix op-

erations through the core.matrix library, it’s excellent support for memory

management and execution speed from running on the JVM, and the author’s

familiarity with the language.

1http://clojure.org

15

http://clojure.org

Chapter 3

Deep Learning Models

Learning a single layer model is well-documented in the case where we know

both the correct outputs of the layer as well as the input to the layer. How-

ever, in the case of deeper networks with one or more hidden layers, by its

very definition the input to and output from the hidden layers are unknown.

In 1958, Selfridge defined a deep network with multiple layers of feature de-

tectors, called a “Pandemonium”[28]. The Pandemonium had tightly defined

layers of feature detectors, which allowed the model to extract progressively

more complicated patterns out of the data. Selfridge described a very specific

model, but a learning algorithm for a generalized version of these multiple

layers of feature detectors was sought for decades after its introduction. Hin-

ton [12] outlines five methods that could be used to learn multilayer networks,

including backpropagation and using a generative model, which are both used

in this study.

16

3.1 Restricted Boltzmann Machines

Restricting the connections between nodes in a Boltzmann machine to only

those between a hidden and a visible node gives rise to the Restricted Boltz-

mann machine (RBM). Figure 3.1 shows a simplistic rendering of an RBM

with six visible nodes and four hidden nodes.

Hidden units

Visible units

Figure 3.1: Restricted Boltzmann Machine

RBMs can themselves be used as classification, regression, or generative

models: appending either a single regression label or a class softmax label

to the visible units allows for supervised learning, and a trained model can

generate representative samples of the data distribution given a clamped

visible label unit. The most important use of the RBM for the purposes

of this study is as a building block of a DBN, trained in an unsupervised

manner.

3.1.1 Training a Restricted Boltzmann Machine

Training an RBM follows the same principles regardless of its intended use.

The energy of a particular state of stochastic binary visible (i) and hidden

(j) units is:

17

E(v, h | θ) = −
vis∑
i=1

hid∑
j=1

wijvihj −
vis∑
i=1

aivi −
hid∑
j=1

bjjj,

where θ is the model parameters: a and b are the visible and hidden unit

biases, respectively, and w is the weight matrix connecting the two layers.

The connection restriction inherent in an RBM greatly simplifies the

Gibbs sampling used in both learning and model generation. Since the hid-

den and visible nodes factorize completely, Gibbs sampling for the entire

hidden or visible layers can be done in parallel.

To find the gradient of the log-likelihood for training, we can first look

at the derivative of the log-likelihood of a single training sample (v) with

respect to the weight wij:

∂ lnL(θ | v)

∂wij

= −
∑
h

p(h | v)
∂E(v, h)

∂wij

+
∑
v,h

p(v, h)
∂E(v, h)

∂wij

= p(Hi = 1 | v)vj −
∑
v

p(v)p(Hi = 1 | v)vj.

Averaged over the training set, we find the often-seen rule:

∑
v∈S

∂ lnL(θ | v)

∂wij

∝ 〈vihj〉data − 〈vihj〉model

Unfortunately, finding this exactly is intractable, so samples can be ob-

tained using Gibbs sampling. Sampling takes less time, but reaching a suit-

able stationary distribution is often still undesirable due to the need to reach

the stationary distribution of the Markov chain. A breakthrough in speeding

up this learning process was outlined by Hinton and termed “Contrastive

Divergence”.

18

3.1.2 Contrastive Divergence

Calculating the log-likelihood gradient of a Restricted Boltzmann Machine

directly is typically not done directly due to the partition function, so approx-

imations are used instead. Hinton introduced contrastive divergence (CD) [8]

as a method to get approximate samples without a large number of Gibbs

sampling steps.

Hinton found that maximizing the log-likelihood over the data distribu-

tion is equivalent to minimizing the Kullback-Leibler divergence between the

data distribution and the equilibrium distribution of the model after Gibbs

sampling.

The general idea behind CD is that even just a few steps of the Markov

chain will provide a direction for the gradient in the state space for the

Markov chain, and provide the training algorithm with the appropriate cor-

rection to the gradient. Running the chain for an infinite number of steps

would provide us with the exact correction for the model parameters, but

this is obviously intractable as well.

Typically CD is run for one full step of Gibbs sampling: the visible units

are initialized with a sample from the training data (v0), h0 is sampled from

p(h | v0), and v1 is sampled from p(v | h1). Then, the log-likelihood for v0 is

approximated by [18]:

CDk(θ, v0) =
∑
h

p(h | vk)
∂E(vk, h)

∂θ
−
∑
h

p(h | v0)
∂E(v0, h)

∂θ

Even with this approximation and the variance that it introduces to the

19

learning process, empirical results show that this is an effective and efficient

learning algorithm.

3.2 Deep Belief Networks

A Deep Belief Network (DBN, as seen in Figure 3.2) is a generative learning

model, aimed at learning the structure of the input dataset and one or more

layers of features detectors. A DBN is a mixture of directed and undirected

graphical models — the top layer of the network is an undirected RBM, and

the lower layers are directed in a “downward” fashion.

first RBM

second RBM

third RBM

Figure 3.2: Deep Belief Network

3.2.1 Greedy By-Layer Pre-Training

Hinton, Osindero, and Teh [1] introduced a fast algorithm for training Deep

Belief Networks that relied on a particular graph structure, as well as intro-

20

ducing a way to think about priors to eliminate the “explaining away” effect.

Explaining away is the anti-correlation of previously uncorrelated variables

due to the observation of other variables. A simple example is seen in [1]:

two possible (and uncorrelated) explanations for a house jumping are either

an earthquake or a truck hitting the house. Both have very small chances of

happening, but if one cause does occur, the odds that both are happening are

incredibly small, so one cause occurring tends to “explain away” the evidence

for the other cause node.

As a result of explaining away, calculating the posterior in any densely

connected network is intractable, and except for a few special cases, approxi-

mation is the alternative. Gibbs sampling can be used to get an approximate

posterior sample, but this is lengthy process. To work around these limita-

tions, “complementary” priors are introduced [1]. Complementary priors are

added as an extra hidden layer with correlations opposite of the next layer.

The result is a posterior that factorizes exactly, and gives rise to a tractable

method for calculating the posterior.

Given complementary priors, the template for building a greedy by-layer

training algorithm starts to take shape. One can construct an infinite logistic

belief net using tied weights as outlined in Figure 3.3 to generate comple-

mentary priors for each hidden layer.

With this model in mind, it’s possible to compute the derivative of the

log probability of the data. The learning rule for a single layer is then:

∂ log p(v0)

∂w00
ij

= 〈h0j
(
v0i − v1i

)
〉

21

1532 G. Hinton, S. Osindero, and Y.-W. Teh

W

V1

H1

V0

H0

V2

TW

TW

W

W

etc.

0
iv

0
jh

1
jh

1
iv

2
iv

TW

TW

TW

W

W

Figure 3: An infinite logistic belief net with tied weights. The downward arrows
represent the generative model. The upward arrows are not part of the model.
They represent the parameters that are used to infer samples from the posterior
distribution at each hidden layer of the net when a data vector is clamped
on V0.

because the complementary prior at each layer ensures that the posterior
distribution really is factorial.

Since we can sample from the true posterior, we can compute the deriva-
tives of the log probability of the data. Let us start by computing the deriva-
tive for a generative weight, w00

i j , from a unit j in layer H0 to unit i in layer
V0 (see Figure 3). In a logistic belief net, the maximum likelihood learning
rule for a single data vector, v0, is

∂ log p(v0)
∂w00

i j
=

〈
h0

j
(
v0

i − v̂0
i
)〉
, (2.2)

where ⟨·⟩ denotes an average over the sampled states and v̂0
i is the proba-

bility that unit i would be turned on if the visible vector was stochastically

Figure 3.3: An infinite logistic belief net with tied weights [1]

The downward arrows represent the generative model, the tied weights are W

and W T , and hidden and visible layers alternate. The upward arrows are not

actually part of the model, but represent the inference of samples from the

posterior distribution after a data vector is clamped on V0.

22

Looking at all the layers in the infinite net, the vast majority of the terms

cancel out, and we’re left with the difference between the starting state of

the visible units clamped to a particular data vector, and the resting state

of the Markov chain after repeated Gibbs sampling:

∂ log p(v0)

∂wij

= 〈v0i h0j〉 − 〈v∞i h∞j 〉

This is equivalent to training an RBM, where sampling alternating levels

in the infinite logistic belief net is exactly like alternating Gibbs sampling in

the RBM. In the case of the RBM, sampling until reaching the stationary

distribution is equivalent to traversing the infinite net. Contrastive diver-

gence allows us to approximate this for a single layer, and make training

time tractable.

An initial goal for a DBN is to propagate a different representation of the

data to each stacked RBM. In theory, this will allow each successive RBM

to learn more abstract features in the dataset. In the DBN Figure 3.2 when

training the first layer of weights, we assume that the higher layers are used

to form a complimentary prior. This assumption reduces this task to training

a single RBM, and then provides a non-linear transformation to pass data

to the next layer. To continue training the remaining layers, the first weight

matrix is fixed and the dataset is propagated through the first RBM. This

modified dataset is used as training data for the next RBM, and the same

assumptions are made for the remaining layers above the second RBM. This

process continues until the top-layer RBM has been trained. In reality, the

23

weights between the layers are not tied, and the number of units in each layer

are not alternating as in the figure. However, if these assumptions are made

and the weight matrices are modified through this training process, it has

been shown that the generative model will improve. The details of this proof

can be found in Hinton, Osindero, and Teh [1].

Unfortunately, this guarantee does not hold with the approximate learn-

ing method of contrastive divergence. Empirically, contrastive divergence

still works quite well, and is used in this study.

3.3 Deep Neural Networks

The benefits of pre-training a deep neural network (DNN) have been covered

extensively [33], [34], and the models we’ve discussed so far can be modified

slightly to build a traditional feedforward neural network.

Given a DBN that has been trained on a particular dataset, we can add

an additional linear or logistic regression layer to the top of the model, train

it based on the output of the dataset propagated to the top layer of the

DBN, and then use traditional backpropagation designed for neural networks,

including regularizing the parameter weights. In testing, this method gave

the best results on the test dataset.

3.4 Training a Better Restricted Boltzmann Machine

Hinton released some guidance [10] for training RBMs, based on several years

of practice in his machine learning group at the University of Toronto. The

24

technical report discusses a number of optimizations and heuristics for im-

proving the training process for RBMs, and several techniques were used in

this thesis.

3.4.1 Initialization

Due to the relatively small range for activation function saturation (for the

logistic function this is roughly [−5, 5]), it’s important to avoid starting with

initial weights and biases that will be difficult to move away from a saturated

state during learning. Based on guidance gathered from [10] and other work

cited in this thesis, the following default parameters were chosen for the

RBM:

Element Default Values

Weights Gaussian, µ = 0, σ = 0.01

Visual bias 0

Hidden bias -4

Velocities 0

Table 3.1: Default RBM element values

3.4.2 Momentum

Using momentum when updating parameters is a useful tool to avoid local

minima during training. In a model using momentum, the gradient for each

update effects the current velocity of a parameter instead of the parameter

25

itself. The momentum also decays over time to prevent excessive and coun-

terproductive parameter updates, at a rate determined by a hyper-parameter

α. The momentum is calculated as follows:

∆θi(t) = vi(t) = αvi(t− 1)− ηdE
dθi

(t)

3.4.3 Monitoring the Energy Gap for an Early Stop

Ideally, the number of epochs to train for a model is eliminated as a hyper-

parameter by having some measure to determine when model performance

stops improving and starts to degrade. In an RBM, one of the more reliable

indicators is the free energy gap between a set of observations in the training

data and a validation set. An increase in the gap means that the model is

likely starting to overfit, and it’s time to stop training.

3.5 Training a Better Neural Network

There are a few optimizations to the backpropagation algorithm covered

in Nielsen [15] that are used for fine-tuning the DNN. A better error/loss

function is used to improve learning at the saturation extremes of activation

functions, and weight decay is used to prevent weights from growing too

large.

26

3.5.1 Cross-Entropy Error

The quadratic error function discussed in section 2.4.3 works well in most

cases as a cost function, but there are certain edge cases where it performs

quite poorly. If the output for a node is very wrong, then the rate at which the

output is corrected is quite slow [15]. This effectively prolongs the learning

process, and may result in stopping learning in a local minima instead of

closer to the global minimum. The solution to this problem is a cost function

that does not have this attribute.

The cross-entropy error provides a smoother learning rate curve over var-

ious node output values:

C = − 1

n

∑
x

∑
j

(
yj ln aj + (1− yj) ln (1− aj)

)
,

where x is summing over the input data, j is summing over the output

nodes, y is the target output value, and a is the network’s output.

3.5.2 L2 Regularization

L2 regularization or weight decay is used to continually shrink weights to

ensure that they don’t grow too large, and also to serve as a crude scarcity

method to decrease noise and isolate learned feature detectors. An additional

term is added to the cross entropy cost function to account for weights that

have grown large:

C = − 1

n

∑
xj

(
yj ln aj + (1− yj) ln (1− aj)

)
+

λ

2n

∑
w

w2

27

λ is the regularization parameter, and is used to control just how quickly

the weights decay. The number of data points n is used to ensure that the

rate of weight decay is independent of the current batch size. Changing

the size of λ can shift the priority of the minimization function from the

original cost function (better modeling the distribution of the dataset) to

ensuring that the weights stay small. As is implied by the name of this type

of regularization, the modified cost function does not take into account the

biases.

3.6 Related Work

3.6.1 Deep Boltzmann Machines

Salakhutdinov and Hinton [35] introduced an efficient learning algorithm for

a Deep Boltzmann Machine(DBM): a model that is very similar to a DBN

but is fully undirected. This requires some modifications to the learning and

generative process seen in DBNs, but the result is a model that seems to

perform better than a DBN.

3.6.2 Deep Autoencoders

Hinton and Salakhutdinov [9] also described a method for pre-training deep

autoencoders, a method akin to principal components analysis, that “en-

codes” the data into a small number of features, and then proceeds to “de-

code” the features into the original data. Figure 3.4 is the figure from the

original paper, and diagrams the initial pre-training using RBMs at each

28

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Figure 3.4: Pre-training and fine-tuning a deep autoencoder [9]

layer, unrolling the RBMs to create the deep autoencoder, and fine tuning

using standard backpropagation.

29

Chapter 4

Implementation

4.1 deebn

The library that contains the functionality described in this thesis is named

deebn, after Geoffery Hinton’s recommendation to differentiate a Deep Belief

Network from a dynamic Bayes net. His recommendation was to call a Deep

Belief Network a “DeeBN” and a dynamic Bayes net a “DyBN”[17]. The

library is the core result from this study, and has been released to the public

in its first iteration. It is available for direct download1 as a Java ARchive

(JAR), or as a dependency to be used by the dependency management tools

Leiningen2, Gradle3, or Maven4.

1https://clojars.org/deebn
2http://leiningen.org/
3http://www.gradle.org/
4https://maven.apache.org/

30

https://clojars.org/deebn
http://leiningen.org/
http://www.gradle.org/
https://maven.apache.org/

4.2 An Abundance of Matrix Operations

Due to the pervasive usage of weight matrices and node vectors in the RBM,

DBN, and DNN models, the vast majority of calculations performed by the

library are at the vector or matrix level of application. This ranges from

scalar products of two vectors to an outer product of two matrices. As

a result of the size of some operands, and the sheer number of operations

needed for each iteration of the various algorithms, matrix operations occupy

the lion’s share of computation time. This necessitates the use of a space-

and computation-efficient matrix operations library.

4.2.1 core.matrix

The core.matrix library aims to provide a comprehensive matrix and ar-

ray operations Application Programming Interface (API) as well as a näıve

implementation in pure Clojure of said interface. It provides methods for

arithmetic on n-dimensional arrays and matrices, calculating various statis-

tics about a matrix or array, and manipulation of matrices and arrays. The

included NDArray implementation of the API is sufficient but not perfor-

mant, and the library allows for different underlying implementations of the

core.matrix API.

4.2.2 vectorz-clj

The vectorz-clj library is a thin wrapper around the vectorz Java library,

which aims to implement fast and accurate matrix operations in pure Java.

31

vectorz-clj implements the interfaces defined in core.matrix using space-

and computation-efficient implementations defined in the vectorz library,

resulting in high-level, declarative matrix operations with desirable memory

and CPU usage.

4.2.3 Clojure Records

Clojure offers a record type that acts much like a map (or dictionary in other

languages), but also allows for type-based dispatch implemented in Clojure

protocols. This allows for generic functions like train and test that can be

implemented specifically for different record types. Based on their varying

structure and intended use, there are a number of records defined for use in

deebn. The type-based dispatch is also more efficient than using reflection

or arbitrary dispatch based on a map value.

4.3 Restricted Boltzmann Machines

There are two types of RBM used in deebn: a model designed only for

unsupervised training and later part of a DBN, and a model that can be used

itself for classification. Even though a single RBM used for classification is

sub-optimal, it is available for use.

4.3.1 Creating a Restricted Boltzmann Machine

deebn defines two RBM record types: RBM (used for composing a DBN)

and CRBM (used in isolation for classification). Both contain fields for the

32

weights, visual and hidden biases, and velocities for each of those fields. The

CRBM record also contains the number of classes in the particular dataset

it’s modeling.

4.3.2 Learning a Restricted Boltzmann Machine

Both the CRBM and RBM records share the same training algorithm — the

only difference is that the data vector supplied to the model is concatenated

with a softmax representing the label.

The RBM training code was some of the first code written for deebn, and

it established the trend of nested functions to iterate over different stages

of the process. This reflects the looping behavior of the training algorithm:

train a batch inside an epoch.

In order to monitor overfitting, a validation set that is roughly 1% the

size of the training set is selected and withheld from training, and 1% of the

training set (with no overlap of the validation set) is selected to compare with

the validation set. The resulting 99% of the dataset is used for training in

batch sizes determined by the user (or subject to the default if not specified).

Each epoch trains the RBM a batch at a time, calculating a single step of

contrastive divergence for the entire batch in a handful of matrix operations.

This may seem at first to give worse results (as it averages over a batch), but

instead reduces variance in the resulting parameter updates.

There are a number of hyperparameters that the user is responsible for

providing, but default values are available, as seen in Table 4.1.

33

Hyperparameter Effect Default

learning rate rate at which changes are applied 0.1

initial momentum momentum for initial epochs 0.5

momentum momentum for remainder of epochs 0.9

momentum delay epochs before real momentum takes effect 3

batch size number of observations per training batch 10

epochs max iterations to train over the training set 100

gap delay number of epochs to train before checking for

early stop

10

gap stop delay number of subsequent energy gap increases

before early stop

2

Table 4.1: Default RBM hyperparameters

4.4 Deep Belief Networks

Deep Belief Networks are composed of multiple RBMs, and their Clojure

record structure reflects that. There are two types of DBN — a purely

unsupervised version (DBN) that’s used to initialize a Deep Neural Network,

and a classification DBN (CDBN) that can be used as a classification model

on its own.

4.4.1 Creating a Deep Belief Network

Each record type contains the RBMs that make up the layers of the network,

as well as a vector reflecting the size of the layers, and in the case of the

34

classification DBN, the number of classes in the representative dataset. The

DBN record reflects a model that is nothing more than stacked RBMs, but

the CDBN record contains the top-level associative memory that is actually a

CRBM record. This allows for training the top layer to generate class labels

corresponding to the input data vector, and to classify unknown data vectors.

4.4.2 Learning a Deep Belief Network

Training a DBN is greatly simplified by the fact that it’s composed of RBMs

that are trained in an unsupervised manner. RBM training time dominates

the overall DBN training time, but makes for simple code.

CDBNs require the observation labels to be available during training of

the top layer, so a training session involves first training the bottom layer,

propagating the dataset through the learned RBM, and then using that new

transformed dataset as the training data for the next RBM. This continues

until the dataset has been propagated through the penultimate trained RBM,

where the labels are concatenated with the transformed dataset and used to

train the top-layer associative memory.

Much like the RBM model, there are hyperparameters to set for the DBN,

and reasonable default values are provided as outlined in Table 4.2.

4.5 Deep Neural Networks

Deep neural networks take advantage of all the pre-training completed for a

DBN and add a logistic regression layer to the top of the model.

35

Hyperparameter Effect Default

mean field use the expected value instead of a sample

when propagating to the next layer

true

query final? return the state of the final layer’s hidden

units after training the DBN

false

Table 4.2: Default DBN hyperparameters

4.5.1 Creating a Deep Neural Network

Since the DNN model uses the pre-trained weights and hidden biases from a

DBN, it’s a simple matter to extract the relevant components from a trained

DBN and add the missing components to create a DNN ready to train.

The DNN constructor function takes a DBN and the number of classes in

the target dataset as its arguments. These form the weights and biases for

each layer in the new DNN, and a final top layer with an n-output softmax

is added, where n is the number of classes in the target dataset.

4.5.2 Learning a Deep Neural Network

The top layer of weights is pre-trained with the backpropagation algorithm,

since it is initialized with random weights. This allows the backpropagation

algorithm to start with weights that are close to ideal for the entire network,

and not use outputs that are effectively random.

The learning algorithm for a DNN is less space-efficient than that of the

RBM, as the output of each the units in each layer needs to be retained for

36

the backpropagation algorithm as outlined in Section 2.4.4. The memory

usage isn’t as much of an issue with smaller batch sizes, but this growth is

only linear with an increase in batch size.

In its current iteration, there is no early stopping implemented for the

backpropagation training, but is instead specified as a number of epochs by

the user, along with other hyperparameters as outlined in Table 4.3.

Hyperparameter Effect Default

learning rate rate at which changes are applied 0.5

batch size number of observations per training batch 100

epochs max iterations to train over the training set 100

lambda L2 regularization constant 0.1

Table 4.3: Default DNN hyperparameters

4.6 Using the Library

The deebn.core namespace enumerates all of the possible uses of the library,

and outlines a few patterns of usage:

1. a model is built using the appropriate constructor

2. a dataset in the proper shape (sometimes with or without labels, or

with the label in softmax form) is loaded

3. the model is trained using the train-model protocol method and any

parameters passed to subsequent training functions

37

4. the model is used, either to test against a test dataset, or to classify a

new observation

38

Chapter 5

Performance

5.1 Preliminary Performance on MNIST Dataset

As a test to ensure the library was performing as expected, the MNIST

dataset was used to build predictive DBN and DNN models. After a series of

runs to find somewhat reasonable default hyperparameter values, a number

of runs were conducted to determine rough performance characteristics, using

the classification error rates. The runs are summarized in Table 5.1. Unless

specified, the models are pre-trained Deep Neural Networks using default

parameters. More robust comparative results can be found in section 5.2.

Fine-tuning a pre-trained DBN shows significant improvements, and over-

fitting can be seen in the instances where fine-tuning was allowed to go for too

many epochs. Of interest is the case of a very lightly trained network (only 3

iterations of pre-training per network level and 10 epochs of fine-tuning) that

resulted in a fairly competitive error rate. This shows the dramatic decrease

in error rate in just the first few iterations. For this data set, we expect to

see roughly a 90% classification error rate from a random class assignment

39

model.

5.2 Cross-Validated Results

k-fold cross validation was performed on deebn’s DNN model as well as other

machine learning models, and a 95% confidence interval of the classification

error rate was calculated. Comparative models used were k-Nearest Neigh-

bors, from the class R library[37] and a Support Vector Machine from the

e1071 R library[38]. These comparisons used the R rminer library[39] for

10-fold cross validation. There was no statistical difference between the per-

formance of the e1071 Support Vector Machine implementation in R and

deebn. The results are summarized in Table 5.2.

40

Network Shape Pre-train Fine-tune Parameters Error %

784→500→500→2000 DBN 19,11,24 0 4.53

784→500→500→2000→10 11,20,45 10 3.07

784→500→500→2000→10 11,20,45 100 2.07

784→500→500→2000→10 11,20,45 110 2.06

784→500→500→2000→10 11,20,45 150 2.05

784→500→500→2000→10 11,20,45 200 2.00

784→500→500→2000→10 11,20,45 300 2.05

784→500→500→250→10 3,3,3 10 η: 1 λ: 0.1 3.15

784→500→500→250→10 48,44,83 10 3.65

784→500→500→250→10 48,44,83 100 2.58

784→500→500→250→10 16,10,19 50 2.31

784→500→500→250→10 16,10,19 150 2.23

784→500→500→250→10 16,10,19 300 2.12

Table 5.1: Preliminary Results on MNIST dataset

Unless specified, training uses the default parameters outlined in

sections 4.3.2, 4.4.2, and 4.5.2.

Model Mean Class. Error Conf. Interval

k-Nearest Neighbors 4.92% 4.57% – 5.26%

Support Vector Machine 2.37% 2.13% – 2.61%

784→500→500→250→10, 200 epochs 2.14% 2.00% – 2.23%

Table 5.2: 10-Fold Cross-Validated Results on MNIST dataset

41

Chapter 6

Conclusion

6.1 Future Work

The deebn library is usable in its current state, and could be integrated into

a machine learning pipeline in a number of different application settings.

What follows are a few things that would either increase its target audience,

or increase the usability or functionality of the library.

6.1.1 Java Interoperability

Clojure and the deebn library run on the Java Virtual Machine, but using

the library in its current form from Java is either sub-optimal or in some

cases, impossible. There is no concrete way to measure just how many Java

developers there are in the industry, but most attempts put it somewhere

in the top 3[40]. Clojure has facilities to make this a fairly straightforward

process, and doing so would enable any Java developer to integrate deebn

into their machine learning pipeline.

42

6.1.2 Visualization

While not strictly a requirement for machine learning or classification, the

ability to visualize various aspects of the model during its learning process

is valuable in determining optimal hyperparameters for learning. There are

multiple examples in [31] and [10] that illustrate the utility of visualizing

parts of the model to gain insight into what the model “sees” at various

stages of learning.

Motivation and methods behind using model visualizations to debug and

optimize a model are outlined in Yosinski and Lipson [41]. The paper outlines

four methods to troubleshoot training progress for an RBM, as well as a

timeline for expected measurement progress throughout training.

6.1.3 Using Different Matrix Libraries

In its current implementation, deebn exclusively uses the vectorz backing

library for matrix operations. There are already a handful of libraries that

implement the core core.matrix API, including clatrix1, which takes ad-

vantage of the BLAS2 (Basic Linear Algebra Subroutines) library. Instead of

solely using the vectorz library, it would be a viable default selection that

the user could override for either a custom backing implementation, or one

more suitable to their use case. The core.matrix API is general enough

that this need could be filled by a library that took advantage of the GPU,

or even distributed computing over a cluster.

1https://github.com/tel/clatrix
2http://www.netlib.org/blas/

43

https://github.com/tel/clatrix
http://www.netlib.org/blas/

6.1.4 Persistent Contrastive Divergence

Persistent Contrastive Divergence (PCD)[42] provides another method to

approximate the gradient (by getting approximate samples) for learning in

a Restricted Boltzmann Machine. Instead of starting with a fresh Markov

chain each time an approximate sample from the model is needed, PCD

initializes the Markov chain at the state that it ended in for the previous

batch iteration. This is very close to the model distribution, even with the

small parameter updates.

This method has been experimentally proven to provide better results,

and should increase the accuracy of the resulting models (see Figure 6.1).

Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient

mate for each of the units. As a result, we found that
using mini-batches of 50 training points instead of 100
took only a little bit more time per training point,
and did allow updating the model parameters almost
twice as often, which is preferable in the mini-batch
optimization procedure.

4.5. Other Technical Details

The learning rates used in the experiments are not
constant. In practice, decaying learning rates often
work better. In these experiments, the learning rate
was linearly decayed from some initial learning rate to
zero, over the duration of the learning. Preliminary
experiments showed that this works better than the
1
t schedule suggested in theoretical work by (Robbins
& Monro, 1951), which is preferable when infinitely
much time is available for the optimization.

Some experiment parameters, such as the number of
hidden units, and the size of the mini-batches, were
fixed. However, the initial learning rate was chosen
using a validation set, as was weight decay for the
(shorter) experiments on the spam, horses, MNIST
patches, and artificial data sets. For each algorithm,
each task, and each training duration, 30 runs were
performed with evaluation on validation data, trying
to find the settings that worked best. Then a choice of
initial learning rate and, for the shorter experiments,
weight decay, were made, and with those chosen set-
tings, 10 more runs were performed, evaluating on test
data. This provided 10 test performance numbers,
which were summarized by their average and standard
deviation (shown as error bars).

5. Results

5.1. The three MNIST Tasks

The results on the three MNIST tasks are shown in
Figures 1, 2, and 3.

It is clear that PCD outperforms the other algorithms.
PCD, CD-1, and MF CD all take approximately the
same amount of time per gradient estimate, with MF
CD being a little bit faster because it does not have
to create random numbers. CD-10 takes about four
times as long as PCD, CD-1, and MF CD, but it is
indeed better than CD-1.

While CD-1 is good for some purposes, it is substan-
tially different from the true likelihood gradient. This
can be seen by drawing samples from an RBM that
was trained with CD-1. Figure 4 shows those next to
samples drawn from an RBM that was trained using
PCD. It is clear that PCD is a better approximation

Figure 1. Modeling MNIST data with 25 hidden units (ex-
act log likelihood)

Figure 2. Modeling MNIST data with 500 hidden units
(approximate log likelihood)

Figure 6.1: Exact log likelihood with 25 hidden units on MNIST dataset [42]

CD-1 and CD-10 refer to 1- and 10-step contrastive divergence, and MF CD

refers to mean field contrastive divergence.

44

6.1.5 Mutation and Performance

deebn is currently implemented using immutable data structures provided

by core.matrix. This results in code that is easy to read and simple to

reason about. Unfortunately, a high price is paid in memory consumption

and computation time with so many interim objects created during parameter

updated phases. A first pass attempt of moving to the mutating operations

that core.matrix provides should not only reduce memory overhead but

also speed up overall computation during run time.

6.2 A Stepping Stone

As is the case with most advances in any field, the Deep Belief Network

as Geoffrey Hinton described is no longer state-of-the-art when it comes to

deep learning models. It has since been surpassed, and even experimentally

found to be suboptimal compared to other alternatives[43]. Conceding this

fact, it has sparked a recent renaissance of deep learning, and has pushed the

envelope of learning methods.

45

Appendix A

Algorithms

This appendix outlines the algorithms used in the deebn library, starting

from learning a Deep Belief Network and working down to a single parameter

update for a Restricted Boltzmann Machine.

A.1 Deep Belief Network Learning

Algorithm 1: Deep Belief Network learning

Data:
D: training dataset
R: vector of RBMs comprising the DBN
mean-field?: boolean indicating whether to use the mean-field value
when propagating values to the next RBM
query-final?: boolean indicating whether to query the hidden layer of
the final RBM (used in preparation for building a DNN)

data ← D;
foreach rbm in R do

rbm ← TrainRBM(rbm, data);
if not last RBM or (last RBM and query-final?) then

data ← Propagate(rbm, data, mean-field?);

Algorithm 1 outlines the basic procedure for training an unsupervised

46

DBN. The procedure for training a classification DBN is identical to that

of algorithm 1, but the label softmax is concatenated to the dataset when

training the final RBM.

A.2 Restricted Boltzmann Machine Learning

A single RBM training epoch consists of updating the parameters of the

model for many batches over the training data. At the end of the epoch,

based on hyperparameters, the free energy of a validation hold-out set is

compared to a consistent sample from the training dataset for early stopping.

Algorithm 2 outlines the high-level RBM training over a number of epochs.

RBM step updates as seen in Algorithm 3 consist of one or more steps

of contrastive divergence, followed by updating the weights, biases and mo-

mentums of the model.

47

Algorithm 2: Restricted Boltzmann Machine epoch training

Data:
D: training dataset
rbm: RBM to train
η: learning rate
initial-momentum: starting momentum
momentum-delay: number of epochs to use initial momentum
momentum: running momentum after transitioning from
initial-momentum
batch-size: number of data vectors to use for each training batch
epochs: maximum number of epochs to train
gap-delay: number of epochs to train before checking for early stopping
gap-stop-delay: number of consecutive energy gap increases to trigger
early stopping

select overfitting validation and sample sets ;
current-momentum ← initial-momentum;
gap-count ← 0;
for i in epochs do

if i ≥ momentum-delay then
current-momentum ← momentum;

foreach batch do
rbm ← RBMUpdate(batch, rbm, η, current-momentum);

check free energy gap;
if (i ≥ gap-delay) and consecutive gap longer than gap-stop-delay
then

stop training;

48

Algorithm 3: Single batch parameter update for RBM

Data: D: training dataset
rbm: RBM to train
η: learning rate
initial-momentum: starting momentum
momentum-delay: number of epochs to use initial momentum
momentum: running momentum after transitioning from
initial-momentum
batch-size: number of data vectors to use for each training batch
epochs: maximum number of epochs to train
gap-delay: number of epochs to train before checking for early stopping
gap-stop-delay: number of consecutive energy gap increases to trigger
early stopping

// Start CD-1

calculate p(h0) from batch;
sample h0;
calculate p(v) from h0;
sample v;
calculate p(h1) using v;
// Find gradients for this batch

∇w ← h0batch’ − p(h1)v
′;

∇vbias← batch − v;
∇hbias← h− p(h1);
// Adjust current velocities

w-vel ← (w-vel ∗ current-momentum) + (η ∗∇w);
vbias-vel ← (vbias-vel ∗ current-momentum) + (η ∗∇vbias);
hbias-vel ← (hbias-vel ∗ current-momentum) + (η ∗∇hbias);
w ← w + w-vel;
vbias← vbias+ vbias-vel;
hbias← hbias+ hbias-vel;
// Velocities are retained for next batch

49

Bibliography

[1] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[2] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm
for boltzmann machines*,” Cognitive Science, vol. 9, no. 1, pp. 147–
169, Jan. 1, 1985.

[3] G. E. Hinton and T. Sejnowski, “Learning and relearning in boltz-
mann machines,” in Parallel distributed processing: Explorations in the
microstructure of cognition, vol. 1, MIT Press, 1986, pp. 282–317.

[4] G. E. Hinton, “Deterministic boltzmann learning performs steepest
descent in weight-space,” Neural computation, vol. 1, no. 1, pp. 143–
150, 1989.

[5] G. E. Hinton, T. J. Sejnowski, and D. H. Ackley, Boltzmann machines:
Constraint satisfaction networks that learn. Carnegie-Mellon Univer-
sity, Department of Computer Science Pittsburgh, PA, 1984.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol. 323, no. 6088,
pp. 533–536, 1986.

[7] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The ”wake-
sleep” algorithm for unsupervised neural networks,” Science, vol. 268,
no. 5214, pp. 1158–1161, 1995.

50

[8] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[9] G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks.,” Science (New York, N.Y.), vol. 313, no.
5786, pp. 504–507, 2006.

[10] G. E. Hinton, “A practical guide to training restricted boltzmann
machines,” in Neural Networks: Tricks of the Trade, Springer, 2012,
pp. 599–619.

[11] G. E. Hinton, “Learning multiple layers of representation,” Trends in
Cognitive Sciences, vol. 11, no. 10, pp. 428–434, Oct. 2007.

[12] ——, “To recognize shapes, first learn to generate images,” Progress
in brain research, vol. 165, pp. 535–547, 2007.

[13] R. M. Bell, Y. Koren, and C. Volinsky, “The bellkor 2008 solution to
the netflix prize,” Statistics Research Department at AT&T Research,
2008.

[14] R. M. Bell and Y. Koren, “Scalable collaborative filtering with jointly
derived neighborhood interpolation weights,” in ICDM 2007. Seventh
IEEE International Conference on Data Mining, 2007., IEEE, 2007,
pp. 43–52.

[15] M. A. Nielsen, Neural networks and deep learning. Determination Press,
2014.

[16] T. M. Mitchell, Machine Learning, ser. McGraw-Hill series in computer
science. New York: McGraw-Hill, 1997.

[17] K. P. Murphy, Machine learning: A probabilistic perspective, ser. Adap-
tive computation and machine learning series. Cambridge, MA: MIT
Press, 2012, 1067 pp.

[18] A. Fischer and C. Igel, “Training restricted boltzmann machines: An
introduction,” Pattern Recognition, vol. 47, no. 1, pp. 25–39, 2014.

51

[19] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tu-
torial on energy-based learning,” Predicting structured data, 2006.

[20] Y.-L. Marc’Aurelio Ranzato Boureau, S. Chopra, and Y. LeCun, “A
unified energy-based framework for unsupervised learning,” in Proc.
Conference on AI and Statistics (AI-Stats), Citeseer, vol. 17, 2007.

[21] Y. LeCun and F. Huang, “Loss functions for discriminative training of
energy-based models,” AIStats, 2005.

[22] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends
in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009, Also published as
a book. Now Publishers, 2009.

[23] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas imma-
nent in nervous activity,” The bulletin of mathematical biophysics, vol.
5, no. 4, pp. 115–133, 1943.

[24] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain.,” Psychological review, vol. 65,
no. 6, pp. 386–408, 1958.

[25] M. Minsky and P. Seymour, Perceptrons. MIT Press, 1969.

[26] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–
314, 1989.

[27] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[28] O. G. Selfridge, “Pandemonium: a paradigm for learning,” in Mechani-
sation of Thought Processes: Proceedings of a Symposium Held at the
National Physical Laboratory, London: HMSO, Nov. 1958, pp. 513–526.

52

[29] Y. Freund and D. Haussler, “Unsupervised learning of distributions
on binary vectors using two layer networks,” in Advances in Neural
Information Processing Systems, 1992, pp. 912–919.

[30] P. Smolensky, “Information processing in dynamical systems: Foun-
dations of harmony theory,” in Parallel distributed processing: Explo-
rations in the microstructure of cognition, vol. 1, MIT Press, 1986,
pp. 194–281.

[31] R. Salakhutdinov, “Learning deep generative models,” PhD thesis, Uni-
versity of Toronto, 2009.

[32] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” Advances in neural information pro-
cessing systems, vol. 19, p. 153, 2007.

[33] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and
S. Bengio, “Why does unsupervised pre-training help deep learning?”
The Journal of Machine Learning Research, vol. 11, pp. 625–660, 2010.

[34] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International Conference on Artificial
Intelligence and Statistics, 2010, pp. 249–256.

[35] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in
International Conference on Artificial Intelligence and Statistics, 2009,
pp. 448–455.

[36] C. Emerick, B. Carper, and C. Grand, Clojure programming. O’Reilly
Media, Inc., 2012.

[37] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S,
Fourth. New York: Springer, 2002, ISBN 0-387-95457-0.

[38] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch,
E1071: Misc functions of the department of statistics (e1071), tu wien,
R package version 1.6-4, 2014. [Online]. Available: http://CRAN.R-
project.org/package=e1071.

53

http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071

[39] P. Cortez, Rminer: Data mining classification and regression methods,
R package version 1.4, 2014. [Online]. Available: http://CRAN.R-

project.org/package=rminer.

[40] (2014). TIOBE software: Tiobe index, [Online]. Available: http://

www.tiobe.com/ (visited on 01/15/2015).

[41] J. Yosinski and H. Lipson, “Visually debugging restricted boltzmann
machine training with a 3d example,” in Representation Learning Work-
shop, 29th International Conference on Machine Learning, 2012.

[42] T. Tieleman, “Training restricted boltzmann machines using approx-
imations to the likelihood gradient,” in Proceedings of the 25th inter-
national conference on Machine learning, ACM, 2008, pp. 1064–1071.

[43] J. Bornschein and Y. Bengio, “Reweighted wake-sleep,” CoRR, vol.
abs/1406.2751, 2014.

54

http://CRAN.R-project.org/package=rminer
http://CRAN.R-project.org/package=rminer
http://www.tiobe.com/
http://www.tiobe.com/

	Abstract
	Acknowledgments
	Table of Contents
	Introduction
	Summary of Remaining Chapters

	Review of Literature
	Machine Learning
	Leading to a Deep Belief Network

	Probabilistic Graphical Models
	Conditional Independence
	Inference
	Markov Random Fields

	Energy-Based Models
	Learning a Markov Random Field
	Boltzmann Machines

	Artificial Neural Networks
	The Perceptron
	Activation Functions
	Cost Function
	Backpropagation

	Clojure

	Deep Learning Models
	Restricted Boltzmann Machines
	Training a Restricted Boltzmann Machine
	Contrastive Divergence

	Deep Belief Networks
	Greedy By-Layer Pre-Training

	Deep Neural Networks
	Training a Better Restricted Boltzmann Machine
	Initialization
	Momentum
	Monitoring the Energy Gap for an Early Stop

	Training a Better Neural Network
	Cross-Entropy Error
	L2 Regularization

	Related Work
	Deep Boltzmann Machines
	Deep Autoencoders

	Implementation
	deebn
	An Abundance of Matrix Operations
	core.matrix
	vectorz-clj
	Clojure Records

	Restricted Boltzmann Machines
	Creating a Restricted Boltzmann Machine
	Learning a Restricted Boltzmann Machine

	Deep Belief Networks
	Creating a Deep Belief Network
	Learning a Deep Belief Network

	Deep Neural Networks
	Creating a Deep Neural Network
	Learning a Deep Neural Network

	Using the Library

	Performance
	Preliminary Performance on MNIST Dataset
	Cross-Validated Results

	Conclusion
	Future Work
	Java Interoperability
	Visualization
	Using Different Matrix Libraries
	Persistent Contrastive Divergence
	Mutation and Performance

	A Stepping Stone

	Algorithms
	Deep Belief Network Learning
	Restricted Boltzmann Machine Learning

