

TOPIC-SPECIFIC WEB CRAWLER TO CREATE

AUTOMATIC NARRATIVE EVOLUTION DATABASE

BY

HYE JIN YUN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2006

MASTER OF SCIENCE THESIS

OF

Hye Jin Yun

APPROVED:

Thesis Committee:

Major Professor

Dean of the Graduate School

UNIVERSITY OF RHODE ISLAND
2006

 ii

Abstract

 Hypertext is a new generation of tools which allows a user to create interactive

narratives on the World Wide Web. It is a young form of modern art and literature.

Many artists, writers and programmers have performed various experiments to

develop creative ways to build interactive stories on the web. Over the past few

years, this genre of narrative has flourished, which brought into being online

galleries that create permanent exhibits of the hypertext and interactive art.

 Automatic Narrative Evolution (ANE) is a software environment which allows

experiments using hybrids of human authorship, structural design, and machine

writing. The purpose of this thesis is to extend ANE in order to allow text from the

World Wide Web to be incorporated with narrative nodes created by human authors

and thus providing a brand new way to evolve digital narratives. Furthermore, as

the part of the implementation work for this thesis the ANE engine was redesigned

and streamlined for the acquisition of web-based text.

 iii

Table of Contents

Abstract ..ii

Table of Contents...iii

List of Figures... v

Chapter 1: Introduction ... 1

1.1 Overview... 1

1.2 Thesis Statement ... 3

1.3 Thesis Outline ... 4

Chapter 2: Background.. 5

2.1 Web Content Mining ... 5

Chapter 3: Crawling the World Wide Web .. 7

3.1 Robot exclusion and user-agent ... 8

3.2 Automatic Narrative Web Crawler System Design 12

3.2.1 Search Terms to initialize search... 12

3.2.2 Query HTML.. 14

3.2.3 Stop words and Porter Stemming Algorithm... 18

3.2.3 Simple Heuristics to evaluate content ... 22

Chapter 4: Search Technique by Optimization Algorithm...................................... 24

4.1 Algorithms to implement intelligent search expansion 26

Chapter 5: Incorporation with Automatic Narrative Engine 30

5.1 The Markup Language and the Database Schema .. 32

5.2 Content Evolution with foreign text... 35

 iv

Chapter 6: Related Research ... 37

6.1 Hypertext Literature .. 37

6.2 Ontology in Computer Science and Semantic Web 38

List of References ... Error! Bookmark not defined.

APPENDIX A... 43

Stop Word List.. 43

APPENDIX B... 45

Porter Stemmer Algorithm Steps ... 45

Bibliography ... 50

 v

List of Figures

[Figure 1].. 9

[Figure 2].. 10

[Figure 3].. 13

[Figure 3-1]... 15

[Figure 3-2]... 16

[Figure 4].. 24

[Figure 5].. 27

[Figure 6].. 28

[Figure 7].. 31

[Figure 8].. 32

[Figure 9].. 33

[Figure 10] .. 34

 1

Chapter 1: Introduction

1.1 Overview

 The World Wide Web is the largest and most widely known hypertext data

repository. Today, the web comprises billions of documents, images and multimedia

data. It has also introduced many new genres in art and literature, and provided

researchers with new challenges to find the best methodologies to index this dynamic

search space. Hypertext, which is also called interactive textual art [8], is a new genre

in modern literature and digital art.

 Automatic Narrative Evolution (ANE) is “a tool to enable complex, unfixed

temporal structures in digital narrative and facilitate the creation of works that are a

hybrid of human authorship, structural design, and machine writing”[1]. The system

displays a page that contains non-linear and interactive narratives. In addition, this

page constantly rewrites itself in response to user interaction. It is unique in its form

and visual/textual behavior [1]. ANE is unique from a technical perspective, since it

applies evolutionary computation to hypertext literature. Evolutionary computation

has been successfully applied to a number of areas – art and music, architectural

design, engineering and drug discovery [1]. However, there has been very little work

done in literature.

 The system consists of two major pieces, a user interface that allows interaction

with digital narratives and displays the rewritten page, and an engine on the back-end

that constantly manipulates digital narratives based on constraints. The original

architecture was designed to evolve digital narratives only from material written for

the engine by a human author. However, these narratives can be generated from many

 2

different sources – scanning hard-copy documents or garnering off the web. “Foreign

text” narrative nodes are text extracted from various data sources other than the text

specially constructed by human authors for the ANE engine [1]. The foreign text

acquisition was one of intriguing research directions due to the complexity of

computing viable semantics for text so that the evolution engine can use this text in

the actual construction of the evolving text page.

 For this attempt to adopt foreign text, we need to choose a widely used open

data source in order to develop a proper application for analyzing the text. The World

Wide Web is a huge data repository that has increasing volume of data and

information in numerous pages for public readers. However, even though it is such an

enormous information resource, web content mining is not an easy task due to noisy

and semi-structured data [4].

 In this thesis, we present a search engine, Automatic Narrative Web Crawler

(ANWC), which crawls the World Wide Web to collect foreign text narrative nodes

for ANE, and a new architecture to incorporate this new component into the ANE

engine. One interesting insight from this research is that an effective first-pass content

analysis can be performed using efficient search expansion and simple heuristic rules

to find quality content in noisy html documents.

 3

1.2 Thesis Statement

 The general purpose of this research is to construct a web crawler to collect data

from the World Wide Web, analyze the quality of the collected data, and build a

database for ANE. This database is used by ANE to further to evolve the digital

narrative based on the foreign text narrative nodes.

The crawler performs these functions:

• Determine seed URLs to initialize the search using the Google API.

• Analyze the content of the downloaded HTML pages. If a page

contains useful information, it will be saved for the next process. If it is

not relevant, the content will be ignored.

• Parse the HTML content to get the next search links.

• Convert the HTML content to the ANE database format and deliver it

to the database.

The architecture of the ANE engine is also redesigned to merge the new foreign text

by the crawler with the existing digital narrative nodes written by human authors.

 4

1.3 Thesis Outline

This thesis is organized as follows:

 The thesis begins with background information on web search engines,

information retrieval, and evolutionary computation theory.

 Chapter 3 gives an overview of web search.

 Chapter 4 details the search expansion algorithm.

 Chapter 5 describes the design of the Automated Narrative Evolution

environment, and a new architecture to adopt web crawler search result.

 Next, Chapter 6 discusses related research, including other systems

that have used an evolutionary approach in inductive logic programming.

 The thesis concludes with achievements, future directions for research

and closing remarks.

 5

Chapter 2: Background

2.1 Web Content Mining

 Web content mining aims to extract information and knowledge from Web page

content [4]. The majority of documents in the World Wide Web are encoded in

HTML. They are not well-structured and are hard to query [5]. The Web creates new

challenges for information retrieval in many different ways [2]. Traditional

information retrieval works with finite document collections. Documents are self-

contained units, and are generally descriptive and truthful about their contents. In

contrast, we are not able to collect a snapshot of the web because the Web is an

indefinitely growing and shifting universe [12].

 The amount of data on the web is huge and HTML contents are noisy. The

styles and types of data are diverse - structured tables, texts, and multimedia data. In

many cases, the HTML codes are nested. Due to the varying structure of web data, it

is difficult to automate discovery of unexpected information in the web content as

with traditional information retrieval. A single web page also contains a mixture of

many kinds of information, e.g., the main content, advertisements, a navigation panel,

copyright notices, etc. so that only a particular part of the content is useful, and the

rest can be considered noise [4]. In many cases, multiple web pages are linked, and

present the same or similar information. Those pages simply use different formats or

syntaxes with the same information so that it is a challenging task to create a tool to

automatically discover information [4].

 6

 The web is dynamic [4]. Information on the web constantly changes, and

millions of new pages are created everyday. Keeping up with changes and updates

from the same links is important because the same links can contain new information.

 Unstructured text extraction has become a popular research topic with the

expansion of the World Wide Web. The majority of current techniques are based on

machine learning or natural language processing to learn extraction rules [5]. In

contrary, the ANWC is a web crawler that looks for digital narrative nodes that can be

used in ANE based on a set of simple heuristics. Chapter 3.2.3 introduces these

simple heuristics to evaluate the quality of text for the ANE engine, and explains why

the simplicity can be powerful in some complex problems.

 7

Chapter 3: Crawling the World Wide Web

 The World Wide Web is a search space that contains a massive amount of data.

The amount of information on the web site is growing rapidly, as well as the number

of internet hosting servers and text pages. Due to the rapid advance in technology and

web proliferation, a web search engine can be designed in various ways.

 For the Automatic Narrative Engine, we designed a small-scale content-analysis

web search engine, Automatic Narrative Web Crawler (ANWC). The engine is not

designed to index web sites or parse a large volume of HTML pages at a high speed

like other large-scale engines such as Googlebot or Yahoo crawler. Instead of

indexing and querying a large number of sites and links, the ANWC focuses on the

content analysis and intelligent search expansion. The engine keeps a minimal search

history and indexes of sites and URL paths to avoid visiting the same pages over and

over. But it does not track times or frequencies of visits because the system does not

require revisiting links or checking for updates to the HTML content from the same

link. The ANWC focuses on the content analysis and converting the extracted text

into the digital narrative.

 8

3.1 Robot exclusion and user-agent

 Search engines are popular application. Programmers design search crawlers

with personal preferences to get the best search results from the web. However, if it is

not designed correctly, the application can cause many problems for server

applications. In particular, since a lot of sites analyze the number of unique visits

from human users and their activities on the web, web crawlers can create unrealistic

statistics or unnecessary traffic.

 There are several guidelines for creating web crawlers, but they are not strict

rules. Servers can deny any requests from web crawlers if they do not follow the

standard protocol or have invalid HTTP header properties that could be problematic

for the server applications. The ANWC follows two major rules: the robot exclusion

standard and the HTTP header property, user-agents.

 The standard of robot exclusion, which is commonly known as “robots.txt”, was

proposed in 1994, as a mechanism for keeping robots out of some areas of the

protected web resources such as, [6]:

- Resource-intensive URL spaces, e.g. dynamically generated pages.

- Documents which could represent a site unfavorably, e. g. bug archives.

- Documents which are not useful for world-wide indexing, e.g. local

information or an intranet.

The robot exclusion protocol is a simple file robots.txt that is located in the root

directory of the domain. The crawler can easily find this file by concatenating the

domain name and “/robots.txt”. For example, the robot exclusion of the University of

Rhode Island should be http://www.uri.edu/robots.txt. The file contains several

 9

keywords to indicate the names of allowed web crawlers and locations allowed and

diallowed by tagging: User-agent, Allow and Disallow.

User-agent: *

Allow: /searchhistory/
Disallow: /search
Disallow: /groups
Disallow: /images
Disallow: /catalogs
Disallow: /catalogues
Disallow: /news
Disallow: /nwshp
Disallow: /?
Disallow: /addurl/image?

[Figure 1] The partial contents of robots.txt on http://www.google.com

 Figure 1 is an actual example of robots.txt. The line “User-agent: *” means that

this site allows all web crawlers. The site disallows multiple links to protect its

resources. If the robots.txt file does not exist in the root folder of the domain, the

crawler assumes that the site has no restrictions for crawlers to scan its web pages.

 In addition to the robots exclusion protocol, there exists the robot META tag.

The robot META tag is a method for the author of an html page to communicate with

a web crawler. HTML authors specify restrictions in the html meta tag whether a

document may be indexed, or used to harvest more links. No server administrator

action is required [6]. For example,

<META NAME="ROBOTS" CONTENT="NOINDEX, NOFOLLOW">

This Meta tag specifies that the crawler must not index the page or follow links on the

page. Whereas a server can deny any requests for disallowed paths in the robot

 10

exclusion list, there is no obvious way to enforce this META tag rule with a web

crawler.

 Another important rule is to provide a proper HTTP header to the server

application. The Hypertext Transfer Protocol (HTTP) is an Internet Official Protocol

Standard, and the World Wide Web Consortium (W3.org) specifies the syntax of the

latest version, HTTP 1.1.

GET / HTTP/1.1
User-Agent: Mozilla/4.7 [en] (WinNT; I)
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png, */*
Host: www.yahoo.com
Accept-Encoding: gzip, deflate
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

[Figure 2] The sample HTTP client request to the server

 The user-agent request-header field contains information about the user agent

originating the request [7]. It contains various information about the user’s browser.

This header field is used for statistical purposes, tracking of protocol violations, and

automated recognition of user agents for tailoring some responses to avoid particular

user agent limitations [7]. Many sites use this header property field to measure web

traffic generated by actual internet users. Since there are many automated applications

that create web traffic, it is important for a site to check the user-agent and create the

right statistics for their web traffic analysis. The user-agent of the ANWC is below:

 User-Agent: Automatic Narrative Web Crawler 1.0

 11

There are several organizations that manage lists of active web crawlers on the World

Wide Web, and provide it to companies to help them create correct traffic analysis.

The current version of ANWC is not registered yet since it is in beta.

 12

3.2 Automatic Narrative Web Crawler System Design

 The ANWC looks up topic specific resources in the World Wide Web, which

means that the root search terms are initialized before it starts crawling. These initial

terms create ten root links using the Google Web API. The crawler starts to scan

documents from these initial seed URLs, and efficiently expands the search.

3.2.1 Search Terms to initialize search

 Digital Narratives for Automatic Narrative Engine were initially designed by a

human composer. He/she created a story and converted it to a proper format that the

Automatic Narrative Engine could understand. The purpose of this research is to

create a foreign text database that is able to evolve with existing or newly written

digital narratives by a human author. It is important to choose initial search terms that

can be blended well with the existing context.

 The ANE creates a memory-resident hash-table database by importing a file

written in the markup language when the system initializes. The language consists of

three major tags: <section>, <node> and <sen>. Each node has a property, called

meta, which is the collection of semantic words related to the context. The ANWC

starts the initial search from this set of semantic keywords in the file.

 Figure 3 shows a sample narrative node in the ANE markup language. This

node consists of four sentences related to the semantic words, “incorrigible, wake,

refrain, halt, June, begin”. For this node to be evolved with foreign text, we need to

look up narrative nodes related to this keyword list on the web. The crawler starts to

 13

search the resources with the semantic words by reading this initial markup file and

creating a list of seed URLs.

{\node \meta="incorrigible, wake, refrain, halt, June, begin"
 {\sen Will she disappear?}
 {\sen I said to you, "be careful. Today is a strange day, and

 that was the end of it."}
 {\sen I had written impassioned letters that expressed the

 urgency of my situation.}
 {\sen To hand to you the consecrated sum of your gifts, the

 secret you imparted persistently and without knowledge,

 these expressions of your will that lured, and, in a

 cumulative fashion, became a message.}
}

[Figure 3] Sample ANE markup language

 Google is a leading search company that provides various web search services.

Google Web API is a beta product that provides the search results by direct access

without a web browser. The ANWC initiate the starting URLs for the given semantic

words via the Google API. It initializes a set of URLs for the meta keywords from

each node that have common relationship between the semantic words to crawl the

World Wide Web.

 S = t1 ∩ t2 ∩ t3 ∩ …… tn-1 ∩ tn (S = Set of URLs, ti = semantic word)

The database for the ANWC has a table to contain semantic keywords from the ANE

markup file import. When the search engine starts, it checks this table to see if there

are new semantic words and initializes the search root URLs for the new keywords.

From a set of these root URLs, the crawler scans the HTML pages, analyzes the

contents and collects all available links, which lead to the next level of search. All

 14

links are saved in the database, and the crawler selects the next link to search using

the algorithm called “Hill-Climbing”.

3.2.2 Query HTML

 HTML is a semi-structured data format. It is not easy to extract the data inside

without proper lexical analysis. Figure 3-1 is an example of noisy HTML in a typical

format. The ANWC extracts two types of data from HTML – text and URL links.

Other types of data, images and videos, are not relevant for ANE data so that they are

ignored in this step.

 Even though ANE digital narratives require only text data, we found that

extracting the whole HTML page as text only by eliminating all HTML tags was

suboptimal due to the fact that the tags properly group text information and are

helpful in predicting types of data not interesting for the evolution of narratives -

menus, advertising copy or copyright notices at the bottom of the page. Therefore,

we need to parse the HTML page without damaging the original HTML tag structure

in order to keep details of the page.

<table border="0" cellpadding="0" cellspacing="0" width="612">
 <tr>
 <td width="612" valign="top" colspan="4">
 <table border="0" cellpadding="0" cellspacing="0" width="612">
 <tr>
 <td width="231" valign="top">
 <img border="0" src="home/newimages2/uritext.gif"
 alt="University of Rhode Island" width="231"
height="62"></td>
 <td width="384" valign="top"><map name="FPMap1">
<area href="home/help/" shape="rect" coords="287,2,332,25"
alt="Help">
<area href="home/services/" shape="rect" coords="1,3,51,28"

 15

alt="Campuses">
<area href="home/campus/" shape="rect" coords="62,3,128,26"
 alt="Directories">
<area href="home/dir/" shape="rect" coords="141,0,210,23" alt="Fast
Links">
<area href="https://webmail.uri.edu/" shape="rect"
coords="221,1,276,27"
 alt="WebMail">
<area href="home/search/" shape="circle" coords="353, 25, 23"
 alt="Search"></map>
<img border="0" src="home/newimages2/top_bar_new.gif"
usemap="#FPMap1"
 width="379" height="50"></td>
 </tr>
 </table>
 </td>
 </tr>
</table>

[Figure 3-1] Semi-structured raw HTML

 Because HTML is a very popular format for content, JDK 1.5 provides a stable

HTML parser, HTMLEditorKit, as a part of the Java Swing Kit. To extract only

certain tags by our rule, we restructure the raw HTML in a different data format that

makes it easy to analyze. HTMLEditorKit converts an HTML page into two-

dimensional array structure that represents a hierarchy of the nested tags. Figure 3-2

shows the converted form of HTML.

.table[0].@cellpadding : 0

.table[0].@border : 0

.table[0].@cellspacing : 0

.table[0].@width : 100%

.table[0].tr[0].td[0].@width : 345

.table[0].tr[0].td[0].a[0].@href : http://www.url.edu

.table[0].tr[0].td[0].a[0].img[0].@height : 96

.table[0].tr[0].td[0].a[0].img[0].@border : 0

.table[0].tr[0].td[0].a[0].img[0].@width : 345

.table[0].tr[0].td[0].a[0].img[0].@alt : Logotip de la Universitat Ramón Llull

.table[0].tr[0].td[0].a[0].img[0].@src : http://www.url.edu/images/pagina1_01.jpg

.table[0].tr[0].td[1].@style : background:url(images/pagina1_02.jpg)

.table[0].tr[0].td[1].@valign : bottom

.table[0].tr[0].td[3].@width : 84

.table[0].tr[0].td[3].@style : background:url(images/pagina2_4.jpg)

.table[0].tr[0].td[3].table[0].@cellpadding : 0

.table[0].tr[0].td[3].table[0].@border : 0

.table[0].tr[0].td[3].table[0].@cellspacing : 0

.table[0].tr[0].td[3].table[0].tr[0].td[0].@width : 6

 16

.table[0].tr[0].td[3].table[0].tr[0].td[1].@valign : top

.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].@cellpadding : 0

.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].@border : 0

.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].@cellspacing : 0

.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[0].td[0].@height : 25

.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[0].td[0].@class : celda_mapa

.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[0].td[0].@valign : top

.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[0].td[0].a[0].@href :
http://www.url.edu/es/index.php
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[0].td[0].a[0].text[0] : Español
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[1].td[0].@height : 25
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[1].td[0].@class : celda_mapa
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[1].td[0].@valign : top
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[1].td[0].a[0].@href :
http://www.url.edu/en/index.php
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[1].td[0].a[0].text[0] : English
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[2].td[0].@height : 25
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[2].td[0].@class : celda_mapa
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[2].td[0].@valign : top
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[2].td[0].a[0].@target : _blank
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[2].td[0].a[0].@href :
http://www.url.edu/mapa.php
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[2].td[0].a[0].@id : lnkMapa
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[2].td[0].a[0].text[0] : Mapa Web
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[3].td[0].@valign : bottom
.table[0].tr[0].td[3].table[0].tr[0].td[1].table[0].tr[3].td[0].@class : adriadna

[Figure 3-2] Structured HTML converted by the HTML EditorKit in Java

 This is a visual representation of the data. This transformed data format does not

change any of the original HTML text. This HTMLEditorKit data set provides two

advantages: firstly, it eliminates all white space from the HTML text so that we do

not need to do additional lexical analysis to concatenate broken sentences inside of

the table or paragraph tags. Secondly, in this way, it is also easy to follow the

hierarchy of the nested tags so that the re-creation of the pure text can be properly

performed. Each parsed <p> or <table> is considered one narrative, and evaluated by

the heuristic rule.

 The ANWC parses the HTML in two ways – link extraction and text

extraction. The link extraction simply collects all URL links which are represented as

“src=” or “href=” in source, anchor and frame tags. Since we do not need any

multimedia resources, the ANWC does not keep the source links from image or any

 17

object-type tags. The ANWC extracts text data from <p> and <table> tags. One

paragraph or table is considered as one single narrative node. These tags often used to

graphically format the text on the browser, so they often contain other table or

paragraph tags. The current version does not extract nested tables of paragraph

separately. If the <table> tag contains another table tag inside, the parser considers

that it is invalid format data and rejects them.

 18

3.2.3 Stop words and Porter Stemming Algorithm

 In information retrieval, analyzing any type of document is based on two sets of

data: the kinds of semantic words the document contains and how many times they

are present in the whole text. However, counting the frequency of all words in the text

is not a good way to approach content analysis since there are many common words

in English that do not carry inherent meaning themselves but modify other words,

such as adverbs, conjunctions, prepositions, and forms of “be”. Stop words and word

variation, so-called stemming, are the most used techniques to retreive the proper

semantic words from documents in information retrieval [9]. The list of stop words is

attached in Appendix A.

 Stop words are common words that are ignored by search engines at the time of

searching a key phrase on both search query and found documents. In other search

engines, this was done in order to save space for HTML documents and to accelerate

the search process. The common words are often used interchangeably as “Filter

words” because they are not usually key phrases in the content. Most search engines

eliminate these words from the search query to avoid dilution of meta words. The

ANWC uses the stop words in a different way than traditional search engines to

evaluate the context. To create general English phrases, it is not possible to avoid

using adverbs, conjunctions, prepositions, or forms of “be”. Web content is very

noisy since pages include advertising copy, menus, and copyright notices. The

difference between these non-sentence phrases and paragraphs is that the phrases do

not contain enough common words. The phrases are simple and sometimes contain

only nouns, adjectives, symbols and numbers. In human linguistics, we cannot judge

 19

what percentage of common words is exactly used in each sentence or conversation.

However, it is clear that if the sentence does not have a certain number of stop words,

it is highly likely the text is invalid. The current engine checks for that 20% of the

content are stop words in the context. If the found node has less stop words than that,

the engine decides that the text in the node is not properly formed as a general

English sentence.

 Stemming is defined as a form of automatic truncation of each word in the

index to its root. It is performed in order to accommodate the variety and ambiguity

of the English language. For example, the words “searcher”, “searches”, “searched”,

“searching” and so on can be stemmed as “search”. There are mainly two types of

stemming: Plural and Porter stemming [9]. Plural stemming tries to determine the

singular form of a word, whereas Porter stemming attempts to find the root, or stem,

of a word. The ANWC uses the Porter stemming algorithm to count the accurate

frequency of the stem words.

 The Porter stemming algorithm was introduced by Martin F. Porter in 1980

[10]. Removing suffixes by automatic means is very useful in the field of information

retrieval. In a typical information retrieval environment, a document can be

represented by a vector of words, or terms. Terms with a common stem have usually

similar meaning, for example [10]:

 CONNECT

 CONNECTED

 CONNECTING

 20

 CONNECTION

 CONNECTIONS

All words are related to a single term, CONNECT. The suffix stripping process

reduces the total number of terms in the information retrieval system, and reduces the

size and complexity of the data, which improves the performance.

 The algorithm is simple, but requires several steps to find a complete stem

word. Every word, or part of a word, has one of four forms:

 CVCV ….C

 CVCV ….V

 VCVC ….C

 VCVC ….C

C = Consonant, V = Vowel

A list of ccc… of length greater than 0 is still denoted

by C, and V uses the same denotation.

These four forms can be represented by one single form,

 [C]VCVC…. [V] → [C]VC{m}[V] m: the number of VC repeats

Some examples [10]:

 m=0 TR, EE, TREE, Y, BY

 m=1 TROUBLE, OATS, TREES, IVY

 m=2 TROUBLES, PRIVATE, OATEN, ORRERY

The rule to remove a suffix is given in this form,

 (condition) S1 → S2

This means that a word ends with S1 is replaced by S2 in the given condition. The

condition contain the following including the value m which is usually used:

*S – the stem ends with S (and similarly for the other letters).

v – the stem contains a vowel.

 21

*d – the stem ends with a double consonant (e.g. –TT, –SS).

*o – the stem ends CVC, where the second C is not W, X, or Y (e.g, –WIL, –

HOP).

The condition also allows and, or, and not operations.

With the above rules, the algorithm follows total nine conversion steps:

Step 1a

 SSES → SS caresses → caress

 IES → I ponies → poni

 SS → SS ties → ti

 S → (null) cats → cat

Step 1b

(m>0) EED → EE feed → feed

(*v*) ED → (null) agreed → agree, plastered → plaster

(*v*) ING → (null) bled → bled, motoring → motor

The full description of this conversion step is attached as Appendix B. The

Porter stemming algorithm is simple, but it reduces the complexity of calculating the

vector of words list in the document. This algorithm is used twice in the overall

Automatic Narrative Engine Architecture: the web content analysis in the ANWC and

the evolutionary seed to mutate context in the Automatic Narrative front-end

implementation, which will be described in Chapter 5, Collaboration with the

Automatic Narrative Engine.

 22

3.2.3 Simple Heuristics to evaluate content

 A large volume of data analysis does not require finding all details in the data

set. In data mining, too many constraints in the decision making process can create an

underfitting rule. It is necessary to create frugal heuristics for large and noisy datasets

[14]. As it was mentioned earlier, the web data are noisy and polluted with many

types of information. Simple heuristic can eliminate useless information so that the

web crawler can find the proper content in the HTML pages, but it also increases the

performance of analysis to handle large volume of semi-structured data.

 The ANWC looks for contents that are able to collaborate with existing digital

nodes, which can blend with existing stories. The content must be a paragraph in

proper English Grammar with a fixed length. Based on this fact, we could create

several simple rules to evaluate the text from HTML.

1. The number of keywords in the narrative node must be more than ten

keywords.

2. The length of the node should be smaller than 8000 characters due to the size of

display screen.

3. To be proper English, the paragraph must not contain any special characters

such as like sharps, brackets, and etc. This rule eliminates the text like

mathematical formulas and malformed HTML text that is displayed as broken

text on a browser. It also filters out price lists from online stores.

 23

4. The sentence must start with an uppercase character and end with a termination

character like a period or quotation mark. This rule is effective for eliminating

copyright notices, page menus and advertising copy.

5. Calculate the percent of stop words in the content. To become a readable

English paragraph, the content must have a certain number of stop words.

Requiring a higher percentage of stop words can eliminate too much useful

information. Requiring too little can bring unreadable narrative nodes into the

database. This value is one of the property settings on the crawler so that the

performer of Automatic Narrative Engine can control the output from the

crawler. The default value is twenty percent, which we find that it creates the

best number of narrative nodes. In addition, this rule also evaluates text in

foreign languages like French, German, or any other Asian languages.

 Evaluating web content can be complicated. However, applying simple rules to

perform evaluation can be powerful and robust in web content mining. Our five rules

are simplistic, but they eliminate a lot of noise from the web content. We can easily

find resources without expensive computation. The decision making process is

complicated, but the fast and frugal heuristics can be a very powerful way to resolve

issues.

 24

Chapter 4: Search Technique by Optimization Algorithm

 One of the main tasks in creating a web crawler is deciding how to expand the

search intelligently. General HTML pages link to other web pages using the <a>,

<frame>, or HTML source tags. A simple way to branch search links is to follow all

links as they are found in order. Breadth-first search is a tree search algorithm that

starts a search at the root node and traverses all the neighboring nodes. It then

explores their nearest unexplored nodes, and repeat this process until it finds a goal.

By using this mechanism, the crawler can visit all links found while scanning HTML

documents and follow them in order. However, this is an expensive method because

the World Wide Web changes every day and millions of web pages link to one

another. It is also likely to visit pages that do not provide good content. This

traditional tree structure is not valid to describe the web.

[Figure 4] Breadth-First Search

 Hill Climbing algorithm is a depth-first search with a heuristic cost analysis. It

sorts a new path by the estimated distances between its terminal nodes and the goal

[20], and the next destination is selected by the local maximum [19]. This approach

fits our need because the crawler has to manage a massive amount of URL links and

 25

pick a link that can provide the best result set. But links that have a small chance of

providing good content still need to be picked in a random fashion because they

might lead to interesting content in the long run.

 26

4.1 Algorithms to implement intelligent search expansion

 The ANWC is a web crawler to find topic-specific web resources. All saved

web resources are scored when they are saved into the database. Hill climbing is a

search algorithm with a heuristic measurement that orders choices when nodes are

expanded [20]. It finds a local maximum value among the heuristic values of the

linked node. Roulette-wheel selection, which is also known as fitness-proportionate

selection, is a genetic operator used in genetic algorithms for selecting potential

solutions for recombination [15]. The search expansion was implemented using the

hill climbing algorithm to find the local maximum scored site, but it borrowed the

model of the roulette-wheel selection evolutionary computation.

 By the set of semantic keywords, the ANWC initializes ten URLs as the search

seed using the Google Web API. The number of the seed URLs is set by the ANWC

configuration file so that it can be overwritten by the operator’s preference. The

URLs are saved into two pieces, Domain Name and the Link Path. When the search

starts, these ten initial domain names have the default score 1, so that they have the

same size of pie on the wheel. All domains have an equal opportunity to be chosen on

the first roll. When one of the domain names is chosen, the crawler get a URL path

belong to the selected domain, downloads the HTML page from the link and analyzes

the content. All links listed on the page by <a>, <frame> or other source tags are

saved into two separate tables, Domain Name and the Link Path, like the search

seeds. The text data are analyzed by the heuristic rule specified in Chapter 3.2.3,

Simple Heuristics to evaluate content. After this analysis, the site gets scored by the

rule whether the content was valuable or not. On the second roll, there are more than

 27

ten initial domains on the wheel because of the links collected from the search. The

new domain names will have the default score 1. If the previous link contained

valuable content and got scored, this domain has a slightly bigger slice of the pie than

other sites on the wheel with the score 2. This will provide a higher priority to the

domain on the next random selection. Other domain names still have an opportunity

to be selected on the next roll with the default score 1. If the link did not get scored,

all domain names have the same score again and share the same slice of pie on the

wheel so that all of domains have an equal opportunity to be chosen. After running

the algorithm many times, the crawler collects many domain names and the wheel

will be sliced into many small pieces. But the algorithm will always ensure the

correct possibility for each site to be selected on the next search because the

algorithm does not select a site by the global maximum value. Figure 5 provides a

graphical image of the mechanism.

[Figure 5] All domain names have an equal size of pie on the wheel. If the crawler
finds a good quality content from the selected domain 8, its piece will take a bigger
slice of the pie on the next roll. This means that the domain name 8 will have a better
chance than others.

 28

 We achieved two goals. First, the algorithm provides a better chance to be

chosen for a site that provides good quality content. The more the domain site

provides good content, the bigger slice of the pie will be assigned on the wheel. This

increases the chance for the crawler to collect good web resource.

 Secondly, the low score site still has a chance to be searched in a random

fashion. The ANWC gives a higher priority to the high scored domain, but the low

scored domain still has a possibility to be selected. The algorithm properly assigns

chances for high and low score sites.

Procedure search-expansion (semantic_keywords)

 Initialize the search seeds(semantic_keywords);
 Initialize domain names from the search seeds;
 Score the default value to the seed domain names;

 Do while (true)
 Int total_score = get_total_score(all domains);
 Int random_number = get_random_number(total_score);
 Int domain_id = get_domain_id(random_number);
 URL link = get_next_link_path_of_the_domain(domain_id);

 Search_and_analyze(link);

 Int number_of_found_narrative_node=Search_search(link);
 If (number_of_found_narrative_node>0)
 Add_score_to_the_domain(domain_id);
 End while

End Procedure

[Figure 6] Pseudo-code to expand the search

 The implementation of this algorithm uses a random number generation to

simulate the wheel. First, it gets the total score of all domains names in the database.

It generates a random number from this total value, and finds the site where to

random number belonged. Since all domain names have unique IDs, it is easy find

 29

where the random number belongs. Figure 6 shows the pseudo-code of the algorithm.

The initial ten domain names on the first roll or any new domains added later are

scored the default value, 1. When the search is expanded, they will have different

values.

 30

Chapter 5: Incorporation with Automatic Narrative Engine

 Automatic Narrative Engine is a tool to experiment with a hybrid of human

authorship, structural design, and machine writing. Automatic Narrative Engine

(ANE) collects unfixed temporal structures in digital narrative and re-creates a work

of art [1]. In ANE, digital narrative is created by assembling a set of narrative nodes.

Each narrative node is a fragment of text that is denoted semantically by a set of

keywords, and also contains a set of interactive points to drive the digital narrative

through user interactions. When a user clicks on an interaction point in the digital

narrative, the system interprets it as a constraint and adapts the digital narrative.

During this adaptation, an existing narrative node is replaced with a new narrative

node that is better qualified under the current constraints [1].

 When the ANE system is first launched, the user is presented with a page of

text. The initial text layout is designed by the composer of the evolving text. Within

the page, any words can act as interaction points for the user. Evolution of the

narrative is driven by either highlighting or double-clicking one of the words. The

system interprets this as a constraint and adapts a new narrative to this constraint.

Adaptation takes the form of swapping out a segment of text and replacing it with

new text deemed more appropriate given the current constraint [1]. Figure7 shows the

steps of the evolution by user interaction. Given a set of narrative nodes with their

semantics and an interaction point with its semantics or constraints, the narrative

evolution engine attempts to find the most appropriate narrative node based on the

match of semantics against constraints. The best node is selected and its syntax is

incorporated into the evolving text page.

 31

[Figure 7] Automatic Narrative Engine Evolutionary Steps by user interactions

 The first implementation of ANE was designed to import semantic nodes from a

file in structured markup language. The system read a data file, parsed it, and kept

narrative nodes in memory. With the adoption of foreign narrative nodes from the

crawler, the original architecture of ANE needed to be modified to combine digital

narrative nodes from two sources. The system also required a persistent database

rather than memory resident hash tables because the amount of data collected by the

web crawler grows more quickly.

 32

5.1 The Markup Language and the Database Schema

 The markup language consists of three major tags: “section”, “node” and “sen”.

One section represents one or more narrative nodes. Narrative nodes can be

paragraphs, simple collections of sentences, a single sentence or just utterances of

several words. Figure 8 shows an example of a section in the markup language. This

set of data is created by a human author, and the Automatic Narrative Engine imports

it when the engine starts.

{\section \display \id="begin"

{\node \meta="none, recited, start, begin"
{\sen I am revisiting a reading error.}
{\sen The machine demands language.}
{\sen You have to get the ball rolling.}
{\sen I know: it has always been easier to be on the receiving
end.}
}

{\node \meta="vision, blindness"
{\sen But what could this new loss of vision possibly reveal to
you about yourself.}
}

}

[Figure 8] ANE Markup language – full section example

 However, the ANWC collects a large number of narrative nodes from the World

Wide Web so that the solution to keep digital nodes in a file is not relevant. We need

a persistent database to handle and index a large amount of data.

 MySQL is a popular open source database. It is lightweight and provides

reliable service. Since the ANE reads digital narrative nodes from two sources, it was

necessary to use an efficient database to store collected narrative nodes from the

World Wide Web. The initial architecture of ANE read narrative nodes from a file

 33

when the engine started. The engine also needed to be modified to read additional

nodes from a database.

[Figure 9] Automatic Narrative Engine architecture with web crawler

 The data evaluated by the heuristic rules consist of one or multiple sentences.

By the definition of the markup language, one narrative node contains one or more

than one sentence [1]. However, the actual interactive page evolves in nodes. It does

not evolve or mutate sentences in each node. The ANWC considers that one node

contains one sentence to simplify the conversion process and avoid unnecessary

parsing of the narrative node. The meta words for the narrative node are the search

keywords where the page was found.

Figure 10 shows the data relationship between meta words and narrative

nodes. The meta words and narrative nodes have a many-to-many relationship. This

drives the evolution that one constraint, one meta keyword, is associated with many

nodes so that an interacted node can be replaced by another node that has the

 34

constraint. In the same manner, one node can have multiple constraints that can

increase the chance to be chosen as in the example in the Figure 8.

[Figure 10] Database Schema for narrative node and meta words relationship

This database schema can be expanded to adopt narratives in a file. In that

way, the engine does not have to import the data file every time when the system

initializes, which increases the performance of the system at initialization time.

However, since direct file import to the database requires an additional tool and

requires another set of research expertise, it will be added in the future.

 35

5.2 Content Evolution with foreign text

 The digital narratives evolve by user interactions like clicking or highlighting

in the ANE. The system interprets user interaction as a constraint and adopts a new

narrative node linked to the constraint. To find a proper narrative node, the constraint,

the chosen keyword, is prefixed by the Porter stemming algorithm. The system looks

up a narrative node related to this prefixed keyword, and adopts a new node.

Adaptation replaces the existing node, given the current constraint, with the new one

[1]. Since the system has started to adopt foreign text from the crawler, it is necessary

to redesign this architecture in part.

 The original design adopted only digital narrative node designed by a human

author. The system created an unfixed open-ended story, but the narrative nodes from

the file were designed to be related to author’s intent. Adopting random foreign text

from the Internet is a challenge because the text may contain several random factors

to prevent text evolution. It is hard to guarantee robustness. The new Automatic

Narrative Engine has one more property configuration to resolve this issue. The initial

configuration file contains a value, proportion_of_crawler_node, which controls the

mix of narrative nodes from the human author and the web crawler. In this way, we

can perform various evaluation experiments on the foreign text.

 Narrative nodes from the World Wide Web are diverse. They have texts for

politics, sports, entertainments, and sometimes advertising copy. For example, the

human author can write limited narrative nodes with a meta word, “cookie”. In

contrast, the web crawler can collect broad knowledge of cookies in computers,

recipes, history, and even product descriptions. This kind of randomness creates an

 36

interesting phase of text evolution in the interaction page of the Automatic Narrative

Evolution.

 37

Chapter 6: Related Research

6.1 Hypertext Literature

 Hypertext literature, which is also called as interactive textual art, is new but it

is treated as a single genre. It is variously called hypertext, hypermedia, cybertext,

interactive fiction, and terms which are still being invented [8]. The World Wide Web

has naturalized the clicking on a link as a basic form of interaction to switch

documents. This type of interaction created another form of entertainment, which

provides an immediate change in sight. Hypertext is non-sequential writing, which is

a presentation of text by a linked network of nodes which readers are free to navigate

them in a non-linear fashion. Writers provide stories with anchor tags, and readers re-

create a story by interacting with them.

 To define this genre for literature purposes, hypertext is non-linear, unbound,

and unfixed. It is a non-linear text that allows multiple paths for users to sequence the

reading. Stories are not bounded like books that are held together between covers.

They are open-ended. The node can loop back onto itself, link out into different

information in the global network, or repeat another hypertext world that it has no

final reading of the text. The story does not require any definite reading, which means

that there is no “fixed” text.

 The Electronic Poet Center at the University at Buffalo is a center of this

movement. They list hundreds of writers and digital artists who work in this new area.

There are many compelling works from these artists. Jörg Piringer is an artist and

programmer, and he created a software package, rimmixa, which reads digital poetry

audibly in response to user interaction [16]. John Pierre Balpe and the

 38

groupe@graphe, created the hypertext novel ebbflux [1]. John Cayley creates poetic

works, Lense, in which the text undergoes animated transformations [17]. Gavin

Steward is a digital media artist who actively works on many digital poetry and

cybertext projects. Digital images of all his works are available on

http://www.gavinsteward.net.

6.2 Ontology in Computer Science and Semantic Web

 An ontology is a conception of reality. In computer science, the term ontology

refers to a data model that represents a specific part of the realworld. It explains

abstract representations of objects and their relationships [17]. Ontologies are

commonly used in artificial intelligence, knowledge representation, inductive

reasoning, classification, and a variety of problem solving techniques, as well as to

facilitate communication and sharing of information between different systems [17].

 An ontology is a major piece of the Semantic Web framework. The Semantic

Web intends to create a universal space, the World Wide Web, for information

exchange by given semantics in a manner understandable by machines [18]. The

current World Wide Web is based primarily on documents written in HTML, which

has limited ability to classify or organize different types of documents. The Semantic

Web consists of standards and tools of XML, RDF and OWL. These technologies are

also combined in order to provide a better way of providing the content of Web

documents. Therefore, the content can be formed in Web-accessible databases, or as

its own markup within documents. The machine-readable descriptions enable

automatic search and easier information gathering by computers. The World Wide

 39

Web Consortium organizes the project of the Semantic Web, and maintains standards

to share machine-understandable information.

 40

Chapter 7: Conclusion

 The Automatic Narrative Web Crawler is a topic-specific web search engine. It

focuses on intelligent search expansion and content analysis to create the best results

in search spaces given appropriate problem constraints. We modified the original hill

climbing algorithm to expand the search using a model of roulette-wheel algorithm

introducing some randomness in the search strategy. This could be interpreted as a

exploration versus exploitation tradeoff. The simple heuristics were frugal and

powerful solutions to evaluate a massive amount of noisy data. The new algorithm

and the heuristics together created an optimized search analysis to find the best digital

narrative nodes in the World Wide Web.

 The Automatic Narrative Engine is a software environment to experiment with

self-evolved text. It was initially designed to evolve only digital narrative by a human

author, but this research enhanced the system to adopt foreign nodes collected by the

web crawler. As a result, the text in the Automatic Narrative Engine can evolve from

the richer database as was proposed. In addition, the foreign narratives are collected

from various sites and sources, so they add more random factors to mutate texts.

 The current system evolves one single hypertext by many different users. Even

though user interaction is a main key of the evolution, the system does not record the

evolutionary trace. Perhaps, this is the next step for the Automatic Narrative Engine

since the evolutionary trace by the interacted semantics can be an important factor to

differentiate our work from other hypertext systems.

 41

List of References

[1] Lutz Hamel, Judd Morrissey and Lori Talley: Automated Narrative Evolution, A

White Paper, http://www.errorengine.org (2004)

[2] Sergey Brin, Lawrence Page, Stanford University, The anatomy of a large-scale

hypertextual web search engine, http://www-db.stanford.edu/~backrub/google.html

(1998)

[3] Charu C. Aggarwal, Fatima Al-Garawi, Philip S. Yu, IBM T. J. atson Research

Center: Intelligent Crawling on the World Wide Web with Arbitrary Predicates

(2001)

[4] Bing Liu, Kevin Chen-Chuan Chang, Department of Computer Science,

University of Illinois at Urbanan-Campaign: Special issue on web content mining,

SIGKDD Explorations (2005)

[5] Ruth Yuee Zhang, Laks V.S LAkshmanan, Ruben H. Zamar, Department of

Statistics, University of British Columbia, Vancouver: Extracting Relational Data

from HTML Repository, SIGKDD Explorations (2005)

[6] Martijn Koster, http://www.robotstxt.org/, Evaluation of the Standard for Robots

Exclusion (1996)

[7] World Wide Web Consortium, http://www.w3.org/Protocols/rfc2616/

rfc2616.html, Hypertext Transfer Protocol -- HTTP/1.1 (2005)

[8] Dean Taciuch, http://mason.gmu.edu/%7Edtaciuch/htext_lecture, Hypertext and

Literary Form (2005)

[9] Search Engine Optimization Ethics, Stop Words,

http://www.searchengineethics.com/ stopwords.htm (2002)

 42

[10] M. F. Porter, An algorithm for suffix stripping, http://www.tartarus/org/martin/

porterstemmer/ (1980)

[11] Chapter 1. Evolutionary Computation, Creative Evolutionary System, Morgan

Kaufmann (2005)

[12] Chapter 7. Social Network Analysis, Mining the web, discovering knowledge

from Hypertext Data, Morgan Kaufmann (2005)

[13] Evolutionary Computation, http://en.wikipedia.org/wiki/Evolutionary_

Computation, Wikipedia, (2005)

[14] Gerd Gigerenzer, Peter M. Todd, and the ABC Research Group: Chapter 1, Fast

and frugal heuristics: The adaptive toolbox, Simple Heuristics that Make Us Smart,

Oxford University Press (1999)

[15] Wikipedia (http://en.wikipedia.org/wiki/), Roulette-Wheel Algorithm,

http://en.wikipedia.org/wiki/Roulette_wheel_ selection (1999)

[16] Jörg Piringer, digital sound visual interactive poetry etc.,

http://joerg.piringer.net/ (2006)

[17] John Cayle, Lense, http://homepage.mac.com/shadoof/lens/lens.html, (2005)

[18] Wikipedia (http://en.wikipedia.org/wiki/), Ontology in Computer Science,

http://en.wikipedia.org/wiki/Ontology_%28computer_science%29, (1999)

[19] Wikipedia (http://en.wikipedia.org/wiki/), Semantic Web,

http://en.wikipedia.org/wiki/Semantic_Web(1999)

[20] Patrick Henry Winston, Chapter 4. Nets and Basic Search, Artificial Intelligence,

Third Edition, (1992)

 43

APPENDIX A.

Stop Word List

PRONOUNS FORMS

I me my myself

we us our ours Ourselves

you you your yours yourself

he him His himself yourselves

she her hers herself

they them their theirs themselves

what which who whom

this that these those

 VERB FORMS (using F.R. Palmer's nomenclature)

am is was

are were

be been being

have has had having

do does did doing

ARTICLES

a an the

 44

prepositions, conjunctions, adverbs etc

and but if or Because

As until while of At

by For with about Against

between into through during Before

after above below to From

up down in out On

off over under again Further

then once here there When

where why what how All

any both Each few More

most other some such No

Nor not only own Same

So than too very

Common English Words to eliminate

One every least less Many

Now ever never say Says

said also go goes Went

just make made put See

seen whether like well Back

Even still way take Since

Another However two three Five

first second New old High

long

 45

APPENDIX B

Porter Stemmer Algorithm Steps

All definitions, denotations and examples in this section are originated from the white

paper in the official site of porter stemming algorithm,

http://www.tartarus.org/martin/PorterStemmer.

Definitions and Conditions,

 C = Consonant, V = Vowel

 [C]VCVC…. [V] → [C]VC{m}[V] m: the number of VC repeats

*S – the stem ends with S(and similarly for the other letters).

v – the stem contains a vowel.

*d – the stem ends with a double consonant (e.g. –TT, –SS).

*o – the stem ends CVC, where the second C is not W, X, or Y

 (e.g, –WIL, –HOP).

Rules

(condition) S1 → S2

Steps

• Step1a

 SSES → SS caresses → caress

 IES → I ponies → poni

 SS → SS ties → ti

 S → (null) cats → cat

• Step1b - a

 46

(m>0) EED → EE feed → feed

(*v*) ED → (null) agreed → agree, plastered → plaster

(*v*) ING → (null) bled → bled, motoring → motor

• Step1b - b

AT → ATE conflate(ed) → conflate

BL → BLE trouble(ed) → trouble

IZ → IZE siz(ed) → size

(*d and not (*L or *S or *Z))

→ single letter

 hopp(ing) → hop

 tann(ed) → hop

 fall(ing) → fall

 hiss(ing) → hiss

 fizz(ed) → fizz

(m=1 and *o) → E fail(ing) → fail

 fil(ing) → file

• Step1c

(*v*) Y → I happy → happi

 sky → sky

• Step2

(m>0) ATIONAL→ ATE relational → relate

(m >0) TIONAL→ TION conditional → condition, rational →

ration

 47

(m >0) ENCI → ENCE valenci → valence

(m >0) ANCI → ANCE hesitanci → hesitance

(m >0) IZER → IZE digitizer → digitize

(m >0) ABLI → ABLE comformabli → comformable

(m >0) ALLI → AL radicalli → radical

(m >0) ENTLI → ENT differentli → different

(m >0) ELI → E vileli → vile

(m >0) OUSLI → OUS analogously → analogous

(m >0) IZATION→ IZE vietnamization → vietnamize

(m >0) ATION→ ATE predication → predicate

(m >0) ATOR → ATE operator → operate

(m >0) ALISM→ AL feudalism → feudal

(m >0) IVENESS→ IVE decisiveness → decisive

(m >0) FULNESS→ FUL hopefulness → hopeful

(m >0) OUSNESS→ OUS callousness → callous

(m >0) ALITI → AL formaliti → formality

(m >0) IVITI → IVE sensitiviti → sensitive

(m >0) BILITI → BLE sensibiliti → sensible

• Step3

(m >0) ICATE → IC triplicate → triplic

(m >0) ATIVE→ (null) formative → form

(m >0) ALIZE → AL formalize → formal

(m >0) ICITI → IC electriciti → electric

 48

(m >0) ICAL → IC electrical → electric

(m >0) FUL → (null) hopeful → hope

(m >0) NESS → (null) goodness → good

• Step4

(m >1) AL → (null) revival→ reviv

(m >1) ANCE → (null) allowance → allow

(m >1) ENCE → (null) inference → infer

(m >1) ER → (null) airliner → airline

(m >1) IC → (null) gyroscopic → gyroscop

(m >1) ABLE → (null) adjustable → adjust

(m >1) IBLE → (null) defensible → defins

(m >1) ANT → (null) irritant → irrit

(m>1) EMENT→ (null) replacement → replac

(m >1) MENT → (null) adjustment → adjust

(m >1 and (*S or *T)) ION→ (null) adoption → adopt

(m >1) OU → (null) homologou → homolog

(m >1) ISM → (null) communism → commun

(m >1) ATE → (null) activate → active

(m >1) ITI → (null) angulariti → angular

(m >1) OUS → (null) homologous → homolog

(m >1) IVE → (null) effective → effect

(m >1) IZE → (null) bowdlerize → bowdler

• Step5a

 49

(m >1) E → (null) probate → probat, rate → rate

(m -1 and not *o)E→ (null) cease → ceas

• Step5b

(m >1 and *d and *L) → single letter

 controll → control

 roll → roll

 50

Bibliography

Aggarwal, Charu C., Fatima Al-Garawi, and Philip S. Yu, IBM T. J. Watson

Research Center: Intelligent Crawling on the World Wide Web with Arbitrary

Predicates, 2001.

Bentley, Peter J., and David W. Corner, Creative Evolutionary Systems, Morgan

Kaufmann, 2002.

Brin Sergey, and Lawrence Page, Stanford University, The anatomy of a large-scale

hypertextual web search engine, 1998.

Cayle, John, Lense, http://homepage.mac.com/shadoof/lens/lens.html, 2005.

Chakrabarti , Soumen, Mining the web, discovering knowledge from Hypertext Data,

Morgan Kaufmann, 2005.

Carriere, Jeromy, Nortel Ottawa, ON, and Rick Kazman, Software Engineering

Institute Pittsburgh, PA, 15213, WebQuery:Searching and Visualizing the

Web through Connectivity,

http://www.cgl.uwaterloo.ca/Projects/Vanish/webquery-1.html.

Dong, Xing, Jayant Madhavan, and Alon Halevy, University of Washington, Mining

Structures for Semantics, SIGKDD Explorations, 2005.

Electronic Poetry Center (http://epc.buffalo.edu), E-Poetry, http://epc.buffalo.edu/e-

poetry/.

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung, Google Lab, The Google

File System, http://labs.google.com/papers/gfs.html, 2003.

Gigerenzer, Gerd, Peter M. Todd, and the ABC Research Group: Simple Heuristics

that Make Us Smart, Oxford University Press, 1999.

Gruhl, D., R.Guha, David Liben-Nowell, and A. Tomkins, IBM Research, Almaden,

Information Diffusion through Blogspace, SIGKDD Explorations,2005

 51

Hamel, Lutz, Judd Morrissey and Lori Talley: Automated Narrative Evolution, A

White Paper, 2004.

Koster, Martijn, http://www.robotstxt.org/, Evaluation of the Standard for Robots

Exclusion, 1996.

Kraft, Reiner, and Jason Zien, IBM Almaden Research Center, San Jose, CA, Mining

Anchor Text for Query Refinement, 2005.

Liu, Bing, and Kevin Chen-Chuan Chang, Department of Computer Science,

University of Illinois at Urbanan-Campaign, Editorial: Special issue on web

content mining, SIGKDD Explorations, 2005.

Lonton, Tony, Web Content Mining with Java, Willy, 2002.

MIT, World Wide Web Consortium,

http://www.w3.org/Protocols/rfc2616/rfc2616.html, Hypertext Transfer

Protocol -- HTTP/1.1, 2006 March 20th.

Martynov, Maxim, and Boris Novikov, University of St.-Petersburg, Russia, An

indexing algorithm for text retrieval, 1996.

Piringer , Jörg, digital sound visual interactive poetry etc., http://joerg.piringer.net/

Porter, M. F., An algorithm for suffix stripping, http://www.tartarus/org/martin/

porterstemmer/, 1980.

Raghavan, Sriram, and Hector Garcia-Molina, Crawling the Hidden Web, Computer

Science Department, Stanford, CA94305 USA, 2001.

Search Engine Optimization Ethics, Stop Words, http://www.searchengineethics.com/

stopwords.htm, 2002.

Smith, Lesley, Hypertext and Hypermedia Bibliography,

http://osf1.gmu.edu/%7Elsmithg/htextbiblio.htm, 2004.

 52

Song, R., Haifeng Lui1, Ji-Rong Wen, and Wei-Ying Ma, Microsoft Research Asia,

49 Zhichun Road, Beijing, 100080, P. R. China, 1Department of Computer

Science, University of Toronto, On, Canada, Learning Important Models for

Web Page Blcoks based on Layout and Content Analysis, SIGKDD Exploration,

2005.

Taciuch Dean, George Mason University, Hypertext and Hypermedia Resources,

http://mason.gmu.edu/%7Edtaciuch/medialinks.html, March 12.2006.

Wikipedia (http://en.wikipedia.org/wiki/), Fitness proportionate selection,

http://en.wikipedia.org/wiki/Fitness_proportionate_selection, February 19.2006.

Wikipedia (http://en.wikipedia.org/wiki/), Roulette-Wheel Algorithm,

http://en.wikipedia.org/wiki/Roulette_wheel_ selection. February 19.2006

Wikipedia (http://en.wikipedia.org/wiki/), Genetic algorithm,

http://en.wikipedia.org/wiki/Genetic_algorithm. February 19, 2006.

Wikipedia (http://en.wikipedia.org/wiki/), Hill-climbing algorithm,

http://en.wikipedia.org/wiki/Hill-climbing. March 12, 2006.

Wikipedia (http://en.wikipedia.org/wiki/), Ontology in Computer Science,

http://en.wikipedia.org/wiki/Ontology_%28computer_science%29. March 12,

2006.

Wikipedia (http://en.wikipedia.org/wiki/), Semantic Web,

 http://en.wikipedia.org/wiki/Semantic_Web. March 12, 2006.

Winston, Patrick Henry, Artificial Intelligence, Third Edition, Addison-Wesley

Publishing Company, 1992.

 53

Zhang, R. Y., Laks V.S LAkshmanan, and Ruben H. Zamar, Department of Statistics,

University of British Columbia, Vancouver: Extracting Relational Data from

HTML Repository, SIGKDD Explorations, 2005.

Zhang, Y., School of Information Science & Technology, Pennsylvania State

University, Xiang Ji, NEC Laboratories America, Cupertino, CA, Chao-Hsien

Chu, School of Information Science & Technology, Pennsylvania State

University, and Hongyuan Zha, Department of Comptuer Science &

Engineering, The Pennsylvania State University, Correlating Summarization

of Multi-source News with K-Way Graph Bi-clustering, SIGKDD Exploration,

2005.

