
Cartogram Data Projection for Self-Organizing Maps

David H. Brown and Lutz Hamel
Dept. of Computer Science and Statistics

University of Rhode Island
USA

Email: david_h_brown@my.uri.edu or hamel@cs.uri.edu

Abstract— Self-Organizing Maps (SOMs) are often visualized
by applying Ultsch’s Unified Distance Matrix (U-Matrix) and
labeling the cells of the 2-D grid with training data
observations. Although powerful and the de facto standard
visualization for SOMs, this does not provide for two key
pieces of information when considering real world data mining
applications: (a) While the U-Matrix indicates the location of
possible clusters on the map, it typically does not accurately
convey the size of the underlying data population within these
clusters. (b) When mapping training data observations onto
the 2-D grid of the SOM it often occurs that multiple
observations are mapped onto a single cell of the grid. Simply
labeling the observations on a single cell does not provide any
insights of the feature-space distribution of observations within
that cell. However, in practical data mining applications it is
often desirable to understand the distribution or “goodness of
fit” of the observations as they are mapped to the individual
SOM cells.

We address these shortcomings with two complementary
visualizations. First, we increase or decrease the 2-D size of
each cell according to the number of data elements it contains;
an approach derived from cartogram techniques in geography.
Second, we determine the within-cell location of each mapped
training observation according to its similarity in n-
dimensional feature space to each of the immediate neighbor
nodes that surround it on the 2-D SOM grid. When multiple
observations are mapped to a single cell then the plot locations
will convey a sense of the data distribution within that cell.
One way to view plotting of the data distribution within a cell
is as a visualization of the quantization error of the map.
Finally, we found that these techniques lend themselves to
additional applications and uses within the context of SOMs
and we will explore them briefly.

Keywords- Self organizing feature maps; Data visualization;
Data mining; cartogram

I. INTRODUCTION
Kohonen’s self-organizing maps (SOM) [1] employ an

artificial neural network to reduce the dimensionality of an
ℜn dataset while preserving the topology of its data
relationships. The SOM network is typically constructed and
visualized as a regular two-dimensional grid of cells, each
representing a single node. Thus, each node has both a
feature-space ℜn value and a 2-D (x,y) position visualized as
a cell in the SOM grid. (When we speak of the neighbors of
a node, we mean those nodes whose 2-D grid positions are
adjacent to that of the indicated node.)

During training, adjustments to each node’s n-
dimensional values are also partially applied to nodes found
within a time step sensitive radius of its 2-D grid position.
Thus, changes in feature-space values are smoothed, forming
clusters of similar values within the local neighborhoods on
the 2-D grid.

Clustering is often indicated by shading each cell to
indicate the average distance in feature-space of the node to
its 2-D grid neighbors; this is the Unified Distance Matrix
(U-Matrix) [2]. To map training data to this grid, the node
nearest in feature-space to a training observation is
identified. This is the “best-match” node for that observation
and the observation is plotted in the grid cell of that node [3].
This is done for all training instances. Often, multiple
observations map to the same cell in the grid.

This standard visualization of the SOM is a powerful tool
for gaining understanding of the overall structure of a
dataset, but it can obscure important information about
individual data. It does not reliably show the size of the
underlying data population within the clusters. The
straightforward labeling of cells with their data does not
provide any insight into the feature-space distribution of the
data within that cell.

To remedy the cluster size representation problem, we
expand and contract the 2-D SOM grid cells in proportion to
the number of data points plotted in each. This shows
clusters in proportion to their population and it also opens up
space within the more populous cells for plotting the data
more informatively. The resulting plot is called a cartogram
and is a technique borrowed from geography [4]. To
visualize the data distribution within each cell, we show the
feature-space separation between each observation and its
corresponding node on the grid. Data points that are most
similar to the node (in feature space) appear at or near the
center of the 2-D grid cell. Data points that are less similar to
the node are moved toward the grid neighbors, which they
are most similar to in feature space. The spread of the data
around the center of the cell also indicates the quantization
error. The quantization error is a measure of “goodness of
fit” and is defined as the feature space distance between a
training data point and its best matching node on the map [1].

A comparison of the standard visualization and our
enhancements is shown in Figure 1. In Figure 1(a) we show
a standard U-Matrix visualization of the familiar iris data set
[5][6] and in Figure 1(b) we show our enhanced visualization
of the same SOM using the cartogram and the visualization
of the quantization error. It is easy to see that the maps have
three main clusters. In the map in Figure 1(b) the size of the

Mapping plot

 (a) (b)

Figure 1. (a) The typical SOM visualization combining U-Matrix shading with randomly assigned data positions within the cell. (b) Our enhancements.
The SOM has been constructed from the Fisher/Anderson “iris” data set; darker shading indicates cluster boundaries (greater feature-space distance

between cells). Plot symbols correspond to iris species (class). The linearly separable setosa species is on the right (square symbols).

cells have been resized in the proportion of data points
mapped to the cells. The data positions within the cells of
the map in Figure 1(a) are random jitter and therefore contain
no information. In our visualization, Figure 1(b) the within
cell positions are meaningful and are computed from the
data.

II. CARTOGRAM
A cartogram is a geographical map that has been

distorted so that the area occupied by each region of the map
corresponds to the value of some parameter related to that
region. For example, countries of the world might be shown
scaled in proportion to their population, per-capita income,
or any other metric of interest. In our cartogram
visualization, we have adopted the diffusion method of
Gastner and Newman [7].

The goal of a cartogram is to reshape the features of the
map so that the average density of the metric of interest –
e.g., population – is uniform throughout the map. The
diffusion cartogram achieves this by calculating the density
gradient at each vertex in the map and moving the vertices
along the gradient toward the less-dense area. Areas where
the metric is greater than the average are expanded (and so
made less dense) and areas where the metric is less than
average are reduced in size (increasing their density). This
process repeats until the reshaped map stabilizes: all areas
are at the average density and so the gradients are zero. (A
more complete, two-page description of the algorithm in
pseudo-code is available online as a “Supporting Text” to the
original paper [8].)

To construct a cartogram for our visualization, we start
with the hexagons or rectangles that outline each of the 2-D
cells of the SOM map. The initial density within these
polygons is calculated as a function of the number of data
points mapped to that cell.

Using the ‘sp’ (Spatial Polygons) package [9][10], we
transfer our original map of polygons – hexagons or
rectangles – and their population density values to a fine
rectangular mesh that can be processed efficiently by the
‘Rcartogram’ package [11] – an interface to Newman’s
implementation of the diffusion cartogram algorithm in C
[12]. The “cart” object returned is used to translate grid
polygon points to their new positions on the cartogram
visualization.

III. DATA MAPPING WITHIN THE CELL
To position the each training observation within the

cartogram-expanded cell, we begin (as do other
visualizations) by selecting its best-match node in feature-
space; the observation will appear within that node’s cell.
Then:

• a feature-space vector from that best-match node to
each of its neighbors is calculated,

• the relative length of the orthogonal projection of the
training observation along each neighbor vector is
calculated in feature-space, and

• a 2-D offset vector is calculated and added to the
best-match node’s position in the 2-D grid.

The resulting location meaningfully and consistently
places the observation on the map.

A. Selecting the Best-Match node
The data point to be plotted (x) is compared to each

node’s feature-space value (mi) using some metric such as
the least Euclidian distance [13],

!

x "m
b

= min
i

x "m
i{ }, or

b = argmin
i

x "m
i{ }

 (1)

Node b is the node nearest to the data point in feature
space: the best-match node.

B. Finding Vectors to Neighbors
The feature-space vectors to each of the j neighbors (mj')

are calculated simply by subtracting the ℜn feature-space
value of the best-match node, mb, from that of each neighbor
mj (a linear translation,),

 mj'= mj–mb (2)

Likewise, the data point’s translated vector is,

 x'= x–mb (3)

0

x'

m
j
'x''=!

j
m
j
'

Figure 2. Orthogonal projection (x'') of a training instance vector (x') onto
a neighboring node vector (mj'). These calculation is generalizable to the

ℜn feature space of the SOM [8].

Applying the same translation to the best-match node
itself confirms its role as the origin for the calculations that
follow (its value is 0 in every coordinate axis),

 0 = mb–mb (4)

C. Orthogonal Projection
In order to determine how far a data point should shift

from its best-match node toward each neighbor node, we
consider its orthogonal projection onto each neighbor vector
in the n-dimensional feature space of the SOM. The
translated data point vector (x') can be thought of as the sum
of two component vectors: one (x'') directly along the vector
to the neighbor node (mj') and the other at right angles to the
first. The vector x'' is the orthogonal projection of the data
point vector onto the neighbor node vector. As shown in
Figure 2, the orthogonal projection is equal to the product of
some scalar value αj and the translated neighbor vector.

This αj value (proportional projection toward the
neighbor) is found using the dot product (inner product) of
vectors [14],

!

" j =
x $ # m j

m j $ # m j

 (5)

If the data point is on the “other side” of the origin
(headed away from a neighbor), the value of αj will be
negative. Neighbors with positive α values will “pull” the
data point in their direction on the grid while neighbors with
negative α “push” the data point away.

D. Calculate and scale the 2-D Offset
Again taking the center of best-match node b as the

origin (this time in 2-D grid space: gb), the translated grid
coordinates of each neighbor gj are multiplied by the
proportional length αj and added together to form a raw 2-D
offset vector r,

!

r = " j g j # gb()
j$ neighbors{ }

% (6)

Typically, several neighbors contribute to this raw offset,
exaggerating the data point’s distance from its best-match

node. For example, if the neighbor to the left has a positive
α, pulling the data point to the left, the neighbor to the right
might very well have a negative α and push the data point
even further to the left. Diagonal neighbors can push or pull
along both axes.

If the raw offset is used, the data point will frequently
appear outside the area of its best-match node’s cell; this
incorrectly suggests that some other node is nearest. We have
found that the simplest satisfactory scaling function is to
divide the raw offset by the number of neighbors
surrounding the best-match node,

 s = r ÷ ||{neighbors}|| (7)

There is an aesthetic and practical tension between
ensuring that data points are displayed within the area of
their best-match nodes while not limiting offsets to a range
too small to be perceptible. Alternate approaches to scaling
are possible and continue to be explored but this simple
scaling scheme described here seems to work appropriately.

Finally, the scaled offset s is added to the 2-D
coordinates of the best-match node (gb), giving the plotted
grid position of the datum, gd ,

 gd = gb + s (8)

E. Visual representation
An appropriate symbol or label is drawn at the position

gd calculated in Equation 8. We also add a thin line
connecting each symbol back to the center of its cell, gb. This
visually reinforces the interpretation of the plotted position
as a vector with respect to the best-match node.

On occasion, the cartogram reshaping of the map can
produce cell outlines where the true center is not
immediately obvious. An example may be found in the
second-to-last cell in the bottom-right corner of our
cartogram map in Figure 1(b). Despite the distortion of the
shape of the cell, one can perceive that the data point plotted
there is at the center because the connecting line has length
zero and so disappears.

Intuitively, all data points should appear somewhere
within the grid cell representing their best-match node. If a
map has very high quantization errors, data points might be
pushed into adjacent grid cells. The connecting line makes
this immediately evident; without it, the data points might be
seen as belonging to the wrong cells.

IV. EXAMPLES
For our first experiment we selected the very-well-known

Fisher/Anderson “Iris” data [5][6] to demonstrate this
visualization. This dataset is included in R’s built-in datasets
package. Plot symbols are assigned to three iris species:
square=setosa; circle=versicolor; and triangle=virginica.

A. Cluster Population Size
Each of the three iris species is observed 50 times. In

Figure 1, we see that the versicolor species appears in 28 of

Figure 3. Visualization of the quantization error of a poorly
trained SOM.

Figure 5. This SOM cartogram emphasizes cells in which more than one

species of iris are mapped.

Figure 6. Neither the U-Matrix distances (gray levels) nor data density

(cell size) provide insight into the map of cardiotocography data set.

the 98 grid cells, virginica in 30, and setosa in only 23. (19
cells are empty.) In the cartogram representation of the map
the cells have been rescaled according to the number of data
points mapped to each cell of the SOM.

B. Quality and Quantization Error
The average distance in the ℜn feature space between

each training observation and its best-match node measures
the overall fit of the map to the data. Maps which minimize
this average quantization error are to be preferred [13]. In
Figure 3, we have deliberately created a poor quality SOM
with high quantization error by limiting the number of
training iterations. Despite this, the standard U-Matrix
visualization is almost indistinguishable from the map in
Figure 1(a). One subtle indication is that there are more
empty cells, but that is not very informative. Our
visualization in Figure 3 clearly shows the high quantization
error with numerous data pushed to and over the edges of
their respective cells. In order to emphasize the quantization
error we did not apply the cartogram cell expansions in this
particular visualization.

V. CARTOGRAM VARIATIONS
In Figure 1(b), the cartogram scaling parameter is the

number of data points mapped to a cell – the data density of
the map. It is possible to use other metrics such as the U-
Matrix distance or the number of classes found within a cell
as scaling parameters for cartogram visualizations.

In Figure 4, we used the as the U-Matrix distances as a
scaling parameter: areas where the U-Matrix distances are
low – i.e., areas within clusters [2] – are expanded, area
where the U-Matrix distances are high are contracted. This

produces an effect similar a contour map or wireframe model
where the clusters appear to form “hills” separated by
“valleys.” While the standard U-Matrix shading is still
shown for reference, it is redundant and could be replaced
with some other shading such as a color code for class.

The cartogram technique can also be utilized to draw
attention to areas of interest, treating the plot as a sort of 3-
dimensional pliable surface [15] and pulling the areas of
interest “toward” the viewer. The iris data includes three
classes (species): one is easily separated, but the other two
overlap. In Figure 5, the SOM cells showing this overlap are
expanded and so drawn to our attention.

VI. ADDITIONAL EXPERIMENTS
The iris data set is useful for initial exploration of new

techniques, but with only 150 observations and 4 attributes,
it is not a good representative of the very large, very-high-
dimensional data sets often encountered in real-world
settings. The UCI Machine Learning Repository [16]
provides a variety of more extensive data sets.

We selected the Cardiotocography [17] data set for
further experimentation. A cardiotocogram is a recording of
both uterine contractions and fetal heartbeat [18] used in
obstetrics. This data set contains results of 2126
examinations each with 21 measured real- or integer-valued
attributes plus two additional classification attributes
assigned by the consensus of three expert obstetricians. One
classification attribute indicates one of ten classes of events
being observed such as “calm sleep” or “decelerative
pattern.” The second classification attribute is a risk

Figure 4. A visualization based on the unified node distance as the

cartogram parameter.

Figure 7. SOM of the cardiotocography data set using the expert assessment of risk as cell size.

measure: “normal,” “suspect,” or “pathologic.”
After normalizing the 26 measured attributes with R's

scale function, we constructed a 40×20 rectangular SOM.
The expert interpretations (risk and category) were not used
to train the SOM. Neither the U-Matrix visualization nor the
data density based cartogram of this SOM showed any clear
pattern of clustering (Figure 6). There were two pockets of
higher U-Matrix distances but no clear divisions between
regions. A data density cartogram expansion was not very
helpful because the training data are evenly distributed
through the map, with cell densities ranging from 0 to 10
with a mean around 2.6 and standard deviation about 1.8.

We obtained a much more interesting plot when we used
the cartogram expansion to show the average risk
classification (1=normal; 2=suspect; 3=pathologic) of the
examination observations mapping to a given cell (Figure 7).
This risk assessment was not used to train the SOM, but it
seems to correspond to a particular region in the data-space
which maps to the lower-left corner of the SOM. The
cartogram expansion of that high-risk area gives us more
room to see data markers (omitted in Figure 6); the high-risk
region is dominated by the codes “largely decelerative”
(code 8) and “decelerative” (code 7) of the fetal state classes.
As with the risk assessment, the state codes were not used to
train the SOM.

Simple color coding would, of course, be able to show
the high-risk region, but it would hide the U-Matrix and
would not facilitate the closer examination of the data
allowed by the cartogram expansion.

VII. RELATED WORK
Vesanto [19] demonstrated two methods for showing the

quantization error in a SOM. In one, the SOM map is tilted
back into a 3-D perspective and bars corresponding to the
quantization error project upward. For the second, a circle
whose area corresponds to the quantization error surrounds
the grid cell. These approaches seem to be appropriate when

only a few cells are of interest. They do not lend themselves
to seeing the quantization error for the entire map: the bars
and circles would obscure each other. Some existing
packages will shade the grid cells according to the
quantization error (for example, the “quality” map of the
‘kohnen’ package [20]), but this prevents using shading to
show the U-Matrix feature-space distances between cells.

Vesanto [19] also offers methods to visualize the number
of data within a cell, potentially helping to understand the
size of a cluster. In one, the cell is progressively filled from
the center, such that the area of the shape in the center of the
cell corresponds to the number of data. The second projects
bars upward, making a sort of 3-D histogram. The third
“scatters” the data (much like the visualization shown in
Figure 1(a)), randomly placing one dot per data sample in the
cell. None of these offer any information about the
quantization error.

In the Emergent Self-Organizing Map [21][22], Ultsch
takes the U*-Matrix – a combination of distance and density
– as a height value for the grid. This is shown in 2-D as a sort
of topographic contour map that is also colored as in a
geographic map (from blue seas to white peaks); the image is
also rendered in 3-D. Boundaries are shown as “mountain
ranges” separating the “valleys” of the clusters themselves.
In our visualization, the cartogram technique, can also
present a sort of 3-D appearance as seen in Figure 4. The
reshaped edges of the polygons are strongly reminiscent of
contour lines on a topographic map.

We have not found any work using a cartogram to aid in
the visualization of a SOM, though we did find one paper
where the SOM helps to construct a cartogram [23].

VIII. IMPLEMENTATION IN R

A. Existing packages
Various packages for training self-organizing maps are

available through the Comprehensive R Archive Network

Figure 8. User-time to perform calculations for Figure 7.

(CRAN) [24]. These include ‘class’ [25], ‘RSNNS’ [26],
‘som’ [27] and ‘kohonen’ [20]. A few other packages offer
application-specific visualizations of SOM objects.

Of these, only the ‘kohonen’ package includes a data
mapping visualization. It positions the plotted locations of
data points using a randomized normal distribution about the
center of the cell, as seen in the “standard” visualization
shown in Figure 1(a).

B. Our implementation
Our implementation of the cartogram visualization is part

of a larger package of SOM visualization and manipulation
methods for the R system [28] currently in development.
Key features include:

• an S4 adapter class provides a common interface to
allow use of SOM objects created by other packages
such as ‘som’[27] and ‘kohonen’[20]

• visualizations use the ‘grid’ graphics system [29] to
facilitate subsequent manipulation and reuse

• support for both square and hexagonal maps
• GPL license

The visualization functions include the capability to

construct and display a variety features, including control of:
• cell background shading (i.e., to show the U-Matrix,

quantization error, or some other measure),
• individual cell borders,
• the outer borders of contiguous groups of cells (i.e.,

for outlining clusters),
• the connected components of the map [30] (enhances

the display of clusters seen with the U-Matrix),
• data mapping onto the grid and within grid cells, and
• cartogram expansion of the grid.

We anticipate releasing this software through R-forge

[31] in mid-2012.

IX. COMPUTATIONAL COMPLEXITY
In practice, we find that the calculation of the SOM itself

requires far more effort than calculating the data projection
within the cell or the cartogram. There are many variations
on the basic SOM algorithm; an examination of the
implementation in the kohonen package of R shows it to be
O(i×d×m×n) where i is the number of iterations over which
to train the map; d is the number of observations in the
training set; m is the number of nodes in the map; and n is
the number of dimensions in the feature space.

At the conclusion of SOM training, the best-match node
for each training observation is known and may be saved.
Otherwise, finding best-match nodes is a O(m×d×n)
operation as each node in the map must be examined for
each observation. With this information, to locate a single
observation within its cell requires a small handful of
operations in ℜn space; it need never consider more than 8
neighbors, so we may say the time required is O(n) for a
single observation or O(d×n) for a set of data.

Time required process the cartogram is dominated by a
Fast Fourier transform: O(c log c) where c is the number of
intersections in the rectangular mesh upon which the

cartogram is calculated [7]. We have found that meshes as
coarse as 128×128 give acceptable results, though we usually
use 256×256. The runtime of the ‘sp’ package’s “overlay”
method is a product of the number of points (intersections in
the cartogram mesh, c) and the number of polygon edges (a
small multiple of the number of nodes in our map). Thus in
our use of it, the complexity of “overlay” is O(c×m).

To quickly confirm our expectations and experience, we
used R’s system.time() function to display the user-time
taken for several of the main computational steps required to
produce Figure 7. Figure 8 shows how the SOM calculation
itself (274 seconds) far exceeded the time required for other
calculations (23.6 seconds). Time to render the illustration
itself is not included.

The primary system available for testing and
development is a commercially-available notebook computer
running 64-bit R 2.13.0 under Windows 7. This machine's
CPU (Intel Core i7-2820QM @ 2.30GHz) has four cores, but
no computation was ever observed to use more than a single
core. R's memory use peaked under 200MB, a very modest
footprint. Time tests were repeated at least twice and did not
vary by more than one percent of the reported value despite
leaving numerous other applications running on the system.

X. CONCLUSION AND FUTURE WORK
With this visualization, we have overcome two

limitations of the standard SOM visualization: (a) data
population visualization for clusters and (b) visualization of
the quantization error of a map. Our application of the
density diffusion cartogram to the U-Matrix scales clusters in
proportion to their population. Information about the
quantization error and structure of data points mapped to
individual cells is revealed by positioning each point
according to its similarity to neighbors.

Some further work is warranted to refine the method of
scaling the 2-D data offsets. Furthermore, support for
toroidal SOMs (where the edges of the maps are joined) in
the data position calculations would extend our cartogram
technique to a few more applications of the SOM.

The cartogram’s adaptability to represent any of a variety
of different aspects of the data is quite intriguing. It nicely
complements shading/coloring and labeling, adding another
layer of information to the SOM visualization without
overwhelming our ability to understand the image. We

intend to investigate additional ways to use this capability in
data mining and exploration.

REFERENCES
[1] T. Kohonen, Self-Organizing Maps, 3rd ed. Berlin, Heidelberg,

New York: Springer, 2001.
[2] A. Ultsch, “Self-Organizing Neural Networks for Visualisation and

Classification,” in Information and classification: concepts,
methods, and applications, University of Dortmund, 1993, pp. 307-
313.

[3] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen, “SOM
PAK: The self-organizing map program package,” Report A31,
Helsinki University of Technology, Laboratory of Computer and
Information Science, 1996.

[4] M. Newman, “Images of the social and economic world.” [Online].
Available: http://www-personal.umich.edu/~mejn/cartograms/.
[Accessed: 26-Feb-2012].

[5] R. A. Fisher, “The use of multiple measurements in taxonomic
problems,” Annals of Human Genetics, vol. 7, no. 2, pp. 179-188,
1936.

[6] E. Anderson, “The irises of the Gaspe Peninsula,” Bulletin of the
American Iris society, no. 59, pp. 2-5, 1935.

[7] M. T. Gastner and M. E. J. Newman, “Diffusion-based method for
producing density-equalizing maps,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 101, no.
20, pp. 7499-7504, May 2004.

[8] M. T. Gastner and M. E. J. Newman, “Supporting Text for:
Diffusion-based method for producing density-equalizing maps.”
[Online]. Available:
http://www.pnas.org/content/101/20/7499/suppl/DC1. [Accessed:
17-Jun-2011].

[9] E. J. Pebesma and R.S. Bivand, “Classes and methods for spatial
data in R,” R News, vol. 5, no. 2, 2005.

[10] T. Zumbrunn, “R-Forge: Diffusion-based cartograms,” 26-Sep-
2010. [Online]. Available: https://r-forge.r-
project.org/projects/cart/. [Accessed: 01-Dec-2010].

[11] D. Temple Lang, “Rcartogram: Interface to Mark Newman’s
cartogram software,” 15-Nov-2008. [Online]. Available:
http://www.omegahat.org/Rcartogram/. [Accessed: 16-Jun-2011].

[12] Newman, M. E. J., “Cart: Computer software for making
cartograms,” 09-Nov-2006. [Online]. Available: http://www-
personal.umich.edu/~mejn/cart/. [Accessed: 17-Jun-2011].

[13] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen, “SOM
PAK: The Self-Organizing Map Program Package,” Helsinki
University of Technology, Laboratory of Computer and
Information Science, FIN-02150 Espoo, Finland, Technical Report
A31, 1996.

[14] D. C. Lay, Linear Algebra and Its Applications, 3rd Updated
Edition, 3rd ed. Addison Wesley, 2005.

[15] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia, “3-
dimensional pliable surfaces: for the effective presentation of visual
information,” Proceedings of the 8th annual ACM symposium on
User interface and software technology, pp. 217–226, 1995.

[16] A. Frank and A. Asuncion, “UCI Machine Learning Repository,”
2010. [Online]. Available: http://archive.ics.uci.edu/ml. [Accessed:
18-Feb-2011].

[17] D. Ayres-de Campos, J. Bernardes, A. Garrido, J. Marques-de-Sa,
and L. Pereira-Leite, “SisPorto 2.0: a program for automated
analysis of cardiotocograms.,” J Matern Fetal Med, vol. 9, no. 5,
pp. 311-8, 2000.

[18] “Cardiotocography - Wikipedia, the free encyclopedia.” [Online].
Available: http://en.wikipedia.org/wiki/Cardiotocography.
[Accessed: 27-Feb-2012].

[19] J. Vesanto, “SOM-based data visualization methods,” Intelligent
Data Analysis, vol. 3, no. 2, pp. 111-126, Aug. 1999.

[20] R. Wehrens and L. M. C. Buydens, “Self- and Super-organising
Maps in R: the kohonen package,” J. Stat. Softw., vol. 21, no. 5,
2007.

[21] A. Ultsch and F. Mörchen, “ESOM-Maps: tools for clustering,
visualization, and classification with Emergent SOM,” Dept. of
Mathematics and Computer Science, University of Marburg,
Germany, Technical Report No. 46, 2005.

[22] A. Ultsch, U*-matrix: a tool to visualize clusters in high
dimensional data. Fachbereich Mathematik und Informatik, 2003.

[23] R. Henriques, F. BaCao, and V. Lobo, “Carto-SOM: cartogram
creation using self-organizing maps,” Int. J. Geogr. Inf. Sci., vol.
23, no. 4, pp. 483-511, 2009.

[24] T. R Foundation for Statistical Computing, “The Comprehensive R
Archive Network.” [Online]. Available: http://cran.r-project.org/.
[Accessed: 18-May-2011].

[25] W. N. Venables and B. D. Ripley, Modern Applied Statistics with
S, Fourth. New York: Springer, 2002.

[26] C. Bergmeir and J. M. Benítez, Neural Networks in R using the
Stuttgart Neural Network Simulator: RSNNS. 2010.

[27] J. Yan, “som: Self-Organizing Map,” 2010. [Online]. Available:
http://CRAN.R-project.org/package=som. [Accessed: 16-Jun-
2011].

[28] R Development Core Team, R: A Language and Environment for
Statistical Computing. Vienna, Austria: , 2011.

[29] P. Murrell, R Graphics, 1st ed. Chapman and Hall/CRC, 2005.
[30] L. Hamel and C. Brown, “Improved interpretability of the Unified

Distance Matrix with Connected Components,” in Proceeding of
the 7th International Conference on Data Mining, Las Vegas
Nevada, USA, 2011, pp. 338-343.

[31] “R-Forge: Welcome.” [Online]. Available: https://r-forge.r-
project.org/. [Accessed: 25-May-2011].

