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Abstract— Self-Organizing Maps (SOMs) are often visualized 
by applying Ultsch’s Unified Distance Matrix (U-Matrix) and 
labeling the cells of the 2-D grid with training data 
observations. Although powerful and the de facto standard 
visualization for SOMs, this does not provide for two key 
pieces of information when considering real world data mining 
applications: (a) While the U-Matrix indicates the location of 
possible clusters on the map, it typically does not accurately 
convey the size of the underlying data population within these 
clusters. (b) When mapping training data observations onto 
the 2-D grid of the SOM it often occurs that multiple 
observations are mapped onto a single cell of the grid. Simply 
labeling the observations on a single cell does not provide any 
insights of the feature-space distribution of observations within 
that cell.  However, in practical data mining applications it is 
often desirable to understand the distribution or “goodness of 
fit” of the observations as they are mapped to the individual 
SOM cells.   

We address these shortcomings with two complementary 
visualizations. First, we increase or decrease the 2-D size of 
each cell according to the number of data elements it contains; 
an approach derived from cartogram techniques in geography. 
Second, we determine the within-cell location of each mapped 
training observation according to its similarity in n-
dimensional feature space to each of the immediate neighbor 
nodes that surround it on the 2-D SOM grid. When multiple 
observations are mapped to a single cell then the plot locations 
will convey a sense of the data distribution within that cell. 
One way to view plotting of the data distribution within a cell 
is as a visualization of the quantization error of the map. 
Finally, we found that these techniques lend themselves to 
additional applications and uses within the context of SOMs 
and we will explore them briefly. 
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I.  INTRODUCTION 
Kohonen’s self-organizing maps (SOM) [1] employ an 

artificial neural network to reduce the dimensionality of an 
ℜn dataset while preserving the topology of its data 
relationships. The SOM network is typically constructed and 
visualized as a regular two-dimensional grid of cells, each 
representing a single node. Thus, each node has both a 
feature-space ℜn value and a 2-D (x,y) position visualized as 
a cell in the SOM grid. (When we speak of the neighbors of 
a node, we mean those nodes whose 2-D grid positions are 
adjacent to that of the indicated node.) 

During training, adjustments to each node’s n-
dimensional values are also partially applied to nodes found 
within a time step sensitive radius of its 2-D grid position. 
Thus, changes in feature-space values are smoothed, forming 
clusters of similar values within the local neighborhoods on 
the 2-D grid. 

Clustering is often indicated by shading each cell to 
indicate the average distance in feature-space of the node to 
its 2-D grid neighbors; this is the Unified Distance Matrix 
(U-Matrix) [2]. To map training data to this grid, the node 
nearest in feature-space to a training observation is 
identified. This is the “best-match” node for that observation 
and the observation is plotted in the grid cell of that node [3].  
This is done for all training instances. Often, multiple 
observations map to the same cell in the grid. 

This standard visualization of the SOM is a powerful tool 
for gaining understanding of the overall structure of a 
dataset, but it can obscure important information about 
individual data. It does not reliably show the size of the 
underlying data population within the clusters. The 
straightforward labeling of cells with their data does not 
provide any insight into the feature-space distribution of the 
data within that cell.  

To remedy the cluster size representation problem, we 
expand and contract the 2-D SOM grid cells in proportion to 
the number of data points plotted in each. This shows 
clusters in proportion to their population and it also opens up 
space within the more populous cells for plotting the data 
more informatively. The resulting plot is called a cartogram 
and is a technique borrowed from geography [4]. To 
visualize the data distribution within each cell, we show the 
feature-space separation between each observation and its 
corresponding node on the grid. Data points that are most 
similar to the node (in feature space) appear at or near the 
center of the 2-D grid cell. Data points that are less similar to 
the node are moved toward the grid neighbors, which they 
are most similar to in feature space. The spread of the data 
around the center of the cell also indicates the quantization 
error.  The quantization error is a measure of “goodness of 
fit” and is defined as the feature space distance between a 
training data point and its best matching node on the map [1]. 

A comparison of the standard visualization and our 
enhancements is shown in Figure 1. In Figure 1(a) we show 
a standard U-Matrix visualization of the familiar iris data set 
[5][6] and in Figure 1(b) we show our enhanced visualization 
of the same SOM using the cartogram and the visualization 
of the quantization error.  It is easy to see that the maps have 
three main clusters.  In the map in Figure 1(b) the size of the 
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Figure 1.  (a) The typical SOM visualization combining U-Matrix shading with randomly assigned data positions within the cell. (b) Our enhancements. 
The SOM has been constructed from the Fisher/Anderson “iris” data set; darker shading indicates cluster boundaries (greater feature-space distance 

between cells). Plot symbols correspond to iris species (class). The linearly separable setosa species is on the right (square symbols). 

cells have been resized in the proportion of data points 
mapped to the cells.  The data positions within the cells of 
the map in Figure 1(a) are random jitter and therefore contain 
no information.  In our visualization, Figure 1(b) the within 
cell positions are meaningful and are computed from the 
data. 

II. CARTOGRAM 
A cartogram is a geographical map that has been 

distorted so that the area occupied by each region of the map 
corresponds to the value of some parameter related to that 
region. For example, countries of the world might be shown 
scaled in proportion to their population, per-capita income, 
or any other metric of interest. In our cartogram 
visualization, we have adopted the diffusion method of 
Gastner and Newman [7]. 

The goal of a cartogram is to reshape the features of the 
map so that the average density of the metric of interest – 
e.g., population – is uniform throughout the map. The 
diffusion cartogram achieves this by calculating the density 
gradient at each vertex in the map and moving the vertices 
along the gradient toward the less-dense area. Areas where 
the metric is greater than the average are expanded (and so 
made less dense) and areas where the metric is less than 
average are reduced in size (increasing their density). This 
process repeats until the reshaped map stabilizes: all areas 
are at the average density and so the gradients are zero. (A 
more complete, two-page description of the algorithm in 
pseudo-code is available online as a “Supporting Text” to the 
original paper [8].) 

To construct a cartogram for our visualization, we start 
with the hexagons or rectangles that outline each of the 2-D 
cells of the SOM map. The initial density within these 
polygons is calculated as a function of the number of data 
points mapped to that cell.  

Using the ‘sp’ (Spatial Polygons) package [9][10], we 
transfer our original map of polygons – hexagons or 
rectangles – and their population density values to a fine 
rectangular mesh that can be processed efficiently by the 
‘Rcartogram’ package [11] – an interface to Newman’s 
implementation of the diffusion cartogram algorithm in C 
[12]. The “cart” object returned is used to translate grid 
polygon points to their new positions on the cartogram 
visualization. 

III. DATA MAPPING WITHIN THE CELL 
To position the each training observation within the 

cartogram-expanded cell, we begin (as do other 
visualizations) by selecting its best-match node in feature-
space; the observation will appear within that node’s cell.  
Then: 

• a feature-space vector from that best-match node to 
each of its neighbors is calculated,  

• the relative length of the orthogonal projection of the 
training observation along each neighbor vector is 
calculated in feature-space, and 

• a 2-D offset vector is calculated and added to the 
best-match node’s position in the 2-D grid.  
 

The resulting location meaningfully and consistently 
places the observation on the map.  

A. Selecting the Best-Match node 
The data point to be plotted (x) is compared to each 

node’s feature-space value (mi) using some metric such as 
the least Euclidian distance [13], 
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Node b is the node nearest to the data point in feature 
space: the best-match node.  

B. Finding Vectors to Neighbors 
The feature-space vectors to each of the j neighbors (mj') 

are calculated simply by subtracting the ℜn feature-space 
value of the best-match node, mb, from that of each neighbor 
mj (a linear translation,), 

 mj'= mj–mb (2) 

Likewise, the data point’s translated vector is, 

 x'= x–mb (3) 
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Figure 2.  Orthogonal projection (x'') of a training instance vector (x') onto 
a neighboring node vector (mj'). These calculation is generalizable to the 

ℜn feature space of the SOM [8].  

Applying the same translation to the best-match node 
itself confirms its role as the origin for the calculations that 
follow (its value is 0 in every coordinate axis), 

 0 = mb–mb (4) 

C. Orthogonal Projection 
In order to determine how far a data point should shift 

from its best-match node toward each neighbor node, we 
consider its orthogonal projection onto each neighbor vector 
in the n-dimensional feature space of the SOM. The 
translated data point vector (x') can be thought of as the sum 
of two component vectors: one (x'') directly along the vector 
to the neighbor node (mj') and the other at right angles to the 
first. The vector x'' is the orthogonal projection of the data 
point vector onto the neighbor node vector. As shown in 
Figure 2, the orthogonal projection is equal to the product of 
some scalar value αj and the translated neighbor vector.   

This αj value (proportional projection toward the 
neighbor) is found using the dot product (inner product) of 
vectors [14], 
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If the data point is on the “other side” of the origin 
(headed away from a neighbor), the value of αj will be 
negative. Neighbors with positive α values will “pull” the 
data point in their direction on the grid while neighbors with 
negative α “push” the data point away. 

D. Calculate and scale the 2-D Offset 
Again taking the center of best-match node b as the 

origin (this time in 2-D grid space: gb), the translated grid 
coordinates of each neighbor gj are multiplied by the 
proportional length αj and added together to form a raw 2-D 
offset vector r, 
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Typically, several neighbors contribute to this raw offset, 
exaggerating the data point’s distance from its best-match 

node. For example, if the neighbor to the left has a positive 
α, pulling the data point to the left, the neighbor to the right 
might very well have a negative α and push the data point 
even further to the left. Diagonal neighbors can push or pull 
along both axes.  

If the raw offset is used, the data point will frequently 
appear outside the area of its best-match node’s cell; this 
incorrectly suggests that some other node is nearest. We have 
found that the simplest satisfactory scaling function is to 
divide the raw offset by the number of neighbors 
surrounding the best-match node, 

 s = r ÷ ||{neighbors}|| (7) 

There is an aesthetic and practical tension between 
ensuring that data points are displayed within the area of 
their best-match nodes while not limiting offsets to a range 
too small to be perceptible. Alternate approaches to scaling 
are possible and continue to be explored but this simple 
scaling scheme described here seems to work appropriately.  

Finally, the scaled offset s is added to the 2-D 
coordinates of the best-match node (gb), giving the plotted 
grid position of the datum, gd , 

 gd = gb + s (8) 

E. Visual representation 
An appropriate symbol or label is drawn at the position 

gd calculated in Equation 8. We also add a thin line 
connecting each symbol back to the center of its cell, gb. This 
visually reinforces the interpretation of the plotted position 
as a vector with respect to the best-match node.  

On occasion, the cartogram reshaping of the map can 
produce cell outlines where the true center is not 
immediately obvious. An example may be found in the 
second-to-last cell in the bottom-right corner of our 
cartogram map in Figure 1(b). Despite the distortion of the 
shape of the cell, one can perceive that the data point plotted 
there is at the center because the connecting line has length 
zero and so disappears. 

Intuitively, all data points should appear somewhere 
within the grid cell representing their best-match node. If a 
map has very high quantization errors, data points might be 
pushed into adjacent grid cells. The connecting line makes 
this immediately evident; without it, the data points might be 
seen as belonging to the wrong cells.  

IV. EXAMPLES 
For our first experiment we selected the very-well-known 

Fisher/Anderson “Iris” data [5][6] to demonstrate this 
visualization. This dataset is included in R’s built-in datasets 
package. Plot symbols are assigned to three iris species: 
square=setosa; circle=versicolor; and triangle=virginica.  

A. Cluster Population Size 
Each of the three iris species is observed 50 times. In 

Figure 1, we see that the versicolor species appears in 28 of 



Figure 3. Visualization of the quantization error of a poorly 
trained SOM. 

 
Figure 5. This SOM cartogram emphasizes cells in which more than one 

species of iris are mapped. 

 
Figure 6.  Neither the U-Matrix distances (gray levels) nor data density 

(cell size) provide insight into the map of cardiotocography data set. 

the 98 grid cells, virginica in 30, and setosa in only 23. (19 
cells are empty.) In the cartogram representation of the map 
the cells have been rescaled according to the number of data 
points mapped to each cell of the SOM. 

B. Quality and Quantization Error 
The average distance in the ℜn feature space between 

each training observation and its best-match node measures 
the overall fit of the map to the data. Maps which minimize 
this average quantization error are to be preferred [13]. In 
Figure 3, we have deliberately created a poor quality SOM 
with high quantization error by limiting the number of 
training iterations. Despite this, the standard U-Matrix 
visualization is almost indistinguishable from the map in 
Figure 1(a). One subtle indication is that there are more 
empty cells, but that is not very informative. Our 
visualization in Figure 3 clearly shows the high quantization 
error with numerous data pushed to and over the edges of 
their respective cells.  In order to emphasize the quantization 
error we did not apply the cartogram cell expansions in this  
particular visualization. 

V. CARTOGRAM VARIATIONS 
In Figure 1(b), the cartogram scaling parameter is the 

number of data points mapped to a cell – the data density of 
the map. It is possible to use other metrics such as the U-
Matrix distance or the number of classes found within a cell 
as scaling parameters for cartogram visualizations. 

In Figure 4, we used the as the U-Matrix distances as a 
scaling parameter: areas where the U-Matrix distances are 
low – i.e., areas within clusters [2] – are expanded, area 
where the U-Matrix distances are high are contracted. This 

produces an effect similar a contour map or wireframe model 
where the clusters appear to form “hills” separated by 
“valleys.”  While the standard U-Matrix shading is still 
shown for reference, it is redundant and could be replaced 
with some other shading such as a color code for class. 

The cartogram technique can also be utilized to draw 
attention to areas of interest, treating the plot as a sort of 3-
dimensional pliable surface [15] and pulling the areas of 
interest “toward” the viewer. The iris data includes three 
classes (species): one is easily separated, but the other two 
overlap. In Figure 5, the SOM cells showing this overlap are 
expanded and so drawn to our attention.  

VI. ADDITIONAL EXPERIMENTS 
The iris data set is useful for initial exploration of new 

techniques, but with only 150 observations and 4 attributes, 
it is not a good representative of the very large, very-high-
dimensional data sets often encountered in real-world 
settings. The UCI Machine Learning Repository [16] 
provides a variety of more extensive data sets. 

We selected the Cardiotocography [17] data set for 
further experimentation. A cardiotocogram is a recording of 
both uterine contractions and fetal heartbeat [18] used in 
obstetrics. This data set contains results of 2126 
examinations each with 21 measured real- or integer-valued 
attributes plus two additional classification attributes 
assigned by the consensus of three expert obstetricians. One 
classification attribute indicates one of ten classes of events 
being observed such as “calm sleep” or “decelerative 
pattern.” The second classification attribute is a risk 

 
Figure 4. A visualization based on the unified node distance as the 

cartogram parameter. 



   
Figure 7.  SOM of the cardiotocography data set using the expert assessment of risk as cell size. 

measure: “normal,” “suspect,” or “pathologic.” 
After normalizing the 26 measured attributes with R's 

scale function, we constructed a 40×20 rectangular SOM. 
The expert interpretations (risk and category) were not used 
to train the SOM. Neither the U-Matrix visualization nor the 
data density based cartogram of this SOM showed any clear 
pattern of clustering (Figure 6).  There were two pockets of 
higher U-Matrix distances but no clear divisions between 
regions. A data density cartogram expansion was not very 
helpful because the training data are evenly distributed 
through the map, with cell densities ranging from 0 to 10 
with a mean around 2.6 and standard deviation about 1.8. 

We obtained a much more interesting plot when we used 
the cartogram expansion to show the average risk 
classification (1=normal; 2=suspect; 3=pathologic) of the 
examination observations mapping to a given cell (Figure 7). 
This risk assessment was not used to train the SOM, but it 
seems to correspond to a particular region in the data-space 
which maps to the lower-left corner of the SOM. The 
cartogram expansion of that high-risk area gives us more 
room to see data markers (omitted in Figure 6); the high-risk 
region is dominated by the codes “largely decelerative” 
(code 8) and “decelerative” (code 7) of the fetal state classes. 
As with the risk assessment, the state codes were not used to 
train the SOM. 

Simple color coding would, of course, be able to show 
the high-risk region, but it would hide the U-Matrix and 
would not facilitate the closer examination of the data 
allowed by the cartogram expansion. 

VII. RELATED WORK 
Vesanto [19] demonstrated two methods for showing the 

quantization error in a SOM. In one, the SOM map is tilted 
back into a 3-D perspective and bars corresponding to the 
quantization error project upward. For the second, a circle 
whose area corresponds to the quantization error surrounds 
the grid cell. These approaches seem to be appropriate when 

only a few cells are of interest. They do not lend themselves 
to seeing the quantization error for the entire map: the bars 
and circles would obscure each other. Some existing 
packages will shade the grid cells according to the 
quantization error (for example, the “quality” map of the 
‘kohnen’ package [20]), but this prevents using shading to 
show the U-Matrix feature-space distances between cells. 

Vesanto [19] also offers methods to visualize the number 
of data within a cell, potentially helping to understand the 
size of a cluster. In one, the cell is progressively filled from 
the center, such that the area of the shape in the center of the 
cell corresponds to the number of data. The second projects 
bars upward, making a sort of 3-D histogram. The third 
“scatters” the data (much like the visualization shown in 
Figure 1(a)), randomly placing one dot per data sample in the 
cell. None of these offer any information about the 
quantization error. 

In the Emergent Self-Organizing Map [21][22], Ultsch 
takes the U*-Matrix – a combination of distance and density 
– as a height value for the grid. This is shown in 2-D as a sort 
of topographic contour map that is also colored as in a 
geographic map (from blue seas to white peaks); the image is 
also rendered in 3-D. Boundaries are shown as “mountain 
ranges” separating the “valleys” of the clusters themselves. 
In our visualization, the cartogram technique, can also 
present a sort of 3-D appearance as seen in Figure 4. The 
reshaped edges of the polygons are strongly reminiscent of 
contour lines on a topographic map. 

We have not found any work using a cartogram to aid in 
the visualization of a SOM, though we did find one paper 
where the SOM helps to construct a cartogram [23]. 

VIII. IMPLEMENTATION IN R 

A. Existing packages 
Various packages for training self-organizing maps are 

available through the Comprehensive R Archive Network 



 
Figure 8.  User-time to perform calculations for Figure 7. 

(CRAN) [24]. These include ‘class’ [25], ‘RSNNS’ [26], 
‘som’ [27] and ‘kohonen’ [20]. A few other packages offer 
application-specific visualizations of SOM objects.  

Of these, only the ‘kohonen’ package includes a data 
mapping visualization. It positions the plotted locations of 
data points using a randomized normal distribution about the 
center of the cell, as seen in the “standard” visualization 
shown in Figure 1(a).  

B. Our implementation 
Our implementation of the cartogram visualization is part 

of a larger package of SOM visualization and manipulation 
methods for the R system [28] currently in development. 
Key features include: 

• an S4 adapter class provides a common interface to 
allow use of SOM objects created by other packages 
such as ‘som’[27] and ‘kohonen’[20] 

• visualizations use the ‘grid’ graphics system [29] to 
facilitate subsequent manipulation and reuse  

• support for both square and hexagonal maps 
• GPL license 
 
The visualization functions include the capability to 

construct and display a variety features, including control of: 
• cell background shading (i.e., to show the U-Matrix, 

quantization error, or some other measure), 
• individual cell borders, 
• the outer borders of contiguous groups of cells (i.e., 

for outlining clusters), 
• the connected components of the map [30] (enhances 

the display of clusters seen with the U-Matrix), 
• data mapping onto the grid and within grid cells, and 
• cartogram expansion of the grid. 
 
We anticipate releasing this software through R-forge 

[31] in mid-2012. 

IX. COMPUTATIONAL COMPLEXITY 
In practice, we find that the calculation of the SOM itself 

requires far more effort than calculating the data projection 
within the cell or the cartogram. There are many variations 
on the basic SOM algorithm; an examination of the 
implementation in the kohonen package of R shows it to be 
O(i×d×m×n) where i is the number of iterations over which 
to train the map; d is the number of observations in the 
training set; m is the number of nodes in the map; and n is 
the number of dimensions in the feature space. 

At the conclusion of SOM training, the best-match node 
for each training observation is known and may be saved. 
Otherwise, finding best-match nodes is a O(m×d×n) 
operation as each node in the map must be examined for 
each observation. With this information, to locate a single 
observation within its cell requires a small handful of 
operations in ℜn space; it need never consider more than 8 
neighbors, so we may say the time required is O(n) for a 
single observation or O(d×n) for a set of data.  

Time required process the cartogram is dominated by a 
Fast Fourier transform: O(c log c) where c is the number of 
intersections in the rectangular mesh upon which the 

cartogram is calculated [7]. We have found that meshes as 
coarse as 128×128 give acceptable results, though we usually 
use 256×256. The runtime of the ‘sp’ package’s “overlay” 
method is a product of the number of points (intersections in 
the cartogram mesh, c) and the number of polygon edges (a 
small multiple of the number of nodes in our map). Thus in 
our use of it,  the complexity of “overlay” is O(c×m). 

To quickly confirm our expectations and experience, we 
used R’s system.time() function to display the user-time 
taken for several of the main computational steps required to 
produce Figure 7. Figure 8 shows how the SOM calculation 
itself (274 seconds) far exceeded the time required for other 
calculations (23.6 seconds). Time to render the illustration 
itself is not included.  

The primary system available for testing and 
development is a commercially-available notebook computer 
running 64-bit R 2.13.0 under Windows 7. This machine's 
CPU (Intel Core i7-2820QM @ 2.30GHz) has four cores, but 
no computation was ever observed to use more than a single 
core. R's memory use peaked under 200MB, a very modest 
footprint. Time tests were repeated at least twice and did not 
vary by more than one percent of the reported value despite 
leaving numerous other applications running on the system. 

X. CONCLUSION AND FUTURE WORK 
With this visualization, we have overcome two 

limitations of the standard SOM visualization: (a) data 
population visualization for clusters and (b) visualization of 
the quantization error of a map. Our application of the 
density diffusion cartogram to the U-Matrix scales clusters in 
proportion to their population. Information about the 
quantization error and structure of data points mapped to 
individual cells is revealed by positioning each point 
according to its similarity to neighbors.  

Some further work is warranted to refine the method of 
scaling the 2-D data offsets. Furthermore, support for 
toroidal SOMs (where the edges of the maps are joined) in 
the data position calculations would extend our cartogram 
technique to a few more applications of the SOM. 

The cartogram’s adaptability to represent any of a variety 
of different aspects of the data is quite intriguing. It nicely 
complements shading/coloring and labeling, adding another 
layer of information to the SOM visualization without 
overwhelming our ability to understand the image. We 



intend to investigate additional ways to use this capability in 
data mining and exploration. 
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