An Algebraic View of Inductive Equational Logic
Programming

Lutz H. Hamel
Department of Computer Science and Statistics
University of Rhode Island

TRO0-278

December 2000

Abstract

We present an algebraic semantics for inductive equational logic program-
ming. Inductive Logic Programming (ILP) concerns itself with the induction
of first-order Horn clause theories from facts. Similarly, inductive equational
logic programming concerns itself with the induction of first-order equational
theories from ground equations representing facts. Traditionally the litera-
ture has treated the semantics for the induction of equational theories purely
from an operational viewpoint based on directed rewrite rules. In this paper
we take advantage of the strong ties that exist between equations and al-
gebra and develop a model theoretic approach to inductive equational logic
programming based on algebraic ideas.

1 Introduction

The past decade saw an increasing interest in machine learning as a way
to extract knowledge from large databases of facts. Formidable advances
in this field have yielded tools and algorithms that have been applied to
non-trivial problems providing insights not possible before [12, 19, 21, 22].

Inductive Logic Programming (ILP) is particularly interesting in this
context because of its explanatory power due to the fact that it induces
first-order Horn clause theories from a set of facts [20]. ILP can be seen
as logic programming with inverted deduction. In other words, inductive
logic programming is logic programming with inductive inference rather than
deductive inference. Since ILP inherits its representational formalism from
Logic Programming [23], it is particularly easy to incorporate background
or domain knowledge into the induction which is crucial in many problem
settings.

Recently other logics than Horn clause logic have been used in the con-
text of ILP. In particular, equational logic has been proposed for inductive
equational logic programming. Equational theories are attractive due to
their expressiveness and their straight forward denotational semantics based
on algebra [5, 7]. These advantageous properties of equational theories have
been harnessed for software specification languages such as OBJ3 [9] and
ACT-ONE [4] as well as industrial strength equational logic programming
environments such as UCG-E [11].

In the inductive equational logic programming setting the semantics of
inductive inference are usually developed by viewing equations as directed
rewrite rules and the usual deductive term rewrite system is replaced by an
inductive inference machinery. Early approaches in this area focused primar-
ily on the synthesis of equational programs [1, 3]. More recently, equational
approaches have emerged that resemble the traditional framework of ILP
more closely [14, 15]. However, even these recent approaches focus almost
exclusively on the operational aspect of the equations. In this paper we take
a different approach, rather than developing an operational semantics based
on term rewriting we explore the connection between equational logic and al-
gebra and develop a more model theoretic approach to inductive equational
logic programming. The aim is to provide an abstract characterization of
inductive equational logic programming independent from the exact nature
of any particular inductive inference system.

As a starting point for our development we use the normal semantics for
ILP that interpret background knowledge, hypotheses, positive and negative

facts for clausal theories [6, 20]. We generalize these notions and cast them
into an algebraic framework. In this setting we investigate the concept of
induced equational theory, background knowledge, and positive and negative
facts. In particular, we show that the algebras that satisfy an induced
equational theory also satisfy the background knowledge and the positive
facts. In addition, we investigate syntactic and semantic bias within this
semantic framework. The overarching goal in this model theoretic approach
is to provide improved clarity and insight into inductive equational logic
programming.

The remainder of the paper is structured as follows. Section 2 introduces
basic concepts and the normal semantics of ILP. Algebra and algebraic theo-
ries are presented in Section 3. Section 4 introduces our algebraic notions for
inductive equational logic programming. We take a closer at the details of
our semantics by working an example in Section 5. In Section 6 we examine
declarative bias within the context of our semantic framework. Finally, we
draw conclusions in Section 7 and point to further research directions. In
order to make this paper as self contained as possible, Appendix A contains
a somewhat lengthy algebra primer.

2 Inductive Logic Programming

The discipline of Inductive Logic Programming (ILP) concerns itself with
the induction of clausal theories (hypotheses) from facts and background
knowledge. Formalizing this a little bit we can state the normal semantics
for ILP as follows [6, 20].

Definition 1 Given a set B of horn clause definitions (background theory),
a set P of ground facts to be entailed (positive examples), a set N of ground
facts not to be entailed (negative examples), and a hypothesis language L,
then a construct H € L is an hypothesis if

BUH |=p, for every p € P (Completeness),
BU H £ n, for every n € N (Consistency).

a

Here, L is the set of all well-formed logical formulae over a fixed vocabulary.
Completeness states that the conjunction of the background and the hy-
pothesis entail the positive facts. In other words, together the background
knowledge and the hypothesis can explain the facts. Consistency states that

the background and the hypothesis do not entail the negative facts. On a
more intuitive level, in order for the hypothesis to be an explanation of the
positive facts it should not hold for any of the counter examples.

Please note that this semantic definition does not say anything about the
quality of a particular hypothesis. In fact, it is interesting to note that this
semantic definition admits a number of trivial solutions. For instance, let
H = P. Also consider the case where B = p for every p € P. Typically, the
weighing of one hypothesis over another is left to the operational semantics
of an ILP system. In practical ILP systems trivial solutions like the ones
above are typically immediately dismissed by the system on its search for
an ”optimal” hypothesis, since these trivial solutions tend not to pass a set
of performance heuristics when compared to other more general hypotheses.

3 Algebra and Theories

Before we proceed with the construction of our algebraic semantics we
present here some basic algebraic notions. For a more explicit presentation
see one of the following [5, 17, 24]. A more detailed introduction to algebraic
ideas is given in the Apendix A. The exposition here closely follows [8].

An equational signature defines a set of sort symbols and a set of function
symbols. More precisely,

Definition 2 An equational signature is a pair (S, X), where S is a set
of sorts and X is an (S* x S)-sorted set of operation names. o € ¥, ; is said
to have arity w € S* and sort s € S. Usually we abbreviate (S, %) to . O

Mappings between signatures map sorts to sorts and operator symbols to
operator symbols.

Definition 3 An equational signature morphism is a pair of mappings
d=1(f,9): (5,Z) = (5",%), we write ¢: ¥ - X'. O

A presentation or theory' is an equational signature with a collection of
equations. In more precise terms, an equational presentation or theory is
defined as follows.

Definition 4 A X-presentation or X-theory is a pair (X, F) where ¥ is
an equational signature and F is a set of Y-equations. Fach equation in F

!We treat the terms presentation and theory as synonymous; the traditional notion of
theory can be recovered by taking the closure of the set of equations.

has the form
VX)l=r
where X is a set of variables distinct from the equational signature ¥ and
l,r € Ts(X) are the terms over the set ¥ and X. If X = (), that is, [and r
contain no variables, then we say the equation is ground.
When there is no confusion 3-theories are referred to as theories and are
denoted by their collection of equations, in this case E. O

The above can easily be extended to conditional equations®. However, with-
out loss of generality we continue the discussion here based on unconditional
equations only. Central to our development of an algebraic framework is the
notion of satisfaction of a theory by an algebra.

Definition 5 Given a theory T = (X, E), a Y-algebra A is a T-model if A
satisfies each equation e € E. We write A = E, when there is no confusion
we write A |=7T. O

In general there are many algebras that satisfy a particular theory. We also
say that the class of algebras that satisfy a particular equational theory
represent the denotational semantics of that theory.

Semantic entailment of an equation from a theory is defined as follows.

Definition 6 An equation e is semantically entailed by a theory (%, E),
write E = e, iff A |= F implies A |= e for all ¥-algebras A. O

We are now in a position to define theory morphisms.

Definition 7 Given two theories T = (X, E) and T' = (X', E'), then a
theory morphism ¢: T — T is a signature morphism ¢: ¥ — ¥’ such
that

E' = ¢(e), foralle € E.

a

In other words, the signature morphism ¢ is a theory morphism if the trans-
lated equations of the source theory T" are semantically entailed by the target
theory T".

Goguen and Burstall have shown within the framework of institutions
[8] that the following holds for many sorted algebra?:

2Consider the conditional equation, (VX)t = ¢’ if ¢, which is interpreted as meaning
the equality holds if the condition c is true.

3 Actually, Goguen and Burstall have shown the much more powerful result that the
implication holds as an equivalence relation. However, for our purposes here we only need
the implication.

Theorem 8 Given the theories T = (X, F) and 7" = (X', E’), the theory
morphism ¢: T — T’, and the T’-algebra A’, then

Ay gle) = ¢A s e
forallee E. O

In other words, if we can show that a given model of the target theory
satisfies the translated equations of the source theory, it follows that the
reduct of this model, ¢A’, also satisfies the source theory, thus, the models
behave as expected.

4 Induced Theories

Key to our algebraic framework is the notion of induced theory which rep-
resents an equational theory that incorporates the given background knowl-
edge and can explain the positive facts. An induced theory is not unlike the
notion of an hypothesis in the normal semantics for ILP.

The goal of this algebraic semantics is to formulate a more model the-
oretic approach with respect to inductive equational logic programming
rather than defining the semantics of induced theories in terms of rewrite
relations. We make use of the fact that the denotation of an equational
theory is the class of algebras that satisfy the equations of that theory. Here
we let the algebras that satisfy the equations of an induced theory be the
denotational semantics of the induced theory.

Let us define what we mean precisely by an induced theory. In order to
do this we have to define what we mean by facts.

Definition 9 A theory (X, E) is called X-facts if each e € F is a ground
equation. If there is no confusion we will refer to X-facts as facts and write
E. O

This allows us to define our notion of induced theory.

Definition 10 Given a background theory B = (¥, Ep), positive facts
P = (Xp, Ep), and negative facts N = (Xy, En), then an induced theory
H = (Xy,FEpg), is a theory with a pair of mappings ¢p and ¢p

H
2
B P

such that
e ¢p: B — H is a theory morphism,
e ¢p: P — H is a theory morphism,

e and H [~ ¢n(e), for all e € En, and signature morphism ¢y : Xy —
Y.

a

This definition warrants a closer look. Take the theory morphism ¢p that
maps the background theory into the induced theory. From the definition
of a theory morphism we have

¢p: B — H is a theory morphism if H = ¢p(e), for each e € Ep.

This is equivalent of saying that in order for this mapping to be valid the
induced theory must semantically entail the given background knowledge.

A closer look at the theory morphism ¢p that maps the positive facts into
the induced theory reveals a similar relationship. Again from the definition
of a theory morphism

¢p: P — H is a theory morphism if H = ¢p(e), for each e € Ep.

This is equivalent of saying that in order for this mapping to hold the in-
duced theory must explain the positive facts. In other words, this can be
considered to be the completeness criteria of the normal ILP semantics de-
fined in Definition 1 cast into an algebraic framework.

The last part of the definition above is of course the consistency state-
ment that insures that only the positive facts and not the negative facts are
entailed by the induced theory. More precisely, it states that the translated
equations of the negative facts must not hold in the induced theory.

Sofar we have treated models that satisfy H implicitly. Since our de-
notational semantics is expressed through the algebraic models that satisfy
the induced theory, let us make these notions explicit through the following
proposition:

Proposition 11 (Denotational Semantics) Given an induced theory H,
with the background theory B, the positive facts P, and the negative facts
N, then each model M that satisfies the induced theory H also satisfies the
background theory B and the positive facts P.

Proof: From the previous section we know that for every theory morphism
¢:T — T and a model M' |=T" there is a reduct $M' such that M’ =T
Let us assume that there exists a model M that satisfies the induced theory
H,ie., M = H. We then have two reducts along the theory morphisms
¢p: B — H and ¢p : P = H, namely ¢pM and ¢pM, respectively, where

¢BM IZ B’
¢pM = P.

Thus, the models that satisfy the induced theory H have reducts along
the theory morphisms and behave as expected. That is, every model that
satisfies the induced theory also satisfies the background theory as well as
the positive facts. O

Discussion. The key advantage of the algebraic semantics developed here
is that it allows us to study the precise meaning of induced theories in terms
of the models that satisfy the equations without relying on the notions of
a particular operational semantics such as inverse narrowing. Furthermore,
the algebraic semantics makes a precise statement on how the induced the-
ory, the background theory, and the positive facts relate to each other via
theory morphisms. This is a departure from the set theoretical definitions
in the normal ILP semantics.

The key difference between the above approach and the normal seman-
tic setting for ILP given in Definition 1 is the fact that the above approach
allows a more general notion of background knowledge in the induced theo-
ries. Where the normal semantic setting states that the union of background
knowledge and hypothesis needs to entail the positive facts, our approach
only requires that the background knowledge is entailed by the induced the-
ory.

On the other hand, similar to the normal semantics, the algebraic se-
mantics defined here also admits trivial solutions. This occurs when both
the background theory morphism ¢ g and the positive facts theory morphism
¢p are theory inclusion morphisms. This is analogous to the situation in
the normal ILP semantics where the hypothesis is simply the collection of
positive facts, i.e.,

BUP Ep, forall pe P.

Also, similarly to the normal ILP semantics the algebraic semantics devel-
oped here does not make any statements regarding the quality of the induced
theory. That aspect is left to the operational semantics of the induction sys-
tem.

5 Working an Example

Let us put this machinery to work and look at an example. However, be-
fore we can attempt this we need one more thing, we need the soundness
and completeness of equational logic [17, 24] in order to dispose of proof
obligations using equational deduction.

Theorem 12 (Soundness and Completeness of Equational Logic)
Given a set of equations E, an arbitrary equation (VX)t =t is semantically
entailed if and only if (VX)¢ = ¢’ is deducible from E. Formally,

EENVX)t=tif E+ (VX)t=1.
O

This theorem is very convenient, since it lets us use equational proof theory
or deduction to check the theory morphism conditions in the definition of
our induced theories.

The following example is due to [14]. Here we assume that the signatures
are the obvious constructions and therefore we will only show the set of
equations for the underlying theories. Consider the following theories. The
background theory B,

(Bl) Vz,y 3(‘7:) < S(y) =z <y,
(B2) Vy 0 < s(y) = true ,
(B3) Yz z<0=false.

The positive facts P,

(P1) Y0 0+0=0,

(P2) VO s(0)+ s(0) = s(s(0)),

(Ps) YO 0+ s(0) =s(0),

(Py) VO s(s(0) + s(0)) = s(s(s(0))),

(B5) VO s(s(s(0)) +s(0)) = s(s(s(s(0)))).

The negative facts N,

(Ny) VO s(0)+0=0,
(N2) VO 0+0=s(0),
(N3) V0 s(0)+ s(0) = s(0),
(N4) VO s(0)+0 = s(s(0)),
(N5) VO s(0+0)=s(s(0)),
(Ns) VO s(s(0) + s(0)) =0,
(N7) VB s(0)=0

Consider the following theory H.

(Hi) Vz,y s(z) <s(y) =z <y,

Yy 0 < s(y) = true ,

Ve z < 0 = false ,

Ve,y z4+y=y+xifz <y,
Ve,y z+0=uz,

) Vz,y s(z) + s(y) = s(s(z +y)).

EGEEE

The goal is to show that theory H is an induced theory. Therefore, we have
to check for three conditions according to Defintion 10. This is done in the
following proposition.

Proposition 13 Given the background theory B, the positive facts P, and
the negative facts N above, then the theory H above is an induced theory.

Proof: Here we assume that the underlying signature morphisms are the
obvious mappings. We have to show that the following three conditions hold
for theory H:

e The morphism ¢p: B — H is a theory morphism;
e the morphism ¢p: P — H is a theory morphism;
e and H {~ ¢n(e) for alle € Ey and ¢n: Xy — Ejg.

The first condition is easy to check, ¢p is simply a theory inclusion mor-
phism. The second condition is readily verified by showing that the equa-
tions of the positive facts P hold in H using equational deduction. Equations
P, and P, are easily verified by applying Hs and Hg, respectively. Equation
P53 can be shown to hold as follows:

VO 04 s(0) = s(0)
0 < s(0) (evaluating condition of Hy
with z — 0 and y — s(0))

true (using Hj)
Vi s(0) 4+ 0 = s(0) (using Hy)
Vi s(0) = s(0) (using Hs)

Also, equation P, can be shows to hold as follows:
V0 s(s(0) + s(0)) = s(s(s(0)))

VO s(s(s(040))) = s(s(s(0))) (using Hpg)
V0 s(s(s(0))) = s(s(s(0))) (using Hs)

Similarly, equation Ps holds in H. Lastly, there are no such deductions for
any of the equations in N. This fulfills our proof obligations Therefore,
theory H is an induced theory. O

This result is comforting, since it shows that the theory H is a valid object in
both our algebraic semantics as well as in the operational semantics discussed
in [14].

6 Declarative Bias

Most ILP systems distinguish between two different kinds of declarative
bias [20]: syntactic bias and semantic bias. This is also true for inductive
equational logic programming systems and therefore we will take a brief look
at declarative bias in the context of the algebraic semantics developed here.

Traditionally, syntactic bias imposes constraints on the form of the sen-
tences allowed in the hypothesis. That is, hypothesis can only be con-
structed from a permitted alphabet. In the algebraic setting the form of the
equations in the induced theory is defined by the signature of the theory.
The kinds of operators and symbols this signature incorporates defines a
syntactic bias. In inductive equational logic programming one particular
case is typical where the signature of the induced theory, ¥y, is defined as
Yy = ¢(Xp) U ¢pp(Xp), i.e., the union of the translated signature of the
background theory and the translated signature of the positive facts. Here
we assume that Xy C Xp. In fact, this is also the smallest signature that
satisfies our definition of induced theory in Definition 10. It is an open ques-
tion at this point in the context of inductive equational logic programming
if there is a need for larger induced theory signatures due to a process anal-
ogous to predicate invention in ILP [18] sometimes referred to as function
invention in the equational setting [14]. One could imagine that if one uses
a genetic algorithm to discover induced theories the genetic algorithm could
be allowed to discover “helper functions” within the induced theories [16].

In contrast to syntactic bias, semantic bias imposes restrictions on the
meaning, or behavior of hypotheses [20]. In the algebraic semantics de-
veloped here we can identify a semantic bias for inductive equational logic
programming. More precisely, equational theories can be interpreted in one
of two ways: strict via a standard interpretation such as an initial model or
?loosely” where any model that satisfies the theory will do. These notions
find justification in the work on algebraic specifications [5, 7].

10

7 Conclusions

Using the normal semantic setting for ILP as a starting point, we have set
out to develop an algebraic semantics for inductive equational logic pro-
gramming taking advantage of the close relationship between algebra and
equations instead of using a more operational approach by viewing equations
as rewrite rules. At the center of this semantics is the notion of an induced
theory that is related via theory morphisms to the background knowledge
and positive facts. Expressing the relationships between the various theo-
ries as theory morphisms allowed us to study the behavior of the algebras
satisfying the induced theory in a straight forward algebraic manner. More
precisely, any algebra that satisfies the induced theory also satisfies the back-
ground theory as well as the positive facts. Intuitively, this is what we would
expect and this semantics makes this explicit .

The formalization around theory morphisms also brought to light a more
generalized form of background theory inclusion. Where in the standard
semantics we are looking at the set theoretic union between the background
theory and the hypothesis, in the algebraic framework we are looking at the
entailment of the background equations by the induced theory.

We also identified syntactic and semantic biases within the context of
inductive equational logic programming. The notion of semantic bias within
inductive equational logic programming is a direct result due to our algebraic
formulation.

Moving forward there are a number of venues for further research. Firstly,
it would be interesting to apply this framework in the context of hidden
sorted equational logic [10] where satisfaction no longer needs to hold strictly
but behaviorally. Here we only treated the case of many sorted equational
logic. Secondly, we would like to apply this framework in the Horn clause
logic setting. This would allow us to study traditional ILP within an alge-
braic setting. More importantly, what is the relationship of the algebraic
setting to some of the other semantics that have been developed for ILP such
as the non-monotonic semantics [13]? Thirdly, we would like to investigate
an inductive equational logic programming system that uses some of the
notions developed here as part of its operational semantics for the induction
of induced theories.

Acknowledgments. The author would like to thank Stephen Muggleton
for many interesting conversations while at the Oxford Computing Labo-
ratory. Also, many thanks to Flaviu Marginean for many comments and
pointers. A special thanks go out to my wife Natalie and Enzo for patient

11

support during the writing of this paper.

A Many Sorted Algebra — A Brief Overview

Many sorted algebra extends the traditional view of an unsorted algebra
as a single set with ‘structure’ by allowing a set of sets or carriers with
‘structure’ [2, 5, 24]. This algebraic structure is in the form of operations
using elements from the carriers as operands and producing elements of
the carriers as results. Given a set S of sort names, the set of carriers is
sometimes called an S-sorted set where each carrier is named by a member
of S. More formally:

Definition 14 Given a sort S, an S-sorted set A is a collection of sets Ag
indexed by elements s € S. All set theoretic operations can be extended to
operations on S-sorted sets; for example, if A and B are S-sorted sets, then
AUB is defined by (AUB)s = A;U By, and A C B means that A; C By for
each s € S. Furthermore, an S-sorted function f: A — B is a collection
of functions indexed by S such that fs: A; — Bs for each s € S. O

Signatures allow one to refer to algebraic structures symbolically, that
is, without explicitly referring to the exact underlying structures of any
particular algebra. More precisely, signatures provide a uniform, symbolic
notation for specifying carriers and operations for algebras. Before we are
able to give the formal definition of signatures we need the following:

Notation 15 Let S be a set, then S* denotes the set of all finite lists of
elements from S, including the empty list denoted by [|. Given an operation
f from S into a set B, f: S — B, the operation f* denotes the extension
of f from a single input value to a list of input values, f*: S* — B, and
is defined as follows: f*(sw) = f(s)f*(w) and f*([]) = [}, where s € S and
weS*. O

We are now in the position to define signatures:

Definition 16 A many sorted signature is a pair (S,X), where S is a
set of sorts and ¥ is an (S* x S)-sorted set of operation names. Thus, if
w € S* and s € S then X, ; is a set of operation names. If ¥ is clear from
context, we sometimes write o: w — s instead of o € X, ; to emphasise the
fact that o denotes an operation mapping the carriers denoted by w to the
carrier denoted by s. Usually we abbreviate (S,X) to X. Elements of ¥
are referred to as constants of sort s.

12

An operation can be declared to have more than one type; for example
we might have o € ¥, s N Xy ¢ where w, s is different from w’,s’. In this
case o is said to be overloaded. O

For this to make sense, any algebra for a particular signature (S,%) should
provide a carrier set for each sort name S and should provide an operation
for each operation symbol in 3. Another way of saying this is, that an
algebra for a signature ¥ interprets the sort names as carrier sets and the
operation names as concrete operations or functions between the carriers.
We refer to such algebras as Y-algebras.

Definition 17 Given a many sorted signature 3, a Y.-algebra A consists
of the following:

e an S-sorted set, usually denoted A, called the carrier of the algebra,
e a constant A, € A; for each s € S and 0 € X 4,

e an operation A,: A, — A, for each non-empty list w =s1...sn €
S*, and each s € S and 0 € ¥, 5, where A,y = Ag1 X ... X Agp.

a

It should be clear from this definition that a signature does not denote
only a single algebra but a whole class of algebras where each algebra in
this class interprets the sort names and operation names in a particular
way. Given a signature Y, a mapping between two Y-algebras is called a
Y.-homomorphism.

Definition 18 Given Y-algebras A and B, a Y-homomorphism h: A —
B is an S-sorted function such that:

e given a constant o € X, then hs(Ay) = By,

e given a non-empty list w = s1...sn and 0 € X, ; and ai € A for
1=1,...,n, then

hs(As(al,...,an)) = By(hsi1(al),. .., hsp(an)).

Here, A, and B, denote the particular interpretations of the operator o in
algebra A and B, respectively. O

13

It is easy to see that a X-homomorphism is a structure preserving mapping
from one X-algebra to another.

Given a signature there is a very useful algebra which we may construct
whose carriers are sets of terms built up from the given operation names
viewed as term constructors.

Definition 19 Given a many sorted signature 3, the term algebra T, is
constructed as follows. Let UX be the set of all operation names in 3, then
Ty, is the least S-sorted set of strings over the alphabet (UX) U {(,)} such
that for all s € S: -

e for each constant symbol o € X , the string o € (Ty)s,

e for each non-empty list w = s1,...,sn € §*, and each o € ¥y 4, and
all ti € (ITx)s; for i = 1,...,n, the string o(t1,...,tn) € (Ix)s-

The special symbols ‘f and ‘l’ are used to emphasise that the carriers
of Tx. are sets of strings; we usually drop the special notation and write
‘o(tl,...,tn)" for ‘o(tl,...,tn)".

We give Ty, the structure of a Y-algebra by interpreting each operation
name in ¥ as a term constructor; for all s € S:

e for each constant name o € ¥, the constant (T%), is the string
o € (T%)s;

e for each non-empty list w = s1,...,sn € §*, and each operation name
0 € Xy,s, the operation (Tx)s: (Tx)w — (ITx)s maps a tuple of strings
t1,...,tn to the string o(t1,...,tn).

O
The term algebra T, has the special property of being an initial algebra®.

Definition 20 An inital Y-algebra is a Y-algebra A such that for each
Y.-algebra B there is exactly one 3-homomorphism A — B. O

Proposition 21 Given a signature 3, then T is an initial 3-algebra. For
any Y-algebra A, the unique ¥-homomorphism A: Tx — A is defined recur-
sively as follows:

e for each constant symbol o € X ,, let hs(0) = A,

“Here we assume that the signature 3 does not contain any overloaded operations.

14

e for each non-empty list w = s1...sn and 0 € X, 5 and ti € (Tx)y for
1=1,...,n, let

hs(o(t1, - .. 1)) = (Ag) (hsi (t1), .. . , hen(tn)).
Od

The homomorphism h assigns values in A to Y-terms by interpreting the
operation names in . as the corresponding operations on A.

Note that so far we have talked about what it means for an algebra to
interpret sort and operation symbol names but we have not said anything
explicit about the definition of the operations themselves. One way to ac-
complish this is to give an axiomatisation of the operations. In the case of
algebras this axiomatisation is in terms of first order equations. However,
before we are able to give the formal definition of equations and what it
means for an algebra to satisfy an equation we need to introduce the notion
of a variable which serves as a place holder for arbitrary values within a
term. Any S-sorted, pairwise disjoint set X = {X;|s € S} will do as place
holder. The set X is usually referred to as a variable set. Thus, terms with
variables are defined as follows:

Definition 22 Given a many sorted signature (S,Y%) and a variable set
X = {X,|s € S} such that % ;N X, = () forall s € S, terms with variables
from X are elements in T x), where %(X) is defined by X(X) ; = X, ,UX;
and %(X)y,s = Zy,s for w # [|. The term algebra Ty (x) can be viewed as
a Y-algebra if we forget about the constants due to the variable set X; we
denote this algebra by Tx(X). O

Since we treat variables as place holders, they only make sense if we are
able to assign something concrete to them. More formally this is given by
an assignment:

Definition 23 Given a Y-algebra A and an appropriate variable set X, an
S-sorted function #: X — A is called an assignment. The assignment
extends to the unique homomorphism 6: Tx(X) — A such that 8(z) = 6(z)
forallz € X. O

Now we are ready to define equations:

Definition 24 A Y-equation is a triple (X, [, r) where X is an appropriate
variable set and [,7 € Tx(X);s for some sort s € S. If X = (), that is, [and

15

r contain no variables, then we say the equation is ground. We write
equations in the form (VX)I =r.

A specification or theory® is a pair (X, E) where ¥ is a many sorted
signature and F is a set of X-equations. O

The models of a theory are the Y-algebras that satisfy the equations, that
is, a theory denotes a whole class of algebras, namely those algebras which
satisfy its equations. Intuitively, an algebra satisfies an equation iff the
left and right sides of the equation are equal under all assignments of the
variables. More formally:

Definition 25 A Y-algebra A satisfies a Y-equation (VX)I = r iff (1) =
O(r) for all assignments §: X — A. We write A | e to indicate that A
satisfies the equation e. For a set E of equations we write A= F iff A =e
for each e € E. We write E |= e iff A = E implies A = e for all 3-algebras
A.

Given a theory (%, F), a (2, E)-model is a ¥-algebra A such that A |
E. O

Just as each signature has an initial algebra, each specification has an initial
model. The initial model is constructed from the term algebra by iden-
tifying exactly those terms that are ‘equal’ as a consequence of the given
equations in the specification. Each equation in a specification gives rise to
an equivalence relation in the following way:

Definition 26 Given a Y-algebra A and a Y-equation e of the form (VX) [=
r which we assume to be satisfied by A, then define the equivalence relation

~aeon Abyan~y,biff a=0() and b= 6(r) for some §: X — A. O

That ~ 4 . is an equivalence relation follows from the fact that the equation
generating the relation is reflexive, symmetric, and transitive. We will use
this in defining an equivalence relation that contains all the equivalence
relations derived from the equations of a specification, and that allows the
substitution of equals for equals. This is formalised by the notion of a
congruence:

Definition 27 Given a ¥-algebra A, a ¥-congruence on A is an S-sorted
equivalence relation ~ such that the following substitutivity property

SWe treat the terms specification and theory as synonymous; the traditional notion of
theory can be recovered by taking the closure of the set of equations.

16

holds: for all o € X, s where w = sl,...,sn and ai,bi € (A)s for i =
1,...,n,ifal ~bl,...,an ~ bn then A,(al,...,an) ~ A,(bl,..., bn).

If E is a set of ¥-equations and A is a Y-algebra, then =4 g denotes the
least YX-congruence on A which contains each equation in F; that is, such
that ~4 .C=4 for each e € E. We usually write = instead of =4 5. O

Definition 28 Given a Y.-algebra A and a Y-congruence = on A, we con-
struct the X-algebra A/ =, called the quotient of A by =, as follows:

o for s € S, let (A/ =); = {[a]|la € As}, where [a] is the equivalence
class of a under =,

e for each constant symbol o € ¥y, let (4/ =)s = [4s],

o for each non-empty list w = s1,...,sn, 0 € 3,5, and [ai] € (4] =)
fori=1,...,n, let

(A) =)o ([al],...,[an]) = [(A) =)s(al,... an)].

The last equation is well-defined by the substitutivity property of the con-
gruence =. O

This machinery finally enables us to state what the initial model of a speci-
fication is, it is namely the quotient term algebra generated by the equations
of the specification. More precisely:

Proposition 29 Given a specification (3, E), the initial (3, E)-model is
the quotient term algebra T% g, which is the quotient 7%/ =g. By
construction, Tx g satisfies the equations E. O

There is a very useful and powerful extension to the usual equations studied
so far; the conditional equations. Conditional equations allow one to con-
cisely state the conditions under which a particular equation holds. More
formally:

Definition 30 A conditional ¥-equation is a quadruple (X, [, 7, C') where
X is an appropriate variable set, [,7 € Tx(X)s for some sort s € S, and C
is a set of pairs (u,v) where u,v € Tx(X)s for s € S. We usually write
conditional equations in the form

(VX)l=rif C.

17

Furthermore, given a »-algebra A, we define
Ay (VX)Il=rif C

to mean that, given any assignment §: X — A, if O(u) = 6(v) for all
(u,v) € C, then (1) = O(r); in other words the X-algebra A satisfies the
conditional equation. O

It is interesting to note that conditional equations do not add to the math-
ematical power of a specification language. On the other hand, the expres-
siveness of a specification language is dramatically enhanced by embracing
conditional equations. There is a useful relationship between conditional
and ordinary unconditional equations, namely:

Fact 31 Given a X-equation e = (VX) t =¢, let ¢ = (VX) t =t if () for
t,t' € Ts,(X), then for each X-algebra A, Al=eiff AE¢€. O

This is interesting in the sense that we may regard ordinary equations as
conditional equations with the empty condition. In the following sections
and chapters we will not distinguish between conditional and unconditional
equations unless a distinction is necessitated by the circumstances.

There is another very useful result which gives us a technique for proving
conditional equations.

Proposition 32 Given a conditional ¥-equation (VX) ¢t = ¢/ if C and a
set E of ¥-equations, then

ElEy (VX)t=t'if Ciff (CUE) Exx) (V0) t=1t".
a

Since signatures denote algebras, it is interesting to see how one algebraic
structure can be viewed in terms of another, or more precisely, how one sig-
nature can be translated into another signature. The appropriate mapping
here is the signature morphism.

Definition 33 A signature morphism ¢: (S,X) — (§',%) is a pair
(f,9), where f: S — S’ maps sorts in S to sorts in S’, and g is a collection
of functions indexed by S* x S such that g, s: Xy s — Elf*(w),f(s) for each
(w,s) € §* x S. We usually write ¢ instead of both f and gy, so that if
0 € By, then ¢(0) € X/ s (w),d(s)” O

18

Given a signature morphism ¢: ¥ — ', it is possible to view any X'-algebra,
A’ as a Y-algebra by forgetting any additional structure ¥’ might have. This
is formalised with the notion of a reduct:

Definition 34 Given a signature morphism ¢: ¥ — ¥’ and a X'-algebra
A’, we define the X-algebra ¢A’, called the reduct of A’ along ¢, by setting

PAL = A:ﬁ(s) for s € S and ¢A] = A;(U) for o € By 5. O

Given this we should look at the more interesting case of theories. We define
a theory morphism as an appropriate mapping from one theory to another.
Note that we assume that signature morphisms extend to equations. More
precisely, a given signature morphism ¢: ¥ — X' extends to the family of
mappings ¢ : Tx(X)s — Ts(4(X))g(s) where X is an appropriate vari-
able set and ¢(X)y = Uy(s)=s Xs- Now, given a Y-equation e = (X,I,r)
where [,7 € T5(X), then ¢(e) = (#(X), ¢(l), ¢(r)) is a ¥'-equation where
o), d(r) € T (¢p(X)). We are now ready to define theory morphisms for-
mally:

Definition 35 Given two many sorted theories Th = (X, FE) and Th' =
(X', E'), then the theory morphism ¢: Th — Th' is a signature morphism
¢: ¥ — ¥ such that E' =5 ¢(e) for alle € E. O

Goguen and Burstall have shown within the framework of institutions [8]
that the following holds for many sorted algebra:

Theorem 36 Given a theory morphism ¢: (X, F) — (X', E') and a (¥, E')-
algebra A’, then
A IZEI ¢(e) <~ ¢AI lZE e

forallee E. O

Therefore, if we can show that a given model of the target theory satisfies the
translated equations of the source theory, it follows that the reduct of this
model also satisfies the source theory, thus, the models behave as expected.

References

[1] R. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of the Association for Computing Machin-
ery, 24(1):44-67, January 1977.

19

2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

Paul M. Cohn. Universal Algebra. Harper and Row, 1965. Revised edi-
tion 1980.

N. Dershowitz and E. Pinchover. Inductive synthesis of equational pro-
grams. In Proceedings, Fighth National Conference on Artificial Intel-
ligence, pages 234-239. MIT Press, 1990.

Hartmut Ehrig, Werner Fey, and Horst Hansen. ACT ONE: An al-
gebraic specification language with two levels of semantics. Technical
Report 83-03, Technical University of Berlin, Fachbereich Informatik,
1983.

Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specifica-
tion 1: Equations and Initial Semantics. Springer, 1985. EATCS Mono-
graphs on Theoretical Computer Science, Volume 6.

Peter A. Flach. The logic of learning: a brief introduction to Inductive
Logic Programming. In Proceedings of the CompulogNet Area Meeting
on Computational Logic and Machine Learning, pages 1-17, 1998.

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial
algebra semantics and continuous algebras. Journal of the ACM, 24:68—
95, 1977.

Joseph Goguen and Rod Burstall. Institutions: Abstract model the-
ory for specification and programming. Journal of the Association for
Computing Machinery, 39(1):95-146, January 1992. Draft appears as
Report ECS-LFCS-90-106, Computer Science Department, University
of Edinburgh, January 1990; an early ancestor is “Introducing Insti-
tutions,” in Proceedings, Logics of Programming Workshop, Edward
Clarke and Dexter Kozen, Eds., Springer Lecture Notes in Computer
Science, Volume 164, pages 221-256, 1984.

Joseph Goguen, Claude Kirchner, Héléne Kirchner, Aristide Mégrelis,
and José Meseguer. An introduction to OBJ3. In Jean-Pierre Jouan-
naud and Stephane Kaplan, editors, Proceedings, Conference on Con-
ditional Term Rewriting, pages 258—263. Springer, 1988. Lecture Notes
in Computer Science, Volume 308.

Joseph Goguen, Grant Malcolm, and Tom Kemp. A hidden herbrand
theorem: Combining the object, logic and functional paradigms. In Pro-
ceedings Programming Language Implementation and Logic Program-

20

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

ming / Algebraic and Logic Programming, Lecture Notes in Computer
Science 1490, pages 445-462. Springer-Verlag, 1998.

Lutz H. Hamel. UCG-E: An equational logic programming system. In
Proceedings of the Programming Language Implementation and Logic
Programming Symposium 1992, Lecture Notes in Computer Science
631. Springer-Verlag, 1992.

D. Heckerman, D. Geiger, and D. Chickering. Learning bayesian net-
works: The combination of knowledge and statistical data. Machine
Learning, 20(3):197-243, 1995.

N. Helft. Induction as nonmonotonic inference. In Proceedings of the 1st
International Conference on Principles of Knowledge Representation
and Reasoning, pages 149-156. Morgan Kaufmann, 1989.

J. Hernandez-Orallo and M. Ramirez-Quintana. Induction of functional
logic programs. In Lloyd, editor, Proceedings of CompulogNet Meeting
on Computational Logic and Machine Learning, pages 49-55, 1998.

J. Hernandez-Orallo and M. Ramrez-Quintana. A strong complete
schema for inductive functional logic programming. In Inductive Logic
Programming’99, Lecture Notes in Artificial Intelligence 1634, pages
116-127. Springer-Verlag, 1999.

J. Koza. Genetic Programming: On Programming Computers by Means
of Natural Selection and Genetics. MIT Press, Cambridge, MA, 1992.

José Meseguer and Joseph Goguen. Initiality, induction and com-
putability. In Maurice Nivat and John Reynolds, editors, Algebraic
Methods in Semantics, pages 459-541. Cambridge, 1985.

S. Muggleton. Predicate invention and utility. Journal of Ezperimental
and Theoretical Artificial Intelligence, 6(1):121-130, 1994.

S. Muggleton. Scientific knowledge discovery using Inductive Logic
Programming. Communications of the ACM, 42(11):42-46, November
1999.

S. Muggleton and L. de Raedt. Inductive logic programming: Theory
and methods. Journal of Logic Programming, 19/20:669-679, 1994.

21

[21]

[22]

[23]

[24]

J. Quinlan. C4.5. In Programs for Machine Learning. Morgan Kaufman,
1997.

P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitro-
vsky, E. Lander, and T. Golub. Interpreting patterns of gene expression
with self-organizing maps. In Proceedings of the National Academy of
Sciences of the United States of America, volume 96, pages 2907-2912,
1999.

Maartin H. van Emden and Robert Kowalski. The semantics of pred-

icate logic as a programming language. Journal of the Association for
Computing Machinery, 23(4):733-742, 1976.

Wolfgang Wechler. Universal Algebra for Computer Scientists.
Springer-Verlag, 1992. EATCS Monographs on Theoretical Computer
Science, Volume 25.

22

