Towards a Provably Correct Compiler for
OBJ3*

Lutz H. Hamel and Joseph A. Goguen

Programming Research Group
Oxford University Computing Laboratory
Oxford, OX1 3QD U.K.

Abstract. Abstract machines have proved very successful in the im-
plementation of very high level logic and functional programming lan-
guages; in particular, we have the G-machine for functional program-
ming languages and the WAM for Prolog. In this paper we develop an
abstract machine appropriate for the implementation of algebraic spec-
ification languages. We then employ general algebra techniques and ini-
tiality properties to prove correctness of the translation from equational
rewrite rules to the abstract machine code. The correctness proof itself
has been automated using the OBJ3 system.

Keywords: abstract machines, algebraic specification, compilers, rewrite rules.

1 Introduction

We are interested in implementing algebraic specification languages such as OBJ
[7] and ACT-ONE [5] on an abstract machine. In this approach the terms of the
source language are translated into abstract machine code which is powerful
enough to handle difficult computational aspects of the source language fairly
easily, but is also low level enough that it can be executed very efficiently on
conventional computer architectures. This was first proposed for and applied to
the Prolog logic programming language by Warren [17] in the early 1980’s, and
in more recent years it has been applied successfully to functional languages,
for example in the G-machine [11]. In this paper we take a similar approach
and translate the equations of specifications into code on our TRIM abstract
machine (Tiny Rewrite Instruction Machine).

* The research reported in this paper has been supported in part by the Science and
Engineering Research Council, the CEC under ESPRIT-2 BRA Working Groups
6071, IS-CORE (Information Systems COrrectness and REusability). and 6112,
COMPASS (COMPrehensive Algebraic Approach to System Specification and devel-
opment), Fujitsu Laboratories Limited, and the Information Technology Promotion
Agency, Japan, as part of the R & D of Basic Technology for Future Industries “New
Models for Software Architecture” project sponsored by NEDO (New Energy and
Industrial Technology Development Organization).



It is not enough, however, to define the translation from equations to abstract
machine code; we also have to worry about the correctness of the translation. In
order to show the correctness of the translation we construct a proof based on
the algebraic methods first put forward by Morris in [14] and further developed
in Thatcher et al. [16]. The proof hinges on the fact that a context-free grammar
for a source language defines an initial Y-algebra [8] and the essential proof
obligation is to show that a particular diagram in the category of X-algebras
commutes.

The proof presented here is the correctness proof of a compiler specification.
Clearly, if this specification is written in an executable specification language
we immediately obtain a compiler from the specification. However, in general
another proof step is required, which is to show that the compiler correctly
implements the specification [4].

In order to keep the proof manageable we limit ourselves to single sorted
equations. For similar reasons we only consider specifications with a single equa-
tion. We keep category theoretic ideas to a minimum save a passing comment
here and there in order to make the material accessible to the widest audience
possible.

The rest of the paper is structured as follows. Section 2 provides an overview
of the general proof strategy and introduces some fundamental notions needed.
Section 3 defines the basic mathematical building blocks. In Section 4 we define
our source language, single sorted equational rewrite rules; in a mathematically
rigorous way. Section b introduces our abstract machine. The translation from
equations to abstract machine code is presented in Section 6. In Section 7 we
show that the translation is indeed correct. Section 8 ends the paper with a
summary and with pointers to possible directions for future research and some
related work.

2 The Structure of the Proof

The intuitive notion of correctness in our proof is the preservation of the seman-
tics of the source language in the target semantics. To be more precise, given a
translation of the source to the target language we have to show that there exists
a homomorphism from the source semantics to the target semantics. If we can
establish such a homomorphism, then initiality will guarantee the commutativity
of the correctness diagram.

We adapt Morris” approach [14] and demonstrate the correctness of the com-
piler specification by making the following diagram commute:

Mgy ————=dUsy: Us:
6 dy =z Y
Tzn %dTE! TE’



The rest of this section will explain the notation used in this diagram. We
first define a signature X¥ which is an extension of some user defined signature
Y(X), where X is a set of operation symbols and X is a set of variables disjoint
from . By writing (X)) we wish to indicate that we treat the variables z € X
as constants — as nullary operators in X(X) — and that we will assign semantics
to these operators as we will for all other operators in the signature. The term
algebra of our source language forms the lower lefthand corner, and is the initial
Yt algebra. We then define an appropriate X#-algebra, My, which we view as
the semantics for our source language. By initiality the homomorphism 6, which
interprets terms of the source language in this semantics, exists and is unique.
This is developed in more detail in Sect. 4.

Next, we denote the term algebra of the abstract machine language by T:.
As with our source language, we define an appropriate X’-algebra, Uy, as the
semantics for this machine language. Again, by initiality in the category of X’-
algebras the homomorphism 1 exists and is unique. For a more concrete discus-
sion of this see Sect. b.

In order to relate the two languages to each other and to obtain the righthand
side of our diagram we use the concept of a derivor developed in [10]:

Definition 1. Let X be an S-sorted signature, and let X’ be an S’-sorted sig-
nature. Then a derivor d : ¥ — Y’ is a function f : S — S’ and a family
dus @ Yuws = (T1)j(w),j(s), Where w = s1...8, and f(w) = f(s1...8,) =
f(s1)...f(sn) and where (T's/)f(w) s(s) denotes the set of all X’-terms of sort
f(s) using variables {y1,...,y,} with y; of sort f(s;). (Each operation symbol
o € Xy , is expressed using a derived operation dy, (o) of the appropriate arity.)

Now let B be a Y’-algebra. Then the d-derived algebra dB of B is the X-
algebra with carriers (dB), = By, for all s € S, and with o4, (for o € ¥y )
defined to be (d(¢))g,,,, the derived operator of the X'-term d(c).

The next step is to define an appropriate derivor from X! to X’. Then we
can fill in the righthand side of our diagram. The algebras dT’x: and dUy: are
immediate from the above definition. That the morphism di) between them exists
is not so obvious. However, the following proposition is helpful and we state it
here without proof.

Proposition 2. Let A and B be X'-algebras and let h : A — B be a X'~
homomorphism between them. Then any derivor d : ¥ — X' induces a X-
homomorphism dh : dA — dB, with dh,(z) = hy(,)(z) for x € dA; and s € 5.

Since we know that 1 exists, we also know that the derivor d induces the
homomorphism dv. By initiality we also have the homomorphism v from 7'y
to dT's:. It is this homomorphism which we view as the compiler specification.
Notice that we now have defined the four corners and three sides of the diagram.
To show that the diagram commutes it suffices to show that the homomorphism
€ exists, since # ; € = v ; di due to uniqueness. That is, the diagram necessarily
commutes provided the homomorphisms exist at all. This material is developed
in Sect. 6 and Sect. 7.



3 Tuples, Products, Projections and other Things

Throughout this paper we rely heavily on function composition, products and
projection functions. In this section we define the basic notions we use dur-
ing the development of the compiler correctness proof. This closely follows the
development in [16].

Definition 3. Given two functions f; : A — B, we define the source tuple,

(fl,fg) : A X [2] — B, by
(f1, f2){a, i) = fi(a) ,

where [2] denotes the set {1,2}. Also, given two functions f; : A — B;, we
define the target tuple, [fi, f2] : A — By X Ba, by

[fl:fZ](a) = (fl(a), fz(a)> )

and given the two functions f; : A; — B;, we define the product map, f; x f5 :
A1><A2—>Bl><Bz,by

(f1 x fo)lar, az) = (fi(a1), f2(az)) .
The projection m; : Ay x ... X A, — A; takes the tuple {aq,...,a,) to a;.

The composition of two functions, f: A — B and g: B — (), is denoted in
the diagrammatic way by f; g : A — C. Finally, we write f : A — B even if
the function is partial and we also assume that all functions are strict and note
that strictness is preserved by the above operations. We also let [A — B] denote
the set of possibly partial mappings from A to B.

4 The Source Language

Algebraic specification languages have a fairly efficient operational semantics by
viewing the equations of the specification as directed rewrite rules [9, 12]. It is
this operational view of the equations which allows the user to study the runtime
behavior of a specification before committing to any kind of implementation.
Therefore, rather than equations, our source language consists of single sorted
equational rewrite rules of the form ¢ = ¢’ where ¢,t' € T'yp(x) and where Ty (x)
denotes the set of terms over some user defined signature X(X). We also assume
that the rewrite rules are left linear and that any variable which appears on the
righthand side of a rule also appears on the lefthand side of that rule.



4.1 The Source Syntax

To make the syntax more precise, rewrite rules in our source language have a
form like the following;:

(I*xv)+w=>w+v

where v,w € X and *,4+,1 € Y. Here of course, * and + are binary operators,
1 is a constant operator and v and w are variables.

We summarize the general shape of our source language with the following
grammar:

eq = l_term = r_term
lterm == o(ltermy,... [ termy)
| &
| =
rterm = o(rdermy, ... rtermy)
| &
| =

where x € X and k,0 € Y. Thus, in the grammar z represents variables such as
v or w. The symbol « stands for constant operators such as 1 and ¢ represents
operators of arbitrary arities such as the the binary operators * and +. Without
loss of generality we will assume for the remainder of the paper that o is a binary
operator.

Making use of the fact that a context-free grammar defines a signature [8],
we denote the signature defined by this context-free grammar with . We may
then view the context free syntax of the rewrite rules as a term algebra Ty
with the carriers T'gy;, Tys, and Ty, , representing terms on the lefthand side,
righthand side, and equations, respectively.

Definition 4. The inductive definition of the Y-term algebra T'sy is as follows:

K] € TEn

Ei (= TEﬁ

oi(tin, tiz) € T's
Ky (= TEﬁ

T, € TEn
Ur(trlatrz) €Ty
:>eq (t[;tr) € TZ‘n

where ¢;,%;1,t12 € T'yy; and &, 801,82 € Ty,

The sort subscripts {,7 and eq are carried through as a reminder of where
exactly these terms appear. Even though this inductive definition of the Ty
algebra seems somewhat redundant, we give it here explicitly to show the X%
structure of this algebra, which will constantly reappear throughout the proof.



4.2 The Source Semantics

Our semantics for rewrite rules is a X'-algebra representing an abstract inter-
preter for the rewrite rules. A state in this interpreter is a tuple (¢, s, e), where
t € Ty is the term to be reduced, s € Stkaqqr is a stack of term addresses
pointing into the Y-term, and e € Envpys is a mapping of user-variables to Y-
terms. Enuvys is defined to be the set of all possible mappings from variables to
Y-terms, [X — Tx].

Viewing equations as rewrite rules, as we do, allows us to design a semantics
in which the lefthand side of the rules attempt to match a piece of the input
term, thus effectively establishing an assignment to the variables ocurring in the
lefthand side. Once a lefthand side is matched, the righthand side of that rule
and the assignments to the variables are used to construct a new term which
replaces the input term.

We construct the algebra from a number of primitive operations using func-
tion composition, tupling, and projections to build the operations in X*. In par-
ticular we use the following functions: match, : Ty x Stkagar — T X Stkadar,
matchx Ty X StkAdd,. — 1y % StkAddr X TE, matchU Ay % StkAddr —
TE X StkAddr, assz’gnw : EnvM X TE e ETZUM, fetchﬂ : ETZUM — ETLUM X TE,
bm’ldo ZTE X TE — TE, and apply : TE X StkAddr X TE b TE X StkAddr.

In order to aid the exposition, we now give the set theoretic definitions of
these functions. However, these are not used in the actual proof, which instead
uses a direct equational axiomatization of the target language.

t,p iftl, =«
match,(t,a o p) = { S_ ) oth|erwise
matchy(t,a o p) = (t,p,t]a)

(t, a1 @ a2 @ p) if |, = o(t1,12)

matcho(t,a e p) = {J_ otherwise
assign (e, t)z = Z(z) gi o

fetch,(e) = (e, e(x))

build, (o, t1) = o(t1,t2)

apply(ti, p,t2) = (t2, a2 @ [])

where t,t;,15 € Ty, and t|, denotes the term ¢ restricted to the address a, in
other words a subterm of ¢ with its root at address a. a;; and a;s denote the
root addresses of the terms ¢; and ¢;, respectively. We also have p € Stkaq44r and
we let [] denote the empty stack and e denote the push onto the stack. Finally,
e € Envyy.

Some intuitive explanation of these operations is in order. Concrete inter-
preters are usually built recursively, using the function activation records on the
stack to keep track of which part of the input term needs to be evaluated next.
In our abstract interpreter the stack of addresses can be viewed as a model for



the runtime stack of a concrete interpreter. Thus, the top of the stack always
points to the part of the term which needs to be evaluated next.

For example, match, checks whether the top of the stack does indeed point
to a constant term equal to . If so, it will pop the address off the stack and
return. If not, it will just fail. In our case failure is signaled by returning L.
Similarly for match,, but instead of matching against a constant term, match,
returns the input term restricted to the address on the top of the stack.

A somewhat more complicated operation is matching against an operation
with subterms such as match,. Here we check if the operation pointed to by the
top of the stack is equal to o. If so, we pop the top of the stack and push the
addresses of the two subterms onto the stack. If not, we return failure.

The operations assign, and fetch, are self-explanatory and are simple ma-
nipulations of the environment. What is noteworthy about the operation bu:ld,
is that it accepts the subterms of the o operator in reverse order. The opera-
tion apply replaces the input term t; with the newly constructed term ¢5 and
initializes the stack to the address of the root of term 5.

Definition 5. The source semantics is given by the Sf-algebra My with the
carriers:

Ml = [TE X StkAdd,« X EnvM — TE X StkAddr X EnvM]
Mr = [TE X StkAdd,« X EnvM — TE X StkAddr X EnvM X TE]

Meq = [TE X StkAddr X ETLUM — TE X Stk’Addr X ETLUM]

and operations:

K{W = match, X 1gny,,
Ty = (matChx‘ X 1EnvM) ) [ﬂ-l y T2, T4, 7l'3] ) (1TE XStkagar X asslgna:)

UlM(al,ag) = (matchy X 1gny,,) ; @1 @2

M __

"fr _ ITEXStk‘AddTXEnUM X K:TE
M _

Ty = ]‘TEXStkAddr X fetChx

oM (B1,P2) = P1; (B2 X 11) 5 (17g xStk agarx Envag X butldy)
=M (a,8)=a; B [m,m, 74, 73] (apply X 1pnu,,)
where o, oy, a0 € M; and 3, 31, B2 € M,..

In this algebra each operator is constructed from our primitive functions and
the underlying operations defined in Sect. 3. For example, the operation fi{w
attempts to match the constant x in the input term but leaves the environment

unchanged.

5 The Abstract Machine: TRIM

Our TRIM machine (Tiny Rewrite Instruction Machine) is a stack based ab-
stract machine. Each instruction acts on a state which consists of a stack and
an environment for variable bindings.



5.1 The Syntax

The syntax of our abstract machine is given by the following context-free gram-
mar:
program = program § instruction
| instruction

mstruction .= MATCH a
| ENTER
| LEAVE
| SAVE &
| GET z

| PUSH a
| POP

| FLIP o

where x € X and a,0 € X.

As in most cases, the instruction set of the abstract machine reflects the
computational characteristics of the source language. For example, the MATCHa
instruction attempts to match the operator symbol a in the input term. Clearly,
this instruction can be used to implement operator symbols appearing on the
lefthand side of our equational rewrite rules.

However, abstract machines tend to act on much more concrete data struc-
tures than their respective source languages, so that they can be efficiently
implemented on conventional computer architectures. In our case, these data
structures are a stack and an environment for variable bindings, probably im-
plemented as some sort of hashed symbol table.

In our proof we denote the term algebra generated by the above grammar
by Ts: and note that its carriers are T's program aNd T/ jpstruction- This algebra
is of course initial in the category of L’-algebras.

5.2 The Machine Semantics

Each instruction of the abstract machine acts on a state which is a pair (s', e},
where s’ € Stk is assumed to be a stack of well formed Y-terms, and ¢’ € Env is
a mapping from variables to Val-items, X — Val. Valis the stack representation
of a Y-term which can be pushed and popped in an atomic operation.

Similar to the semantics of our source language, we construct an algebra from
the various primitive functions and operations defined in Sect. 3. In particular we
make use of the following functions, where we assume that € X and a,0 € X:
peek, : Stk — Stk x [2], pop : Stk — Stk, push, : Stk — Stk, popval : Stk —
Stk x Val, pushval : Stk x Val — Stk, flip, : Stk — Stk, bind, : Env X Val —
Env, and retrieve, : Env — Env x Val.

As with the source semantics we give the set theoretic definitions of the
functions only to make the exposition easier to understand. The actual proof



uses axioms which these functions satisfy. The set theoretic definitions of these
functions are:

(zeT,1)if z=a

(z ® T,2) otherwise

peck,(z07) = {

pop(zeT) =7

push (1) =aer
popval(vet) = (7,v)
pushval{T,v) =ver

flip,(ty otz eT) =tr 0t 0T

) v fy==
bind, (e, v)y = {e(y) if z #+x
retrieve(e) = (e, e(z))

where 7 € Stk, v,t1,t, € Val, z € ¥, y € X, and e € Env.

We should mention that the e-operation in this case is overloaded. It actually
stands for two operations; first, pushing a single operator symbol from X onto
the stack; second, pushing a complete X-term represented by a Val item onto
the stack. This lets us construct whole X-terms from single operator symbols in

2.

Definition 6. Viewing each operator in L’ as an operation Stk X Env — Stk x
Env, we define the machine semantics as the X’-algebra Uy, with the carriers:
Ustinstruction : 1Stk X Env — Stk X Env)

Ustprogram =[Stk x Env — Stk x Env]

and operations:

o U — .
pslv  =p;v

MATCHY a = (peek, X 1Eny); ((pop, L) X 1gny)
ENTERY = lsuxBno

LEAVEY = lsuxmno

SAVEY 2 = (popval X 1gny);[m1, 73, 2); (1ger X bindy)

GETY ¢ = (g, X retrievey);[m, w5, mo]; (pushval X 1gp,)
PUSHY a = push, X lgny
rPoPY = pop X 1gny

FLIPY ¢ = flip, x 1gn,

where JINS UE’program and v € UE’z'nstruction'



Some explanatory remarks on the semantics: the operation MATCH a looks
at the top of the stack to see if the top of the stack is equal to the operator symbol
a. If so, the stack is popped, otherwise a failure is returned. This operation
leaves the environment unchanged. Concatenating an instruction at the end of
a program is just the functional composition of the program and the instruction
viewed as operations. We hope that the remainder of the semantics is fairly
self-explanatory.

6 The Target Language

Up to now we have defined the source language and the abstract machine lan-
guage with their corresponding syntax and semantics. However, we have not
mentioned anything about how one language is related to the other. In fact,
from the algebraic point of view the term algebras of each of these languages
lives in its own separate category and has no relation to the other language at all.
Therefore, the next step is to define the translation from the source language to
the abstract machine language. As mentioned before, we do that with the help of
a derivor. Notice that defining a derivor turns out to be a compiler specification.

A compiler cannot generate arbitrary sequences of instructions in the abstract
machine language but only certain combinations of instructions. We call the
restricted machine language which the compiler produces the target language.

It turns out that this restricted machine language is equivalent to the d-
derived term algebra of the original machine language, and that this d-derived
algebra is also an algebra in the category in which the source language is the
initial algebra. Thus, it now makes sense to talk about homomorphisms from
the source language to the target language. In fact, we will investigate the ho-
momorphism v which effects the translation.

6.1 The Compiler Specification

A derivor has two constituents: a function which maps the sorts from one signa-
ture into the sorts of the other signature, and a family which maps the operator
symbols of one signature into derived operators of the other signature.

Definition 7. We define the derivor d : X' — X’ as follows: Let S* = {l,r,eq}
and S’ = {program, instruction}, then the function f : S* — S’ maps sorts
l,r,eq € S* into the sort program € S’. The family d,, ; : Ziﬁu’s — (Ts1) j(w),5(s)
is defined by

d(k;) = MATCH &
d(z) = SAVE &
d(oy) = MATCH o 3 y1 3 y»
d(iﬂ?r) = PUSH &
d(xr) =GET «x
do)) =1 5 w2 3 FLIP o 5 PUSH o

d(=eq) = ENTER sy 3 ys g LEAVE

where y; and y, are variables of sort program.



6.2 The Target Syntax

Our target language is the restricted abstract machine language the compiler
can produce. We are interested in the d-derived term algebra of the algebra T’;/.
This algebra is a X¥-algebra, that is, the only operation symbols available in this
algebra are due to the operators defined by the derivor. From the definition of
the derivor d the following is immediate.

Definition 8. The restricted abstract machine language viewed as the Y'-alge-
bra d1's: with carriers d1’s/ .y = dI'sv; = dTl's1, =151 program:

l{;iT = MATCH &

:U;lT = SAVE x

ofT(t1,t2) = MATCH o 5 t1 g ts
k4T = PUSH &
23T = GET x

O'dT(tl,tz):tl s 12 g FLIP o H PUSH o

r

=T (t1,t5) = ENTER 3 t1 3t 5§ LEAVE

where t1,t2 € T/ program-

6.3 The Target Semantics

Since we are interested in showing that the diagram in Sect. 2 commutes, we
need a Y'-algebra which appropriately represents the semantics of our target
language. The best suited algebra is of course the d-derived algebra dUy: of the
algebra Uy, the original semantics of the abstract machine language.

Definition 9. The semantics of our target language is then given by the d-
derived algebra dUs: with carriers dUs: ., = dUg = dUs:, = Usi program:

ffo = (peek,, X 1gnv); ((pop, L) X 1Eny)

a;fU = (popval X 1gny); [m1, 73, m2] ; (Lsex X bindy)
O'ZdU(tlytZ) = (Peeka X 1Env) ) ((pOp,J_) X 1Env) > tl ; tZ

ffo = push,, X 1gny

23 = (L4 x retrieve,) ; [m1, 73, m]; (pushval x 1gn,)
oV (t1,t2) =t1 5 ta; (flip, X 1Enu) 5 (push, x 1)

au

=g (t1,t2) = lstkxmnw ; 115 t2 5 LstkxEne

where t1,t2 € Us/ program-



7 The Diagram Commutes!

As outlined in Sect. 2, we have defined all four corners of the diagram. The
morphisms 6, v and di¢ exist due to initiality and the properties of the derivor
d, respectively. What remains is to show that the morphism e exists. We need
to show that there exists a mapping from the source semantics to the target
semantics which make the diagram commute, i.e., which preserves meaning.

Since the notion of state is different in each of these semantics, we need a
way to convert from one representation to the other. In order to accomplish this
we postulate the existence of a number of functions:

encoder,, :  Tx X Stkagar — Stk
decoder,, : Stk — Ty x Stkaaar
encodegny,, : Envy — Env
decodegny,, : Env — Envy
convert : Ty, — Val

unconvert : Val — Ty
Furthermore we require that these functions satisfy the following equations:

encoder,, ; decoder,, = 17y, x5tk 404r
decoder,, ; encoder,, = lgik
encodegny,, ; decodeEnyy, = 1Envy
decodepny,, ; encodegny,y, = lEny
convert ; unconvert = 1y,
unconvert ; convert = 1lyg
The second equation might be somewhat surprising, but it is a valid require-
ment, since we assume the stack to only hold well formed X-terms which of
course makes decoder,, a total function. We axiomatize the move from one rep-
resentation with equations like the following:
(decodepny,, X unconvert) ; assign, = bind, ; decodepny,,
decoder,, ; match, = peek, ; (pop, L) ; decoder,
(decoder, x unconvert) ; apply = pushval ; decoder,,
The actual proof uses about 50 such equations, which all have a broadly similar
flavor. We are now in a position to define € : Mgy — dUsx: to be a function
which takes an operation in the source semantics to an appropriate operation in

the target semantics. Since the algebra My has three carriers, € is comprised of
the family ¢; : M; — dUs, €, : My — dUgi,, and €¢q : Mgy — dUsxioq.



Definition 10. We define ¢ as follows:
e1(a) = (decoder,, x decodegny,,) ; o ; (encoders, X encodegny,,)

€-(8) = (decodery, x decodepny,,) ; B ; (encoder, X encodegn,,, X convert) ;
[m1, 73, 2] 5 (pushval x 1gpy)

€eq(n) = (decoder,, x decodegny,,) ; 1; (encoder,, x encodegny,,)

where o € M;, f € M, and n € M,,.

However, mapping the operations from the source semantics into operations
in the target semantics is not enough, we also have to to show that this mapping
is a homomorphism; we have to show that the homomorphism condition holds
for every operation symbol in X*. Therefore, to complete the correctness proof
of the compiler we have to show that the following proposition holds:

Proposition 11. The mapping € is a homomorphism from the source language
semantics to the target language semantics. Explicitly, the seven equations below

hold:

a(w) = k¥
a(a’) = zf”
(o) (a1, 02)) = ffsz(el(al)aEl(az))
e (k) = k1Y
er(z)) =z
er (oM (81, B2)) = 07V (er(B1), € (Ba))

ceg(=q (2, 8)) = =8 (ala), &(B))
where a, vy, 09 € My and 3,031,582 € M,.

The proof of this proposition has been automated with the OBJ3 system. A
complete treatment of this proof is given in the full version of this paper, which
is available as the Programming Research Group technical report PRG-TR-1-94
from the Oxford University Computing Laboratory.

8 Conclusions and Related Work

Taking hints from the functional and logic programming communities, we de-
signed an abstract machine to compile algebraic specification languages rather
than to interpret the specifications at run time. We successfully employed an
initial algebra semantics approach to prove correctness of a compiler specifica-
tion which translates the equational rewrite rules of the source language into
abstract machine code. We succeeded in fully automating the proof using the
OBJ3 system.

One of the key insights we gained is that efficient implementations are usu-
ally context sensitive, whereas the unique homomorphisms necessarily represent



context free substitutions. Thus, the necessary existence of the homomorphism
between the semantics is overly restrictive and prevents many intuitively cor-
rect implementations of being proven correct via the Morris Square technique.
However, we feel that the separation between syntax and semantics of this alge-
braic approach, dating back to Burstall and Landin [2], captures an important
intuition, and so we want to keep this separation but avoid the homomorphic
mapping. One approach is to work with theories of the algebras instead of with
the algebras themselves. A correct implementation is then a theory morphism.
This also avoids the rather ad hoc axiomatization of the set theoretic functions
that feature in the Morris Square proof. An additional advance would be to use
hidden sorted algebra [6], which avoids the context free substitution problem.

One might worry that commutativity of the Morris Square does not really
prove compiler correctness if some of the homomorphisms are trivial, e.g., if they
identify all commands of the source language. However, that does not happen
in our case, because the map induced by the derivor is injective, and the state
conversion functions are bijective.

The design of abstract machines is based on a mix of intuition and deep in-
sight into a particular domain. It would be interesting to find suitable guidelines
for the design of efficient abstract machines. One such guideline is simply that
the more concrete are the underlying data structures, the more efficient is the
abstract machine.

Of course we aim to remove the restriction to a single unsorted rewrite rule,
and consider sets of order sorted rewrite rules.

Work closely related to ours is Klaeren and Indermark’s paper [13], which
presents the translation of an algebraic specification language into code for an
abstract stack machine. However, their correctness proof does not use general
algebra and is not machine executable. There have also been a number of defi-
nitions of abstract machines for implementing algebraic specification languages,
such as [15], but usually neither a translation scheme nor a correctness proof is
given. Other work related to ours includes the Categorical Abstract Machine [3]
and a correctness proof for the WAM [1].

Acknowledgements. We would like to thank Dr. Grant Malcolm whose de-
tailed comments on earlier drafts of this work contributed immensely to the
presentation. Lutz Hamel would also like to thank his wife Natalie for inspi-
ration and support. We gratefully acknowledge financial support in part from
Wolfson College, Oxford, the Oxford University Computing Laboratory, and the
Oxford University Committee for Graduate Studies.

References

1. E. Boerger and D. Rosenzweig. From Prolog Algebras towards WAM - A Mathe-
matical Study of Implementation. In Proceedings CSL°90, Lecture Notes in Com-
puter Science. Springer-Verlag, 1991.



10.

11.

12.

13.

14.

15.

16.

17.

. R. M. Burstall and P. J. Landin. Programs and their proofs: an algebraic approach.

Machine Intelligence, 4, 1969. Edinburgh University Press, eds. B. Meltzer, D.
Michie.

. G. Cousineau. The categorical abstract machine. In G. Huet, editor, Logical Foun-

dations of Functional Programming, pages 25-45. Addison Wesley, 1990.

. P. Curzon. Of what use is a verified compiler specification? Technical Report 274,

University of Cambridge, Computer Laboratory, 1992.

. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and

Initial Semantics., volume 6 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, Berlin, 1985.

. J. Goguen and G. Malcolm. Proof of correctness of object representation. In

A. W. Roscoe, editor, A Classical Mind: Fssays in Honour of C.A.R. Hoare, pages
119-142. Prentice-Hall, 1994.

. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud. Introducing

OBJ. Draft, Oxford University Computing Laboratory, 1993.

. J. A. Goguen. Semantics of computation. In E. G. Manes, editor, Proceedings,

First International Symposium on Category Theory Applied to Computation and
Control, pages 234-249. University of Massachusetts at Amherst, 1974. Also in
Lecture Notes in Computer Science, Volume 25, Springer, 1975, pages 151-163.

. J. A. Goguen, J. Jouannaud, and J. Meseguer. Operational semantics of order-

sorted algebra. Lecture Notes in Computer Science, 194, 1985.

J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An Initial Algebra Approach to
the Specification, Correctness, and Implementation of Abstract Data Types, pages
80-149. Prentice-Hall, 1978. Current Trends in Programming Methodology, Data
Structuring, edited by R. Yeh.

S. L. Peyton Jones. The Implementation of Functional Programming Languages.
International Series. Prentice-Hall, London, 1987.

C. Kirchner, H. Kirchner, and J. Meseguer. Operational semantics of OBJ-3. Lec-
ture Notes in Computer Science, 317, 1988.

H. Klaeren and K. Indermark. Efficient implementation of an algebraic specifica-
tion language. Lecture Notes in Computer Science, 394:69—-89, 1989.

F. L. Morris. Advice on structuring compilers and proving them correct. In ACM
Symposium on Principles of Programming Languages, pages 144-152. Association
for Computing Machinery, 1973.

K. Richta and S. Nesvera. The abstract rewriting machine. Research Report DC-
91-04, Dept. of Computers Czech Technical University, Prague, September 1991.
J. W. Thatcher, E. G. Wagner, and J. B. Wright. More on advice on structuring
compilers and proving them correct. Lecture Notes in Computer Science, 71:596—
615, 1979.

D. H. Warren. An Abstract Prolog Instruction Set. Technical Report 309, Artifi-
cial Intelligence Centre, SRI International, 1983.

This article was processed using the IATRX macro package with LLNCS style



