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Abstract

PCCTS is a highly integrated compiler construction tool. It supports attribute grammar style
specifications of compilers, as well as the more traditional semantic actions. Its EBNF produc-
tion rule notation and the implicit and explicit parse tree generation facilities, amongst many
other features, provide additional support to the compiler writer. However, the use of equations
for the specification of compilers has not received much attention, even though equations pro-
vide a powerful specification mechanism due to their abstract nature and their simple semantics.
With the recent advances in term rewriting technology (rates of up 500,000 rewrites per sec.) we
argue that equations provide a viable compiler specification alternative and should be integrated
into the PCCTS tool. Using the UCG-E equational specification language as a basis we show
how equational specifications could be integrated into PCCTS and study an interpreter for a
small imperative language.

1 Introduction

PCCTS is a highly integrated compiler construction tool. It supports attribute grammar style
specifications of compilers, as well as the more traditional semantic actions. Its EBNF production
rule notation and the implicit and explicit parse tree generation facilities, amongst many other
features, provide additional support to the compiler writer.

However, it was recognized in the late 70’s and early 80’s that first-order equations provide an
expressive formalism for the specification of programming languages; in particular with respect to
the specification of programming languages semantics [2, 7, 12]. More recently we were able to show
that efficient, industrial strength compilers for languages as complicated as C++ can also be specified
equationally [4]. We argue that the attraction of equations as a specification formalism is due to their
abstract nature and simple semantics: replacing equals with equals. This simplicity results in very
clean and intuitive specifications which are easy to understand, maintain and extend. Furthermore,
equations can easily and efficiently be implemented (executed) on a computer by viewing them as
rewrite rules from left to right; in other words, by viewing them as specialized equations which
only work from left to right. Given the recent advances in term rewriting technology (rates of up
500,000 rewrites per sec. [9]), equational reasoning can be performed very fast and thus equational
specification should be considered a viable alternative for the specification of compilers.

To demonstrate how equations can be used for language and compiler specifications we built an
interpreter for a small but sufficiently complex imperative language which not only supports C-like
language constructs such as if and while statements but also function calls and simple 1/O. The
syntax of the language is specified using the PCCTS system [11]. Its semantics is specified with
the UCG-E equational specification language [5]. Since the equations of the UCG-E specification
language are executable, the specification of the semantics of the language constitutes an executable
interpreter for the language.

Finally, we present some ideas of how equational specifications could be incorporated into PCCTS
specification file, providing a highly integrated compiler construction environment which allows the
compiler writer to mix and match representation and specification styles as needed for a particular
language implementation.



The rest of the paper proceeds as follows. We first take a look at equations and equational
specifications per se and try to motivate their use in Sect. 2. We then briefly discuss the UCG-E
specification language in Sect. 3. Sect. 4 introduces our programming language. We briefly look at
the parser specification for the language in Sect. 5. The equational specification of the interpreter is
discussed in Sect. 6. Some thoughts and comments of how equations could be incorporated into the
existing PCCTS system are presented in Sect. 7 and we finish with some final remarks in Sect. 8.

2 Why Equations?

We were attracted to equations as a specification language due to their declarative nature and their
simple semantics,! in particular when viewed as directed rewrite rules [8]: a term which matches
the left side of an equation is simply replaced by the term on the right side of that equation. The
rewrite process continues until no further matches can be identified.

Formalizing this a little bit; an equational specification consists of a signature X, a set X of
variable names and a set F of equations. The signature defines the available operation symbols in
the specification. Each equation in F has the form

l=r

where [ and r are terms over the signature and a suitable set of variables. Sometimes we write
l,r € Tx(X) where Tx(X) is the set of all possible terms over a signature 3 and a set X of variable
names. The execution of an equational specification consists of exhaustively applying the equations
in E as rewrite rules to an appropriate input term. Any subterm (including previously rewritten
terms) which matches the left side of an equation is replaced by the right side of the equation taking
the assignments to the variables into account. As an example consider the following equational
specification which specifies the append of an item to a list of items:

SIGNATURE
nullary: 1, 2, 3, nil
binary: append, comns
var: ITEM, HEAD, TAIL
EQUATIONS

append (ITEM,nil) = cons(ITEM,nil)
append (ITEM, cons (HEAD,TAIL)) = cons(HEAD,append (ITEM,TAIL))

Here the signature, the variable set and the set of all possible terms over the signature and the
variables are:

¥ = {1,2,3,nil, append, cons},
X = {ITEM HEAD,TAIL},
Ts(X) = {1,nil, append(ITEM,nil), cons(1,nil),...},

respectively. It is easy to see that the left sides and the right sides of the equations are elements in
Ts(X). Now, given the input term append(3,cons(1,cons(2,nil))), the exhaustive application
of the equations in the specification above yields the term cons(1,cons(2,cons(3,nil))) by first
applying the second equation twice and then the first equation once. Here is the trace of the
computation:

append(3,cons(1,cons(2,nil)))
{ apply second equation }
cons(1,append(3,cons(2,nil)))
{ apply second equation }
cons(1,cons(2,append(3,nil)))
{ apply first equation }
cons(1,cons(2,cons(3,nil)))

!For aficionados: the denotational semantics of equations is given by general algebra [1] and their operational
semantics is given by term rewriting [10]



The last term in the trace is also called the normal form, since there are no more equations to further
reduce the term.

Another reason that attracted us to the use of equations is the fact that equations and equational
rewriting match very well the intuitive view a programmer has of the compilation process: a suc-
cessive rewriting of the abstract syntax tree (as generated by the parser) into an intermediate form
— the “semantic” tree, which represents the program after the necessary coherence and type checks
have been performed. Consider the following equational specification of a C-like type checker; type
information is propagated throughout the semantic tree and operations are promoted as is deemed
necessary.

SIGNATURE
unary: int, float, itof
binary: plus, intplus, floatplus
var: L, R

EQUATIONS

plus(int(L),int(R)) = int(intplus(L,R))
plus(float(L),int(R)) = float(floatplus(L,itof(R)))
plus(int(L),float(R)) = float(floatplus(itof(L),R))
plus(float(L),float(R)) = float(floatplus(L,R))

The operation symbols int and float represent the types of the corresponding subtrees. The
symbol itof represents a type promotion operation from integer to floating point. The symbol
plus represents a generic plus operation which the type checker promotes to the appropriate plus
operation such as intplus or floatplus.

Let us examine the equations a little bit closer. The first equation states that a plus node with
two integer subtrees itself becomes an integer subtree with the addition being an integer addition.
Analogously, the fourth equation states that a plus node with two float subtrees is itself a float
subtree with a floating point addition. On the other hand, the second and third equations state
that a plus node with an integer subtree as well as a float subtree turns into a float subtree with
the addition being a floating point addition and its integer subtree explicitly promoted to a float
subtree. It is precisely this terseness of the specification of rather complex problems that makes
equations attractive for the construction of compilers and interpreters.

3 The UCG-E Specification Language

The UCG-E specification language [5] is a descendant of the UCG system [6] developed at the
University of New Hampshire for the generation of code generators. The UCG-E system takes an
equational specification and translates it into C++ code. The generated code consists of a lookup
table and a set of C++ function definitions. Each specification has two parts: a declaration section
which includes the signature and variable declarations and an equational or rule section. The two
sections are separated by a %% symbol. Each equation in the rule section has the form

l:=7r

where [,r € Tx(X) and represents a directed rewrite rule, given an appropriate signature ¥ and a
variable set X. Two restrictions apply to the form of these rewrite rules:

e The term [ must be linear, i.e., each variable in [ may appear only once,

e var(r) C war(l), where var is a function which given a term in Tx(X) returns the set of
variables occurring in that term.

The first restriction insures that if a rule matches an input term the variables in [ are uniquely
instantiated. The second restriction insures that instead of having to do a global unification of the
variables we may simply copy the values of the variables from the left side to the right side during
rewriting if necessary.



As a concrete example, here is the type checker example from the previous section written in the
UCG-E specification language:

/* SIGNATURE */
%unary int;

%unary float;
%unary itof;
%binary plus;
%binary intplus;
%binary floatplus;
Y%war TERM L;

Y%wvar TERM R;

hle

/* EQUATIONS */

plus(int(L),int(R)) := int(intplus(L,R));
plus(float(L),int(R)) := float(floatplus(L,itof(R)));
plus(int(L),float(R)) := float(floatplus(itof(L),R));
plus(float(L),float(R)) := float(floatplus(L,R));

Two features make UCG-E especially attractive for the use in industrial software production. These
are the term generating functions and the user action functions. Both of these features essentially
provide an interface from UCG-E to software systems written in C++4.

UCG-E builds a term generating function for each symbol in the signature. The user may call
these functions to build terms labeled by symbols from the signature. In addition to generating a
term these functions make the new term known to the UCG-E term rewriting mechanism which
attempts to apply any of the given rules to this newly constructed term. The name for a term
generating function is derived from a symbol in the signature by capitalizing its name and sticking
a GEN_ in front of it. For example, the term generating function for the symbol int in the above
specification is GEN_INT.

The user action functions, on the other hand, allow the use of side effects in the rewrite rules.
These side effects could take on the form of 1/O, a symbol table mechanism, or any other action
which lies outside the realm of efficient equational processing. User action functions are distinguished
symbols in the signature of the specification and may only appear on the right hand side of the rewrite
rules. The keyword %func flags a symbol in the signature as a user action function.

Another feature which is important and quite powerful is the fact that one can embed C++
types in UCG-E’s term structure via attributes. These types can be pointers, special constants or
just values which cannot be efficiently represented with UCG-E’s term structure. Again, the idea
being a frictionless communication between the C++ environment and the equational specification
system. Consider the following which specifies how to append a C++4 integer to a list of C++
integers:

/* SIGNATURE #*/

%nullary nil;

%nullary item [int i]; /# “item” has “int i as an attribute */
%binary cons;

%binary append;

Y%var TERM HEAD;

%var TERM TAIL;

%wvar int VAL;

Wh
/* EQUATIONS */

append(item(VAL),nil) := cons(item(VAL),nil);
append(item(VAL),cons(HEAD,TAIL)) := cons(HEAD,append(item(VAL),TAIL));



Please note that item carries C++ integers as an attribute and UCG-E allows us to do rewriting
on attributes as if these were part of the actual term structure.

In general, term rewriting systems worry not only about the final answer, but also that the same
answer is obtained via any competing rewrite sequences given the same input term. This is known as
confluency. Rather than imposing any further restrictions on the form of the rules, UCG-E assumes
the specification to be confluent. Since UCG-E allows side effects to be used in its rewrite rules, the
rewrite sequence is as much part of the solution as is the final answer and therefore a deterministic
selection of the rewrite sequence is important. UCG-E selects rules by the order in which they
appear in the specification. It guarantees that rules appearing earlier in the specification have a
higher priority than rules appearing later in the specification.

The programming and debugging of equational specifications is greatly facilitated by the inter-
active graphical debugger supported by UCG-E. The debugger allows the user to single-step rewrite
sequences one rule at a time and to browse current state information.

4 The TL Language

To illustrate some of the power and elegance of equational specifications we constructed an interpreter
for the simple imperative language TL (as in Toy Language). The language supports some of the
“standard” language constructs such as if and while statements, but in order to make things a little
bit more interesting we also included function calls and simple 1/O. However, to keep the complexity
somewhat manageable we restricted ourselves to the support of integral types. To convey the flavor
of the language, consider the following program written in TL which computes the factorial of i:

get 1i;
k =1;
fact = 1;

while (k <= i)

{
fact = fact * k;
k=k+ 1;

}

put fact;

In a TL program execution always starts at the first statement in the file — here the get i statement
which reads a value for i from the input. TL does not have declaration statements but rather the
first mention of a name declares that name (we only have integer types). We also do not have
scoping, we only have a flat global name space. For people familiar with C the above program
should not hold any surprises and should be fairly self-explanatory.

5 The TL Parser Specification

Before looking at the parser specification for TL it is worth mentioning that UCG-E has one built-in
type, namely TERM. Any term which is constructed via UCG-E’s term generation functions is of this
type. In order to get a better feel of how exactly the communication between the parser and UCG-E
is handled, let us look at the piece of parser specification which tells us how statements are parsed
in TL (we assume familiarity with the PCCTS system [11]):

statement >[TERM t] : << TERM 1lv; TERM e; TERM st; TERM sl; >>
lval >[1v] "=" expression >[e] ";"
<< $t = GEN_ASSIGN(1lv,e); >>
| GET lval >[1v] ;"
<< $t = GEN_GET(1lv); >>
| PUT 1lval >[1v] ";"



<< $t = GEN_PUT(1lv); >>
| IF "\(" expression >[e] "\)" statement >[st]
<< $t = GEN_IF(e,st); >>

>

The first line in this specification says that the non-terminal statement returns a value of type TERM,
i.e., a UCG-E term. Next, between the << ...>> brackets, we declare a couple of local variables for
the use in the subsequent production rules. Looking at the first production rule we find that the result
of parsing an lval is assigned to the local variable 1v and that the result of parsing an expression
is assigned to the variable e. Both are of type TERM. Once these subparts of an assignment statement
have been recognized we construct an UCG-E assignment term via the GEN_ASSIGN term generating
function. The arguments to the term generating function are the terms assigned to 1val and e. The
constructed term is returned as the result of the non-terminal statement. Similarly for the other
production rules.

Even though this sounds somewhat complicated, the basic idea is to construct a term from
the bottom up which represents the parsed syntax. This is very much like the explicit parse tree
construction mechanism provided by PCCTS. The interesting part here is that every time one
constructs a term with a term generating function, UCG-E looks into its internal rewrite table and
sees if any rules match the current term. If so the term is immediately rewritten according to the
rules found in the table. A complete specification of the TL parser is given in Appendix A.

6 The Equational Specification of the TL Interpreter

Up to this point we have only looked at the syntax of TL. We have looked very informally at TL
programs but we have not said anything concrete about the meaning of the syntactic elements of the
language or how they should be interpreted. One way to assign meaning to a syntactic construct is
to have an evaluation function assign a value to that construct. In this case, interpreting a syntactic
construct is nothing else than computing its value. Given this, the meaning of a program is a
composition of the values of its constituent parts, i.e., the values of its statements, expressions, etc.
Thus, in order to interpret a program we have to first compute the values of its constituent parts
and then the value of their composition. This is precisely the approach we take here. 2

As we have seen, equations are powerful and allow one to express fairly complicated computations
quite elegantly. We demonstrate this with the equational specification of the evaluation function
eval which computes the meaning of each syntactic construct. In our case the eval function com-
putes a value v for each construct. Furthermore, since our equations are executable, the equational
specification of the eval function constitutes an executable interpreter for TL.

To drive some of these points home, let us take a look at the equational specification of the
evaluation of a couple of constructs. In what follows, v represents a value which has an attribute of
type int and names in capital letters represent variables of “just the right type”. Let us start with
something simple, for example the get statement:

eval(get(id(SYM))) := v(input_val(SYM));

This equation states that the meaning of a get statement is the input value for the identifier SYM.
Here, input_val is a user action function which reads a value from the terminal, assigns it to the
identifier SYM and returns the value as the attribute for v. Similarly for the put statement:

eval(put(id(SYM))) := v(output_val(SYM));

As above, this equation states that the meaning of a put statement is the output value of the
identifier SYM. Let us look at something a little more exciting — the assignment statement:

2Qur approach is very similar to the “denotational” semantics developed by Strachey and Scott in the early 70’s
[3] but differs substantially in its mathematical foundations — no domain theory!



eval(assign(id(SYM),E)) := a(id(SYM),eval(E));
a(id(SYM),v(VAL)) := v(assoc_val(SYM,VAL));

Since the assignment statement is a little more complicated than the constructs considered so far, we
make use of an auxiliary function a (as in assignment). The first equation says that the meaning of
the assignment of an expression E to an identifier SYM is computed by the application of the function
a to the identifier SYM and the evaluation of the expression E. The next equation tells us exactly
how the application of a is to be computed once the evaluation of E is complete: associate the value
computed for E with the identifier SYM. Furthermore, because equations are transitive we may also
say that the meaning of an assignment is the value of the association of the expression on its right
side with the identifier on its left side. Let us look at one more construct — the if statement:

eval(if (COND,STMT)) := c(eval(COND),STMT);
c(v(FALSE),STNMT) := v(NULL);
c(v('FALSE),STMT) := eval(STMT);

The first equation tells us that the meaning of an if statement is the application of the auxiliary
function ¢ (as in conditional) to the evaluation of the condition COND and the statement STMT. Similar
to the case of the assignment statement, the next two equations tell us how the application of ¢ is
to be computed once the evaluation of the condition is completed: if the evaluation of the condition
returns a value FALSE we just return a NULL value for the meaning of the if statement, otherwise
we return the value due to the evaluation of the STMT.

The question one might ask at this point is — how does the evaluation process get started? To
answer this we need to take another look at the parser specification. There we find the following
production:

program :
statement_list >[TERM sl] Eof
<< GEN_EVAL(term = sl); >>

3

This production says that a program is a statement list followed by an end-of-file marker. As we
can see form the production, parsing a statement list produces a term assigned to s1. Now, in order
to compute the meaning of a program we simply need to compute the meaning of the statement
list that makes up the program by evaluating the term s1. This is accomplished by contructing an
eval term which has the term assigned to s1 as an argument. As soon as the term is constructed
any rules which match the term will be applied, thus starting the evaluation of the entire program.
It might be worthwhile at this point to take a closer look at the full equational specification of the
TL language in Appendix B

We hope that the above examples have adequately illustrated the fact that equations provide
a powerful tool for the specification of language processing software. It should be clear that the
techniques shown here can easily be extended to the specification of compilers — rather than specifying
the meaning of a language construct in terms of a value, one could specify its meaning in terms of
code to be generated or actions to be performed on a symbol table.

7 Equations in the PCCTS Environment

PCCTS is a highly integrated compiler construction tool the strength of which lies precisely in the
fact that it allows the programmer to mix and match the representation and specification styles
needed for a particular language implementation. Since we argue that equations are another al-
ternative for the specification of language processing software, we present some ideas here of how
equations could be integrated into the PCCTS environment. Consider for a moment the piece of
PCCTS grammar from above which specifies TL statements. It would be nice to have syntactic
properties and semantic properties of the language specified close together so that when changes
are being made coherence of the specification is more readily maintained. Our idea is to intersperse
syntactic production rules with equations defining the semantics of the TL constructs. For example:



statement >[TERM t] : << TERM 1lv; TERM e; TERM st; TERM sl; >>
lval >[1v] "=" expression >[e] ";"
<< $t = #assign(lv,e); >>
#eq eval(assign(id(SYM),E)) := a(id(SYM),eval(E))
#eq a(id(SYM),v(VAL)) := v(assoc_val(SYM,VAL))
| GET lval >[1v] ;"
<< $t = #get(lv); >>
#eq eval(get(id(SYM))) := v(input_val(SYM))
| PUT 1lval >[1v] ";"
<< $t = #put(lv); >>
#eq eval(put(id(SYM))) := v(output_val(SYM))
| IF "\(" expression >[e] "\)" statement >[st]
<< $t = #if(e,st); >>
#eq eval(if (COND,STMT)) := c(eval(COND),STMT)
#eq c(v(FALSE),STMT) := v(NULL)
#eq c(v(!FALSE),STMT) := eval(STMT)

E]

Here we chose a syntax for the term constructors appearing in the productions very similar to the
syntax of the explicit parse tree constructors already supported by PCCTS; i.e., #assign(lv,e)
builds an assignment term whose left subterm is 1v and whose right subterm is e. Equations are
preceded by the keyword #eq. As in the case of UCG-E, the constructed term is immediately
rewritten if the left sides of any of the equations found in the specification match the term.

8 Conclusions

PCCTS is a highly integrated compiler construction tool the strength of which is due to the fact
that it allows the compiler writer to mix and match representation and specification styles as needed
for a particular language implementation. However, one important formalism is not supported by
PCCTS - equational specifications.

We argue that the abstract nature and the simple semantics of equations make them an ideal
specification formalism. In addition, equations can be easily implemented on a computer by viewing
them as directed rewrite rules. Given the recent advances in term rewriting technology, we feel
that equations present a real alternative to be considered for the specification of compilers and
interpreters and should be integrated into the PCCTS system.

After introducing equations and equational specifications very informally and showing how to
write equational specifications in the UCG-E language, we illustrated how equational specifications
could be applied to language processing software by constructing an interpreter for a small language.
We feel that the resulting specification speaks for itself in terms of clarity and maintainability.

Finally we presented some ideas of how to integrate equations into PCCTS. The idea being that it
is important to have the specification of the syntax and the semantics of a language as close together
as possible, since this will insure that coherence of the language specification will be maintained more
readily. Overall, it seems to us that this high level of integration and the ability to mix various styles
of specification will result in extremely intelligible and maintainable compilers and other language
processors.
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A The PCCTS TL Parser Specification

/*
The PCCTS grammar for TL.

Note: the GEN_xxx functions are provided by the UCG-E compiler.

* X X ¥ ¥

(c) 1995 —- Lutz H. Hamel.
*/

#header <<

extern "C" {
#include <stdio.h>
#include <stdlib.h>
}

#include "interp.h"
#include "uudef.hxx"
>>

#token ASSIGN "="
#token OR "\|\[|"

#token AND "&&"

#token EQUAL "=="

#token NOTEQUAL "!="
#token LESSTHAN "<"
#token GREATERTHAN '">"
#token LESSEQUAL '"<="
#token GREATEREQUAL ">="
#token PLUS "\+"

#token MINUS "\-"

#token MULT "\*"

#token DIVIDE "/"

#token NOT "!"

#token IF "if"

#token WHILE "while"
#token GET "get"
#token PUT "put"
#token FUNC "func"
#token RETURN "return"
#token CALL "call"

#token ID "[a-zA-Z_][a-zA-Z0-9_]*"
#token CONST "([1-9][0-9]%)]|0O"

#token "/\*" << mode (COMMENT); skip (); >>

#token "[\t\ 1+" << skip (); >>
#token "[\n\r]l" << newline(); skip(); >>
#token "// “[\nl* \n" << newline(); skip(); >>

#token Eof "@"

#lexclass COMMENT
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#token "[\n\rl" << skip(); newline(); >>

#token '"\*/" << mode (START); skip (); >>
#token "\*"[/1" << skip (); >
#token "~ [\*\n\r]l+" << skip (); >>

#lexclass START

<<
typedef ANTLRCommonToken ANTLRToken;

extern TERM term;
>>

class TLParser

{
<<
public:
void init() { ANTLRParser::init(); }
// if you want a trace —- comment the following two function out.
void tracein(char *r) {;}
void traceout(char *r) {;}
>>
program :
statement_list >[TERM sl] Eof
<< GEN_EVAL(term = sl); >>
/* ugly —- but it allows us to construct nicer terms with UCG-E */

statement_list >[TERM t]
statement >[TERM s] statement_list >[TERM sl]
<< $t = GEN_STMT_LIST(s,sl); >>
| /% empty */
<< $t = GEN_NIL(); >>

E]

statement >[TERM t] : << TERM 1lv; TERM e; TERM st; TERM sl; >>
lval >[1v] ASSIGN expression >[e] ";"
<< $t = GEN_ASSIGN(1lv,e); >>
| GET 1lval >[1v] ;"
<< $t = GEN_GET(1lv); >>
| PUT 1val >[1v] ";"
<< $t = GEN_PUT(1lv); >>
| "\{" statement_list >[sl1l] "\}"
<< $t = GEN_BLOCK(sl); >>
| IF "\(" expression >[e] "\)" statement >[st]
<< $t = GEN_IF(e,st); >>
| WHILE "\ (" expression >[e] "\)" statement >[st]
<< $t = GEN_WHILE(e,st); >>
| FUNC id1:ID "\(" "\)" "\{" statement_list >[s1] "\}"
<< $t = GEN_FUNCDEF(table->InstallSym($idi->getText()),sl); >>
| RETURN expression >[e] ";"

11



<< $t = GEN_RETURN(e); >>
| CALL 1d2ID II\(II II\)II n;n
<< $t = GEN_FUNCREF(table->InstallSym($id2->getText())); >>

expression >[TERM t]
logical_or_expression >[$t]

logical_or_expression >[TERM e]
logical_and_expression >[$el
( OR logical_and_expression >[TERM el]
<< $e = GEN_BINOP(OR,$e,el); >> )*

logical_and_expression >[TERM el
equality_expression >[$e]
( AND equality_expression >[TERM el]
<< $e = GEN_BINOP(AND,$e,el); >> )*

equality_expression >[TERM e]
relational_expression >[$e]
<< OP op = LA(1); >>
( (NOTEQUAL | EQUAL) relational_expression >[TERM eil]
<< $e = GEN_BINOP(op,$e,el); >> )*

E]

relational_expression >[TERM e]
additive_expression >[$e]
<< OP op = LA(1); >>
( (LESSTHAN | GREATERTHAN | LESSEQUAL | GREATEREQUAL)
additive_expression >[TERM el]
<< $e = GEN_BINOP(op,$e,el); >> )*

additive_expression >[TERM e]
multiplicative_expression >[$el
<< OP op = LA(1); >>
#pragma approx
((PLUS | MINUS) multiplicative_expression >[TERM el]
<< $e = GEN_BINOP(op,$e,el); >> )*

3

multiplicative_expression >[TERM e]
unary_expression >[$e]
<< OP op = LA(1); >>
((MULT | DIVIDE) unary_expression >[TERM ell
<< $e = GEN_BINOP(op,$e,el); >> )*

unary_expression >[TERM e] : << TERM el; >>
MINUS expression >[ei]
<< $e = GEN_UOP(MINUS,el); >>
| NOT expression >[el]
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<< $e = GEN_UOP(NOT,el); >>
| primary_expression >[$e]

E]

primary_expression >[TERM el
id1:ID

<< $e = GEN_ID(table->InstallSym($idi->getText())); >>

[ 1d2:ID "\ (" "\)"
<< $e = GEN_FUNCREF(table->InstallSym($id2->getText())); >>

| con:CONST
<< $e = GEN_CON(atoi($con->getText())); >>

| "\(" expression >[$e] "\)"

lval >[TERM €]

id:ID
<< $e = GEN_ID(table->InstallSym($id->getText())); >>
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B The Equational Specification of the TL Semantics

/*
* TL —-- equational specification of the semantics.
*
* (c) 1995 —- Lutz H. Hamel.
*/

/* Declaration section. */

%include "tokens.h";
%include "interp.h";
%include "symtab.h";

/* tell UDB how to display data types */
%view view_p_sym(P_SYM p);

Y%view view_int(int 1i);

%view view_op(OP op);

/* SIGNATURE */

/* term constructors */

%nullary id [P_SYM psym];
%nullary con [int vall;
%nullary nil;

%unary get;

%unary put;

%unary uop [OP op];

%unary block;

%unary return;

%binary binop [OP op];
%binary assign;

%binary stmt_list;

%binary if;

%binary while;

%unary  funcdef [P_SYM name];
%nullary funcref [P_SYM name];

/* interpretation functions */
%unary eval;

%binary a; /* assignments */
%binary b [OP oper]; /* binary operators */
%unary u [OP oper]; /* unary operators */
%binary c; /* conditionals (if) */
%binary lc; /* loop condition */
%binary 1ls; /* loop statement */
%unary r; /* return statement */
%binary s; /* statement */

%unary find_func [P_SYM name];

/* value constructor */
Y%nullary v [int vall;

/* declare variables used in the equations. */
%var TERM T;
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%var TERM T1;
Y%var TERM T2;
Y%var TERM COND;
Y%var TERM STMT;
Y%wvar TERM LST;
Y%wvar TERM E;

%var TERM BL;
Y%wvar P_SYM SYM;
Y%var P_SYM NAME;
Y%var P_SYM NAME1;
Y%var P_SYM NAME2;
%var int VAL;
Y%wvar int VAL1;
Y%wvar int VAL2;
%var OP OPER;

/* declare constants used in the equations. */
%iconst FALSE;
%const NULL;

/* declare user action functions. */

%func int input_val(P_SYM psym);

%func int output_val(P_SYM psym);

%func int assoc_val(P_SYM psym, int val);
%func int get_val(P_SYM psym);

%func int fold_val(OP op, int vall, int val2);
%func int find_and_eval(P_SYM name);

%func TERM is_func(P_SYM namel, P_SYM name2, TERM func_def, TERM list);
%func int get_return_val(TERM block);

%func int make_return_val(int val);

%func TERM error(STRING str);

%h
/* EQUATIONS */

/* interpret a ‘read’ node. */
eval(get(id(SYM))) := v(input_val(SYM));

/* interpret a “write’ node. */
eval (put(id(SYM))) := v(output_val(SYM));

/* interpret an ‘assign’ node. */
eval(assign(id(SYM),E)) := a(id(SYM),eval(E));
a(id(SYM),v(VAL)) := v(assoc_val(SYM,VAL));

/* interpret a “block’. */
eval(block(T)) := eval(T);

/* interpret a “con’. */
eval(con(VAL)) := v(VAL);

/* interpret a “sym’. */
eval(id(SYM)) := v(get_val(SYM));



/* interpret a “binop~’. */
eval(binop(OPER,T1,T2))
b(OPER,v(VAL1),v(VAL2))

b(OPER,eval(T1),eval(T2));
v(fold_val(OPER,VAL1,VAL2)):;

/* interpret a ‘uop’. */
eval (uop(OPER,T)) := u(OPER,eval(T));
w(OPER,v(VAL)) := v(fold_val(OPER,NULL,VAL));

/* interpret an “if” statement. */

eval (if (COND,STMT)) := c(eval(COND),STMT);
c(v(FALSE),STNMT) := v(NULL);
c(v('FALSE),STMT) := eval(STMT);

/* interpret a ‘while’ statement. */

eval(while (COND,STMT)) := lc(eval(COND),while(COND,STMT));
1c(v(FALSE),while(COND,STMT)) := wv(NULL);

lc(v(!FALSE) ,while(COND,STMT)) := ls(eval(STMT),while(COND,STMT));
1s(T,while (COND,STMT)) := eval(while(COND,STMT));

/* interpret a “function reference’ */
eval (funcref (NAME)) := v(find_and_eval(NAME));

/* interpret a ‘function definition~’ */
eval(funcdef (NAME,BL)) := v(get_return_val(eval(BL)));

/* interpret a ‘return’ */
eval(return(E)) := r(eval(E));
r(v(VAL)) := v(make_return_val(VAL));

/* describe how to deal with statement lists. */
/* NOTE: the first two equations are special cases -— special attention */
eval(stmt_list(funcdef (NAME,BL),LST)) := eval(LST);
eval(stmt_list(return(E),LST)) := eval(return(E));
/* NOTE: here we make use of the rhs evaluation sequence enforced by UCG:
‘eval (STMT) * is evaluated before “eval(LST)~, which is exactly
what we want. */
eval(stmt_list (STMT,LST)) := s(eval(LST),eval(STMT));
s(v(NULL),v(NULL)) := v(NULL);
eval(nil) := v(NULL);

/% find a function definition */
find_func(NAME1l,stmt_list (STMT:funcdef (NAME2,BL),LST))

:= is_func(NAME1,NAME2,STMT,LST);
find_func(NAME,stmt_1list (STMT,LST)) := find_func(NAME,LST);
find_func(NAME,nil) := error("no such function");
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