The Object-Oriented Architecture of
High-Performance Compilers

Version 1.2

Lutz Hamel and Diane Meirowitz and Spiro Michaylov
Thinking Machines Corporation
14 Crosby Drive
Bedford, MA 01730
USA

October 23, 1996

1 Introduction

With the recent advances in object technology, specifically the Standard Tem-
plate Library [5] and Design Patterns [3], we found it interesting and necessary
to revisit the object-oriented design and construction of compilers. In our case,
the interest is in the design and construction of high-performance compilers.
Here we concentrate on the design of the Intermediate Language (IL) constructs
within a compiler. We consider this the main problem facing object-oriented
compiler construction today and assume that parsing, symbol tables, error re-
porting, efc. are readily represented within the object-oriented paradigm and
we will therefore ignore it here for the sake of clarity and brevity.

The most obvious (“naive”) approach to object-oriented compiler construc-
tion is, to attach all necessary compilation behavior to the IL [4]. Then, once
the IL tree is built, the compiler would simply instruct the objects within the
tree to perform transformations on themselves or to translate themselves into
assembly language.

However, we feel that this approach does not adequately address the needs
of today’s state-of-the-art high-performance compiler. Consider some of the
characteristics of high-performance compilers:

e not syntax directed
e multiphase

e different perspective of the IL from different phases



e elaborate attribute decoration during various optimization phases
e different IL traversal strategies during different phases
e IL term replacement mechanisms

Therefore, we propose here an approach more amenable to the requirements
of high-performance compiler construction. In particular, we advocate what
we call the separation of concerns: The IL should only be concerned with effi-
ciently and effectively representing the abstract nature of the source program
and provide basic functionality for the manipulation and maintenance of this
representation. Any agent manipulating the IL should be kept physically sepa-
rate from the IL and should only access the IL via its interface. We examine the
viability of this approach by studying two key problems within compiler design:
The interaction of compiler phases with the IL and tree decoration.

The paper proceeds by first examining the question of separation of concerns
with regards to the IL and compiler phases in Section 2. We then continue with
the more pragmatic aspects of our design in Section 3. Section 4 looks at
the problem of tree decoration in the context of the compiler IL and applies
our notion of separation of concerns to this design problem as well. Finally,
Section 5 finishes off with some concluding remarks.

2 Separation of Concerns: Data vs. Algorithms

A simplified view of high-performance compilation is to view it as a succession
of phases each of which represents a transformation algorithm on the IL. Given
this view, it makes sense to separate the algorithms and IL physically, allowing
the algorithms to easily replace each other during the course of the compilation.
In the object-oriented approach to system design this means that the IL and
the algorithms are to be encapsulated in separate objects. Here, the IL has
an interface which only contains methods pertaining to the manipulation and
maintenance of the IL data structures. The algorithms, on the other hand, are
separate objects each with an appropriate interface for the algorithm at hand.
The algorithmic objects may only manipulate the IL via the explicit IL interface.
This is in stark contrast to the naive approach mentioned earlier where the IL
data structures and the algorithms are lumped together into a single entity.
Consider Figure 1. Here, the “Compiler Substrate” represents the compiler
infrastructure we chose to ignore for the sake of this discussion, i.e., it consists
of 10, the symbol table, text tables, type system, etc. Figure a) represents
the naive object-oriented approach to compiler construction. We assume that
at some point during compilation the compiler substrate attempts to perform
certain transformation algorithms on the IL. These algorithm invocations are
denoted with arrows labeled ‘a’ and ‘b’. Here, the compiler substrate issues the
requests ‘a’ and ‘b’ to the algorithms ‘A’ and ‘B’ embedded in the IL structure



i e e I
IL IL : :
| - 1
AA B
A A A iA B
a b A A
x-form a b
Compiler Substrate Compiler Substrate
a) b)

Figure 1: Interaction of compiler phases with the IL; a) the naive design, b) the
design using the ‘separation of concerns’.




which in turn call upon the IL with transformation requests. These transfor-
mation requests are denoted with the arrow labeled ‘x-form’. Figure b), on the
other hand, represents the more modular approach to objet-oriented compiler
construction which we advocate here. Again, the compiler substrate will issue
the requests ‘a’ and ‘b’. However, the main distinction here is, that the algo-
rithms are no longer part of the IL but are objects in their own right which
manipulate the IL. The algorithmic object ‘A’ fulfills request ‘a’ by applying
appropriate transformations to the IL indicated by the arrow from ‘A’ to the
‘IL’. Once ‘A’ has fulfilled its request it relinquishes control of the IL so that al-
gorithmic object ‘B’ may gain control of it (indicated by the bold dashed arrow)
in order to fulfill request ‘b’.
Let us examine some of the advantages of this architecture:

e The resulting compiler is much more modular and furthermore, the phys-
ical module structure directly reflects the logical structure of the compiler
making it easier to understand and maintain.

e The separate encapsulation of the IL as well as the algorithms hides im-
plementation concerns from each other. This makes the compiler more
resilient to change over time, since changing implementation details tend
not to affect the overall system assuming that the semantics of the inter-
faces are preserved.

e The interfaces of each of the objects are only as “wide” as they need to
be to provide the functionality needed at a particular point in time. This
conforms precisely to Booch’s key points for the assessment of the quality
of an abstraction: primitiveness and completeness [2]. Compare this to
the naive approach where all methods of all phases are visible at all stages
of compilation.

3 Achieving the Separation of Concerns

The idea of separating data structures from algorithms is not new. The most
widespread use of this idea is in the Standard Template Library [5]. In STL
jargon, computational structures break down into containers and generic al-
gorithms. Containers are lists, queues, stacks and sets. The idea is that any
generic algorithm can be hooked up with any container in order to provide an
appropriate computational structure. The algorithms gain access to individual
data items within a container via iterators.

Even though the STL approach seems attractive for compiler construction
it falls short on two accounts:

e The IL structure we are interested in separating from its algorithms is
much more complicated than any of the containers considered in the STL.



More specifically, the IL is an n-ary tree and the STL iterator model does
not work well with this kind of structure.

e More importantly, iterators are not type sensitive to items over which they
traverse. Given a polymorphic container, iterators only know how to re-
trieve objects by their common base class possibly necessitating a creative
type casting scheme in order to make them work with these polymorphic
containers [6].

The “Visitor Pattern” introduced in the Design Patterns book [3] offers a
much more elegant solution. It does not suffer the short comings of the iterators
due to the fact that it places iteration under complete user control and that it
is sensitive to polymorphic type structures. Specifically, the visitor allows one
to attach operations to an object structure in a non-intrusive way. Put in
other words, the visitor allows one to define new operations for an IL structure
without having to modify the classes of the IL structure. This allows us to
define phase-specific IL operations without having them embedded in the IL
class definitions. Thus, the visitor enables us to construct algorithms which
make use of phase-specific IL operations without imposing on the IL structure
itself.

The key idea here is that we incorporate the operations in question in visitor
objects distinct from the IL objects. We then connect the visitor objects and
the IL objects via a double dispatch scheme.

Let us examing this a little bit closer. Assume that we have a very simple
IL structure such as

Ast

/' \

/ N\
Plus Const

More concretely, the Ast class looks like the following:

class Visitor;

class Ast
{

vector<Ast *> _children;
protected:

Ast ();

Ast (Ast * childil);

Ast (Ast * childl, Ast * child2);
public:

Ast * getChild (int pos);

int getArity ();

virtual void accept (Visitor * v) = 0;



virtual ~ Ast ();
};

This is a simple abstract base class specifying the basic shape of the IL. Here,
each Ast node in the IL has zero or more Ast nodes as children which we can
access through the object’s public interface. The most prominent feature of this
class is the accept function. This function allows the objects in the IL structure
to accept a handle to a visitor object.

Let us turn to a more concrete node in the IL, namely the Plus node:

class Plus : public Ast

{

public:
Plus (Ast * childil, Ast * child?2);
void accept (Visitor * v) { v->visitPlus(this); }
-~ Plus ();

};

And similarly the Const class:

class Const : public Ast

{
int _val;
public:
Const (int val);
int getVal ();
void accept (Visitor * v) { v->visitConst(this); }
~ Const ();
};

The most striking aspect of these IL class definitions is, that they are completely
void of any unrelevant methods providing a clean interface to the essentials of
the IL. The next thing to be noticed is the accept function which overrides the
corresponding pure virtual function in the Ast base class and does nothing more
than to immediately turn around and invoke the appropriate visit method of
the visitor with the instance pointer as an argument. Given this, the visitor
now has a handle on the IL node of interest and may now execute its operations
in the context of this IL node. Our double dispatch scheme is now in place: we
invoke the method accept on our IL object with a visitor as argument, then we
turn around and call the appropriate visit function on our visitor object with
the IL node as argument.

Let us take a look at the visitor side of things. Assume we have a class called
Visitor which is defined as follows:

class Visitor

{



protected:
Visitor ();

public:
virtual void visitAst (Ast *) = 0;
virtual void visitPlus (Plus *) =
virtual void visitConst (Const *)
virtual ~ Visitor ();

0;
= 0;

};

This abstract visitor has one visit method for each Ast node in the IL class
hierarchy. Let us specialize this visitor to something which does something
useful, for example, print the IL structure in some human readable form to the
standard output. Consider the following class definition:

class PrintVisitor : public Visitor

{
public:
PrintVisitor ();
void visitAst (Ast *) { abort(); } // should never happen
void visitPlus (Plus *);
void visitConst (Const *);
~ PrintVisitor ();
};

Again, PrintVisitor has a function for each Ast node which overrides the pure
virtual functions in the Visitor class from which it was derived. Since Ast is
an abstract class, the function visitAst should never be invoked. We mark it
as such by aborting if it ever should get invoked. The more interesting cases
are the other two functions. Consider the implementation of visitConst:

void PrintVisitor::visitConst (Const * node)
{

cout << node->getVal();
}

This function, given a pointer to a Const node, will obtain the value of the con-
stant and put it onto the standard output stream. In essence, this visitConst
function implements a print function for the IL node Const. Therefore, by at-
taching the visitor to the IL node we are able to implement a print function for
the IL node without modifying the Const class.

The visitPlus function is defined as follows:

void PrintVisitor::visitPlus (Plus * node)

{

PrintVisitor * visitor_handle;



cout << "(";

visitor_handle = new PrintVisitor;
node->getChild(0)->accept(visitor_handle);
delete visitor_handle;

cout << "+";

visitor_handle = new PrintVisitor;
node->getChild(1)->accept(visitor_handle);
delete visitor_handle;

cout << ")";

}

The function prints out a left parenthesis and then creates a new PrintVisitor
for the left child node of the Plus node. Once the visitor node is created it is
attached to the left child via the accept function. Attaching the new visitor
to the child node forces the execution of the methods within the visitor in the
context of this child node, i.e., the child node is printed to the standard output
stream. This of course happens recursively on every level of the IL tree. On
return of the accept function we delete this visitor object. We then print out a
plus sign and continue to create a visitor for the right child of this Plus node.
Again, once created we attach it to the right child and then delete it when it is
no longer used. As the last thing we print out the closing parenthesis.

Now that we saw what the IL and visitor class structure looks like, what
does the main program driving the whole thing look like? The answer is; it
looks very similar to the visitPlus function:

main()
{
// set up some IL tree: 2 + 1
Ast * ast = new Plus(new Const(2), new Const(1));

PrintVisitor * visitor_handle = new PrintVisitor;

cout << "Printing IL: ";
ast->accept(visitor_handle);
cout << endl;

}

Here, we create some piece of IL!. Following that we instantiate a PrintVisitor.
After printing out some prologue we hand the visitor to the IL which in turn
will print the IL to the standard output. Finally, we print a new line.

1Presumably, in a real compiler this is done by the parser.



In summary, the “Visitor Pattern” is a powerful idiom for separating algo-
rithms from data structures. It is preferable over iterators for data structures
which have a non-linear internal structure. Furthermore, it addresses polymor-
phism in such situations much more adequately than iterators. As the example
above demonstrates, it is particularly well suited for IL data structure and al-
gorithms design.

4 Decoration on the Fly

One of the more vexing problems in high-performance compiler construction is
the management of attributes on the IL structure. These attributes are typically
things such as du-chains for dataflow and dependence analysis or other context
sensitive information for IL nodes [1]. Traditionally, attributes are attached to
the IL nodes with the consequence that phase-specific attributes become visible
globally. Here we advocate that attributes should in fact be separated from
the IL structure and be managed by separate objects with the cooperation of
the IL. In some sense, we are arguing again for the separation of concerns: the
IL should represent the abstract nature of the program in question, nothing
more nothing less. Attributes should be concerned with the presentation and
management of local context sensitive IL information.

As a solution to this problem we advocate the notion of an attribute man-
ager. Our view of an attribute manager is that of a very thin veneer over the
IL structure. Each attribute is associated with exactly one manager. Adding or
deleting attributes to or from the IL becomes a matter of instantiating or delet-
ing the appropriate managers, respectively. Attaching an attribute value to an
IL node is then handled by the particular manager by providing an association
between the node and the attribute value. The IL node itself is not modified.

Figure 2 attempts to illustrate this. Here we have the “Compiler Substrate”,
“Phase” and “IL” similar to the discussion in the previous section. We denote
the attribute veneer with a dashed box around the “IL”. The veneer is provided
by the “Attribute Manager” indicated with the dashed line. Given an attribute
manager, it allows one to associate specific IL nodes with particular attribute
values. Compiler phases may then deposit and recall attribute values for IL
nodes using the attribute manager. This is indicated with the bidirectional
arrow between the “Phase” and the “Attribute Manager”.

This is a powerful mechanism which allows one to attach values to IL nodes
without having to modify the underlying IL classes.

The implementation of the attribute veneer through the associated managers
is accomplished with C++ template classes allowing us to instantiate attribute
manager classes which may represent any type of attribute. Ignoring some of
the details such as the need to keep lists of attribute managers around for book
keeping purposes, let us take a look at the basic AttributeManager class:

template <class NodeClass, class BaseClass, class ValueClass>



4
Y
)—U
=
&
0
@

Attr Manager

Compiler Substrate

Figure 2: Decorating the IL using Attribute Managers.

class AttributeManager : public AttributeManagerBase<BaseClass>
{
public:
AttributeManager(ValueClass null_value, char *attr_name);
“AttributeManager();

void set_attr(NodeClass *node, ValueClass value);
ValueClass attr(NodeClass *node) const;
ValueClass is_null(NodeClass *node) const;
void print(ostream &out, NodeClass *node) const;
private:
/] ...
};

Let us start with the template parameter classes. The type NodeClass denotes
the possible types of IL nodes this manager can be instantiated with. The type
BaseClass denotes the root class of the particular IL in question and is used
in the AttributeManagerBase class for the polymorphic handling of lists of
attribute managers. Finally, the ValueClass denotes possible attribute types
for the attribute manager.

Let us look at the public interface. The constructor takes the null value for a
particular attribute and a name for the attribute in question. The name string

10



is there for debugging and printing purposes only. The next interesting function
is set_attr. Given a pointer to an IL node and an appropriate attribute value,
this function associates the IL node with the attribute value (presumably this
is done via some sort of associative array or hash table). The function attr
returns the attribute value associated with a particular node. The function
is null allows one to test the presence of an attribute value for a particular
node. And finally, print allows one to print the attribute value for a particular
node to an output stream.
Consider the following IL class hierarchy:

Ast

/ \

/ N\
Plus Const

Instantiating an attribute manager for Plus nodes which manages some sort of
expression nesting count which is simply an integer looks like this:

AttributeManager<Plus,Ast,int> nesting_count;
Setting and inquiring attributes is achieved as follows:

// create our attribute manager
AttributeManager<Plus,Ast,int> nesting_count;

// create some IL structure
Plus * node = new Plus(...);

// attach an attribute value to the ’node’
nesting_count.set_attr(node, 1);

// retrieve an attribute value
int local_count = nesting_count.attr(node);

Some observations are in order. First, since we defined the attribute manager
as a template, we may create any attribute type we like by appropriately instan-
tiating the AttributeManager template class. Second, because the attributes
are managed as a physically separate entity from the IL structure, creating and
destroying attributes “on the fly” becomes a reality and desirable. Attribute
managers only live as long as they are needed for a particular computation
and are then removed without any impact on the IL. Furthermore, because the
memory allocated to attribute values resides within the manager there is no
need to walk the IL tree to clean up unused attribute values. Simply, removing
the appropriate attribute manager achieves that goal in this scheme.

As we briefly mentioned above, we ignored some fundamental issues in this
discussion. The most important one is the need of keeping lists of attribute

11



managers around. The need arises due to the fact that the IL might change
while attribute managers are instantiated. In particular, IL nodes which have
entries in attribute managers might get deleted. It turns out that there needs
to be a cooperation between the IL and the attribute managers: if an IL node is
deleted the destructor for that IL node will notify the list of attribute manager
of this event. The list will then continue to notify all its associated managers
that this particular node no longer exists. The managers in turn will delete the
entries for this node from their association tables.

5 Conclusions

With the recent advances in object-oriented technology we found it necessary to
revisit the design and construction of high-performance compilers. We primarily
focused on IL design, since we believe that other parts of compilers such as
symbol tables and type systems are readily represented in the object-oriented
paradigm.

Our compiler design philosophy is based on the separation of concerns: The
IL should only be concerned with the abstract representation of the input pro-
gram and provide an interface just “wide” enough for its effective manipulation
and maintenance. Agents accessing and manipulating the IL should be kept
separate from the IL and should only access it through its interface.

By successfully solving two key problems in object-oriented compiler design,
the interaction between compiler phases and the IL as well as tree decoration,
we have shown that this separation of concerns leads to clean physical com-
piler designs which directly reflect its logical structure and therefore are easily
understood, modified, and maintained. The “Visitor Design Pattern” is a fun-
damental building block within these designs.

References

[1] Alfred Aho, Ravi Sethi, and Jeff Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, Massachusetts, 1986.

[2] Grady Booch. Object-Oriented Analysis and Design with Applications, Sec-
ond Edition. Benjamin/Cummings, 1993.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, Massachusetts, 1995.

[4] Jim Holmes. Object-Oriented Compiler Construction. Prentice-Hall, 1995.

[5] David R. Musser and Atul Saini. STL Tutorial and Reference Guide.
Addison-Wesley, Reading, Massachusetts, 1996.

12



[6] Matthew Nguyen. Extending the visitor design pattern. Dr. Dobbs Journal,
October 1996.

[7] Bjarne Stroustrup. The C++ Programming Language Second FEdition.
Addison-Wesley, Reading, Massachusetts, USA, 1995.

13



