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The tree representation as a model for organismal evolution has been in use since before Darwin. However, with the recent un-
precedented access to biomolecular data, it has been discovered that, especially in the microbial world, individual genes making up
the genome of an organism give rise to different and sometimes conflicting evolutionary tree topologies. This discovery calls into
question the notion of a single evolutionary tree for an organism and gives rise to the notion of an evolutionary consensus tree
based on the evolutionary patterns of the majority of genes in a genome embedded in a network of gene histories. Here, we discuss
an approach to the analysis of genomic data of multiple genomes using bipartition spectral analysis and unsupervised learning. An
interesting observation is that genes within genomes that have evolutionary tree topologies, which are in substantial conflict with
the evolutionary consensus tree of an organism, point to possible horizontal gene transfer events which often delineate significant
evolutionary events.

Copyright © 2008 L. Hamel et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Evolutionary history of species is now inferred from the evo-
lutionary histories of their genomes. Genomes can be viewed
as a collection of genes and whole genome evolution is con-
cluded from the evolution of individual genes. If the ma-
jority of genes followed the same evolutionary history, su-
pertree approaches can be used to calculate a majority con-
sensus tree. However, evolutionary trees of individual genes
can differ from the majority [1], and in this case, the con-
sensus tree is embedded in a network represented by the his-
tories of the different genes. Evolutionary tree topologies of
genes that conflict with the consensus tree are strong indica-
tors of horizontal gene transfer events. Given this, it is clear
that organismal evolution cannot be inferred from studying
the evolution of just a few genes but must be inferred from
studying as many (orthologous) genes as possible.

To construct and evaluate an evolutionary consensus tree
based on multiple genes for a set of genomes, it is advis-
able to construct all possible evolutionary tree topologies for
these genomes and measure the support of each topology by
the (orthologous) genes within the genomes. Unfortunately,
evaluating all possible tree topologies is computationally in-

tractable for any but a very small set of genomes, since the
number of possible tree topologies grows factorially with the
number of participating genomes. An approach based on the
spectral analysis of genomic data using bipartitions [2, 3] al-
lows the inference of consensus trees from smaller quanta of
phylogenetic information, side stepping some of the difficult
computational issues. Table 1 shows the number of possible
trees versus the number of possible bipartitions given a fixed
set of genomes. With n taxa there are (2n−5)!/[2(n−3)(n−3)!]
different unrooted tree topologies. The number of possible
nontrivial bipartitions for n taxa is given by the formula
2(n−1) − n − 1, and it grows much slower with an increas-
ing number of species than the number of different trees. We
refer to the approach based on bipartitions as spectral genome
analysis.

It is worth noting that when a single tree is calculated
from the combination of all genes, including genes that
were horizontally transferred, the topology of the result-
ing tree might not represent the plurality of gene histories.
Therefore, a detailed analysis of the evolutionary histories of
the participating genes is of interest. The techniques out-
lined here support this kind of analysis.
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Table 1: Number of possible trees and bipartitions given a fixed set of genomes.

Number of genomes Number of unrooted trees Number of nontrivial bipartitions

4 3 3
5 15 10
6 105 25
7 945 56
8 10,395 119
9 135,135 246
10 2,075,025 501
20 2.22E + 20 5.24E + 05
50 2.84E + 74 5.63E + 14
n (2n− 5)!/[2(n−3)(n− 3)!] 2(n−1) − n− 1

In spectral genome analysis, each set of orthologous
genes (a gene family) is associated with a particular set of
bipartitions (its spectrum) that define its evolutionary tree.
Thus, we can envision a gene family as a point in the space
spanned by all possible bipartitions of a set of genomes.
Here, we apply unsupervised learning in the form of self-
organizing maps [4] to this space and obtain a visual rep-
resentation of clusters of gene families with similar spectra.
The spectra of the gene families within a particular cluster
allow us to infer the consensus tree for that cluster. It is now
possible to investigate whether the consensus tree topologies
of the clusters are compatible or conflicting with the over-
all consensus tree. If a cluster of gene families is discovered
that conflicts with the consensus tree topology, then this is
a strong indication for a horizontal gene transfer event. The
advantage of this approach is that we not only see a distinc-
tion between consensus and conflicting trees, but that we
can detect trends of agreement between the conflicting genes.
This additional insight might provide biological clues as to
the nature of the origin of these genes.

Unsupervised learning has been used in genomic anal-
yses before (e.g., [5]). However, our approach seems to
be novel in that we do not apply unsupervised learn-
ing directly to DNA sequence data but instead analyze
the much more abstract representation of the genomic
data in the form of bipartitions. We have constructed
a web service called Gene Phylogeny eXplorer (GPX,
http://bioinformatics.cs.uri.edu/gpx) that supports spectral
genome analysis [6].

2. MATERIALS AND METHODS

2.1. Spectral analysis of evolutionary trees

Given n entities, there are 2n−1 − 1 different ways to assign
the entities to two different nonempty sets. That is, there are
2n−1 − 1 different bipartitions of n entities including trivial
bipartitions. An (unrooted) tree can be viewed as a model of
the evolutionary relationships between n entities or taxa such
as species, genes, molecules, and so forth. Trees and biparti-
tions are related as follows. Each edge in a tree can be seen as
dividing the tree into a bipartition: the leaf nodes that can be
reached from one end of the edge form one set of taxa and the
leaf nodes that can be reached from the other end of the edge

form the other set of taxa. A binary tree with n leaf nodes
has exactly 2n− 3 edges. Thus, an evolutionary tree relating
n taxa gives rise to 2n − 3 bipartitions. It is easy to see that
2n− 3 < 2n−1 − 1, that is, the number of bipartitions defined
by an evolutionary binary tree of n taxa is much smaller than
the number of possible bipartitions of n entities.

Trivial bipartitions, which is bipartitions where one of
the partitions is a singleton set, do not contain any phylo-
genetic information. Thus, given n entities, there are 2(n−1)−
n − 1 different nontrivial bipartitions. However, in an un-
rooted binary tree with n leaf nodes there are n − 3 interior
edges and therefore n− 3 nontrivial bipartitions. An interior
edge is an edge that is not incident to a leaf node of a tree.
It is evident that n − 3 < 2n−1 − n − 1, that is, the number
of nontrivial bipartitions generated by a tree is much smaller
than the number of possible nontrivial bipartitions.

Let tn be an evolutionary tree over n taxa, then we de-
fine the bipartitions of tn as the spectrum of tn, denoted as
S(tn). It is convenient to adopt a vector notation for the spec-
trum S(tn) = (b1, . . . , bn2−1) = (0, 1, 1, 0, . . . , 0, 0), where bk
denotes bipartition k with 1 < k < 2n−1 − 1. Here, bk = 1 if
the spectrum of the tree includes bipartition bk, and bk = 0
otherwise. Note that the vector notation is a representation
over all possible bipartitions. Given this, we can now refer to
a bipartition space and we can readily see that a spectrum of
a particular evolutionary tree tn represents the coordinates of
a point in that space. In our case, where the tree represents
the evolutionary relationship between orthologous genes in
n genomes, we often refer to the spectrum as the gene family
spectrum and therefore a gene family is denoted by a point
in bipartition space.

Figure 1(a) is an unrooted tree relating five taxa A
through E. The arrows indicate branches defining the non-
trivial bipartitions in this tree. Figure 1(b) represents a bi-
partition corresponding to the left arrow in Figures 1(a) and
1(c) represents a bipartition corresponding to the right ar-
row in Figure 1(a), respectively. Observe that the sub-tree
topologies in the bipartitions are unresolved.

By further generalizing and interpreting the values in the
spectrum vectors as arbitrary real numbers, as we will do in
what follows when we assign confidence values to biparti-
tions, a bipartition space can be viewed as a 2n−1 − 1 dimen-
sional real vector space. An interesting consequence of this is
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Figure 1: (a) An unrooted tree with 5 taxa, (b) the bipartition cor-
responding to the left arrow above, (c) the bipartition correspond-
ing to the right arrow above.
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Figure 2: (a) A binary vector indexed by taxa names, (b) a binary
representation of the bipartition in Figure 1(b), (c) a binary repre-
sentation of the bipartition in Figure 1(c).

that we can now measure the difference between spectra as
the Euclidean distance between the two corresponding spec-
trum points in a bipartition space. Let t1, t2, and t3 be three
different evolutionary trees of n taxa and let S(t1), S(t2), and
S(t3) be the respective spectra, then we say that S(t2) is more
similar to S(t1) than S(t3) if ‖S(t1)− S(t2)‖ < ‖S(t1)− S(t3)‖,
here the operator ‖ · ‖ denotes the Euclidean distance be-
tween two points in bipartition space.

2.2. Representation of bipartitions

Let A be a set of n elements, and b is a bipartition defined on
a set A. Each bipartition b splits a set A into two subsets m
and its complement mC , such that A = m∪mC .

We say that two bipartitions are compatible if there exists
a tree whose spectrum includes both bipartitions. We say that
two bipartitions are conflicting if they cannot appear in the
same spectrum. In set notation, two bipartitions are compat-
ible if a set (either m or mC) of one bipartition is a subset of
one of the sets of the second bipartition; or, in other words,
bipartitions b1 and b2 are compatible if and only if one of
four possible conditions is satisfied:

(m1 ⊂ m2), (m1 ⊂ mC
2 ), (mC

1 ⊂ m2), or (mC
1 ⊂ mC

2 ). (1)

To handle bipartitions computationally in an efficient
way, we can represent them effectively as binary masks.
Figure 2(a) shows a binary vector indexed by the taxa in
Figure 1(a). Figure 2(b) shows the binary representation of
the bipartition in Figure 1(b) arbitrarily assigning 1 and 0 to
the left and right bipartition, respectively. Figure 2(c) shows
the binary representation of the bipartition in Figure 1(c).

Given our binary representation of bipartitions, there
is a simple computation to test for compatibility between
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Figure 3: (a) Bootstrapped consensus tree with 5 taxa, (b) a bipar-
tition with a 95% bootstrapped confidence value, (c) a bipartition
with an 85% bootstrapped confidence value.

bipartitions. We say that two bipartitions are compatible if
the following returns true:

((
b1 | b2

)
== b1

)
‖,((

b1 | b2
)
== b2

)
‖,((

b1 | ∼b2
)
== b1

)
‖,((

b1 | ∼b2
)
== ∼b2

)
‖,

(2)

where b1 and b2 denote bipartitions. Here the “|” operator
represents the bitwise OR operation, the “∼” operator rep-
resents the bitwise negation, the “‖” operator represents the
logical OR operation, and “==” represents the bitwise equal-
ity operator. Given the two masks from Figures 1(b) and
1(c), it is easy to see that they are compatible:

10001 | 11001 == 11001. (3)

On the other hand, the bipartitions 11001 and 10011 are
conflicting.

2.3. Consensus trees

It is customary to compute confidence values for the edges in
an evolutionary tree via bootstrapping [7]. The computed
tree represents a consensus tree over the bootstrap samples.
The confidence values are typically chosen between 0 and
100. With this, a bipartition derived from a particular edge
in the bootstrap consensus tree inherits the confidence value
of that edge. This allows us to refine our spectrum vector
notation, for example, S(tn) = (0, 67, 85, 0, . . . , 15, 0), where
tn is now a bootstrapped consensus tree and the values in the
vector represent the confidence values for the individual bi-
partitions.

Figure 3(a) shows a bootstrapped consensus tree with
five taxa. The values on the edges represent the bootstrapped
confidence values. Figures 3(b) and 3(c) show nontrivial bi-
partitions of the tree. Notice that the bipartitions inherit the
confidence value of the edge that corresponds to the biparti-
tion.

By computing a consensus tree on the bootstrap samples,
it is possible to introduce biases due to the fact that phyloge-
nies that do not agree with the plurality are suppressed. This



4 Journal of Biomedicine and Biotechnology

is particularly critical in our case where the biases of this kind
of computation might compound during an analysis. A dif-
ferent approach that avoids computing a consensus tree too
early in an analysis is by taking advantage of the spectra of
the bootstrap samples. Before we can describe this construc-
tion, we need to define what we mean by an average spectrum.
Given m spectra, S1, . . . , Sm, in a bipartition space of n taxa,
we define the average spectrum Sa as

Sa =
1
m

m∑

k=1

Sk. (4)

The summation of spectra is well defined as vector addi-
tions in bipartition space and the multiplication of a scalar
and a vector simply scales the components of the vector.

The bootstrap approach can be summarized as follows.

(1) For the phylogenetic tree of each bootstrap sample,
compute the corresponding spectrum.

(2) Compute the average spectrum Sa over the bootstrap
spectra.

(3) The values that appear in the vector for the average
spectrum can now be interpreted as confidence values.

In step 3, we could multiply the average spectrum by 100
to make it compatible with the traditional bootstrap confi-
dence values. A consequence of this approach is that the av-
erage spectrum is no longer guaranteed to represent a phy-
logenetic tree due to possible bipartition conflicts and this
represents an extension of our definition of spectrum above
that did not admit any conflicts. However, even in this ex-
tended definition of a spectrum we can retrieve a consensus
tree from the average spectrum Sa as follows:

(1) Sort the bipartitions in Sa according to their confi-
dence values.

(2) Delete all bipartitions in Sa that conflict with more
strongly supported bipartitions in Sa.

(3) Incrementally construct a consensus tree from the re-
maining bipartitions in Sa, starting with the biparti-
tion with the strongest support to the bipartition with
the weakest support.

Observe that computing the consensus tree for the average
spectrum is a lossy operation (step 2) as before. However,
the advantage of this approach is that we can defer this lossy
operation as long as necessary. Note that we need only n− 3
top nonconflicting bipartitions. If conflicts are singular or
minor events, they will not appear in the top n − 3 biparti-
tions because their confidence values will be low. If the con-
flicting bipartitions are among top n − 3, then the case de-
serves special attention. If the confidence values for bipar-
titions are rather small and randomly distributed over the
data, this can serve as an indication that the data do not have
a clean phylogenetic signal.

An interesting application of this is the construction of a
consensus tree of multiple spectra in a bipartition space. If
we interpret the spectra S1, . . . , Sm as a cluster in bipartition
space, then the average spectrum can be viewed as the cen-
troid of that cluster.

The following constructs a centroid consensus tree of m
given spectra, S1, . . . , Sm.

(1) Compute Sa for S1, . . . , Sm
(2) Sort the bipartitions in Sa according to their

confidence values.
(3) Delete all bipartitions in Sa that conflict with more

strongly supported bipartitions in Sa.
(4) Incrementally construct a consensus tree from the

remaining bipartitions in Sa, starting with the
bipartition with the strongest support to the
bipartition with the weakest support.

Note that this is essentially the same algorithm as above
with the exception that the spectra, S1, . . . , Sm are not boot-
strapped samples but arbitrary points in some bipartition
space.

2.4. Unsupervised learning in bipartition space

Self-organizing maps [4] were introduced by Kohonen in
1982 and can be viewed as tools to visualize structure in
high-dimensional data. Self-organizing maps are considered
members of the class of unsupervised machine learning al-
gorithms, since they do not require a predefined concept but
will learn the structure of a target domain without supervi-
sion.

Typically, a self-organizing map consists of a rectangu-
lar grid of processing units. Multidimensional observations
are represented as vectors. Each processing unit in the self-
organizing map also consists of a vector called a reference
vector or reference model. In our case, the multidimensional
observations are spectra, where the number of possible bi-
partitions given n taxa governs the dimensions of the spectra.
The dimensions of processing elements of the map match the
dimensionality of the observations.

The goal of the map is to assign values to the reference
models on the map in such a way that all observations can
be represented on the map with the smallest possible error.
However, the map is constructed under constraints in the
sense that the reference models cannot take on arbitrary val-
ues but are subject to a smoothing function called the neigh-
borhood function. During training the values of the refer-
ence models on the map become ordered so that similar ref-
erence models are close to each other on the map and dis-
similar ones are further apart from each other. This implies
that similar observations will be mapped to similar regions
on the map. Often reference models are referred to as cen-
troids since they typically describe regions of observations
with large similarities.

The training of the map is carried out by a sequential
process, where t = 1, 2, . . . is the step index. For each ob-
servation x(t) at time t, we first identify the index c of some
reference model which represents the best match in terms of
Euclidean distance by the condition

c = arg min
i

‖x(t)−mi(t)‖ ∀i. (5)

Here, the index i ranges over all reference models on the
map. The quantity mi(t) refers to the reference model at po-
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Figure 4: A typical visualization computed by GPX.

sition i on the map at time step t. Next, all reference models
on the map are updated with the following regression rule
where model index c is the reference model index as com-
puted above:

mi(t + 1) = mi(t) + hci[x(t)−mi(t)] ∀i. (6)

Here, hci is the neighborhood function that is defined as
follows:

hci =
{

0 if |c − i| > β,
η if |c − i| ≤ β,

(7)

where |c− i| represents the distance between the best match-
ing reference model at position c and some other reference
model at position i on the map, β is the neighborhood dis-
tance and η is the learning rate. It is customary to express
η and β also as functions of time. This computation is usu-
ally repeated over the available observations many times dur-
ing the training phase of the map. Each iteration is called a
training epoch.

An advantage of self-organizing maps is that they have an
appealing visual representation. That is, the structure of the
input domain is graphically represented as a 2-dimensional
map. Figure 4 shows a typical map computed in GPX (here
the map reconstructed from bipartition matrix of 14 Ar-
chaeal species).

Each square in the map represents a reference model. The
shading of the map represents the level of quantization or
mapping error for the map. Light shading represents a small
quantization error; that is, the reference models in those ar-
eas match the observations very closely. Dark shading repre-
sents a large quantization error; that is, there is a poor match
between reference models and observations. Contiguous ar-
eas of low quantization error represent clusters of similar en-
tities. Figure 4 shows an interactive cluster layout of the GPX
tool. Each cluster contains a set of orthologous families that
we put together by the SOM algorithm. By moving a mouse
pointer over the map, a user is able to highlight and select
clusters of interest and reconstruct phylogenetic trees for the
selection.

Here, we make use of this ability of self-organizing maps
to visualize high-dimensional spaces in order to visual-
ize similarities and dissimilarities of high-dimensional tree

spectra. We would expect points in bipartition space that
represent similar spectra to map close together on the vi-
sualization and vice versa. Once we have identified clusters
of spectra, we can proceed to compute consensus trees for
those clusters. Furthermore, we can now compare the trees
calculated from individual clusters to the overall consensus
tree, and we can investigate whether there exists substantial
conflict between the bipartitions of various clusters. Further-
more, the clusters that result from this unsupervised learning
allow the biologist to detect trends in the evolutionary histo-
ries of the participating genes which might provide insight
into events such as horizontal transfers of individual genes
or whole metabolic pathways. The fact that the spectra of in-
dividual gene families can be visualized as consensus trees
and that it is possible to compute the average of several se-
lected spectra and the corresponding majority consensus tree
on the fly distinguishes our approach from other spectral ap-
proaches (e.g., [3, 8]).

2.5. The construction of gene families

One of the insights of recent evolutionary biology is that it is
not sufficient to use one or a few genes to infer phylogenetic
relationships among species. Therefore, we propose to use as
many genes as possible in our analysis based on the notion
of a gene family. A gene family is a collection of genes from
different genomes that are related to each other and share a
common ancestor. In general, a gene family may include both
orthologs and paralogs [9]. Here, we consider only sets of
putatively orthologous genes where each species contributes
only one gene into a family. The evolutionary history of an
individual gene family is a phylogenetic tree.

We select common gene families based on reciprocal best
BLAST [10] hit criteria [11] with relaxation (see below). The
reciprocal best BLAST hit method requires strong conserva-
tive relationships among the orthologs so that if a gene from
species 1 selects a gene from species 2 as the best hit when
performing a BLAST search with genome 1 against genome
2, then the gene 2 must in turn select gene 1 as the best hit
when genome 2 is searched against genome 1. The require-
ment of reciprocity is very strict and often fails in the pres-
ence of paralogs. To select more orthologous sets, we relax
the criteria of strict reciprocity by allowing a fixed number of
broken connections.

The gene families are aligned with Clustalw version 1.83
using default parameters [12]. For each family, 100 boot-
strapped replicates are generated and evaluated with the
Phyml program [13] using the JTT model, four relative sub-
stitution rate categories, and an estimated shape parameter
for the gamma distribution describing among site rate varia-
tion.

All 100 generated trees are split into their correspond-
ing bipartition spectra and corresponding bootstrap support
values are assigned to each bipartition by calculating how
many times each bipartition is present in a family (the boot-
strap procedure discussed in detail above). The result of these
calculations is a spectrum for each gene family. Observe that
trees calculated from individual bootstrap samples contain
edges that are not part of a majority consensus tree, that
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is, the spectrum for a gene family can contain bipartitions
that conflict with other bipartitions in the spectrum. For our
purposes, this is important since it prevents information loss
and avoids bias during our analyses.

We can now use the machinery developed above to in-
vestigate the consensus tree of the collection of gene families
and whether there exist spectra that have a significant conflict
with the overall consensus tree.

3. APPLICATION OF GPX

GPX, a tool based on the techniques developed above sup-
ports an active, investigation-style analysis where the user
can interact with the visualization. The user is able to se-
lect centroids on the map and investigate consensus trees
and conflicting bipartitions in the respective spectra. A de-
tailed description of an experiment using GPX appears in
[6]. In a first experiment, we analyzed 123 gene families
of 14 archaea species. We found that sets of gene fami-
lies exhibited substantial conflict with the overall organis-
mal consensus tree corroborating findings of frequent gene
transfers between organisms sharing the same or similar
ecological niches [14, 15]. In the consensus over all 123
gene families, the representative of the Methanosarcinales
(Methanosarcina acetivorans) grouped with the Haloarchaea
(Haloarcula marismortui and Halobacterium salinarum) as
expected from the analysis of ribosomal RNAs and enzymes
involved in transcription and translation [16, 17]. Two clus-
ters of gene families were recognized that strongly sup-
ported a conflicting bipartiton that places the homolog from
Methanosarcina acetivorans with Archaeoglobus fulgidus. For
one of these clusters, the relationships among the other ar-
chaea remained otherwise compatible with the consensus,
suggesting gene transfer events between the ancestors of
Methanosarcina and Archaeoglobus. However, in case of the
second cluster formed by a single gene family, prolyl tRNA
synthetases (prolylRS), the Haloarchaea grouped at the base
of the euryarchaeota. This placement suggests that the an-
cestor of the Haloarchaea might have acquired this enzyme
from outside the archaeal domain, a finding that was corrab-
orated through more detailed phylogenetic analysis (Gog-
arten, unpublished). While the haloarchaeal prolylRS are
more similar to bacterial than to archaeal homologs, database
searches did not identify any sequence from an extant or-
ganism that is specifically related to the haloarchaeal prolyl
tRNA synthetases. The donor of the haloarchaeal prolylRS
is not a member of any of the bacterial or archaeal phyla that
have prolylRS sequences in the current nonredundant or en-
vironmental databases; possibly the lineage that donated this
enzyme has gone extinct as a distinct lineage, and only those
genes that were donated to other lineages in the past survived
into the presence [18]. These results were obtained by means
of an originally developed interactive tool [6], which com-
bines computationally expensive analysis of complex data
with convenient visual representation of phylogenetic infor-
mation.

4. CONCLUSIONS

We developed a comparative genomic analysis technique
based on bipartition spectra and unsupervised learning. We
have incorporated the techniques developed here into a web-
based tool and have used this tool successfully in a set of anal-
yses. The tool allows the user to reconstruct the evolution-
ary history shared by the plurality of gene family histories
present within a collection of genomes; gene families with
histories that are in conflict with the plurality are detected,
and families which share conflicting histories can be recog-
nized, thereby facilitating the discovery of major “highways
of gene sharing” [15].

Bipartition spectrum analysis is not restricted to the
SOM algorithm, other clustering algorithms, such as prin-
cipal component analysis (PCA) [19] and local linear em-
bedding (LLE) [20], can be applied to the analysis of large
data sets. A new algorithm, generative topographic map-
ping (GTM) [21], displays maps similar to SOM but uses
an expectation maximization (EM) algorithm instead of
relying on neural network convergence. An alternative-to-
traditional PCA is kernel PCA [22]. This algorithm is based
on support vector machines, which allows it to easily deal
with very wide datasets. ISOMAP [23] is an algorithm sim-
ilar to LLE but distinguishes itself from LLE in that there is
no need to solve a set of linear equations. To make compar-
ative genomic studies a reality, we need to be able to include
large numbers of genomes. This implies that we need to be
able to handle large amounts of data. Future efforts will re-
volve around scaling up methodologies to include as many
species as possible and testing different clustering algorithms
for extraction of important phylogenetic information.
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