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Abstract—The self-organizing map is a type of artificial neural
network that has applications in a variety of fields. The self-
organizing map training algorithm uses unsupervised learning
to produce a low-dimensional representation of high-dimensional
data. The low-dimensionality of the resulting map allows for a
graphical presentation that is easily interpreted. It is essential
to evaluate the quality of the maps to ensure that these models
are representative of the underlying data. Various measures have
been developed to quantify a map’s quality. Little work, however,
has been done comparing these measures to one another. To
that end, this paper evaluates quality measures as convergence
criteria. This is achieved by examining the underlying structure of
maps that are converged under different measures. Specifically,
the clusters that exist in the maps after they are reported to
have converged are compared with the clusters that exist in the
input data. The quality measures studied are quantization error,
topographic error, trustworthiness, neighborhood preservation,
and population-based convergence.

I. INTRODUCTION

The self-organizing map (SOM) is a type of artificial
neural network that has applications in a variety of fields
and disciplines. The self-organizing map training algorithm
uses unsupervised learning, or sometimes called competitive
learning, to produce a low-dimensional representation of high-
dimensional data. This is done by “fitting” a grid of nodes
to a data set over a fixed number of iterations. The low-
dimensionality of the resulting map allows for an easily
interpreted graphical presentation of the data. An example
visualization of a SOM trained with the multivariate Ecoli
data set [11] is shown in Figure 1. Note that the clusters
are easily identifiable in the two-dimensional map despite
the fact that the data has seven dimensions. Although this
might appear to be a “good” model, visual inspection is not
sufficient to determine the quality of the map As we will see
in our discussion later, this is actually not a very good model.
Recall that in an unsupervised learning setting cluster labels
are typically not available for cluster quality assessment.

A variety of quality measures have been developed over
the years that attempt to quantify how well the underlying
data is represented by a map. Some work has been done
comparing these quality measures [13], however, the focus
has generally been on the size of the map, not the amount
of training. Here we compare quality measures by evaluat-
ing them as convergence criteria. This is accomplished by

examining the structure of maps that are converged under
different measures. Specifically, the clusters that exist in the
maps will be compared to the clusters that exist in the
training data. The quality measures studied are quantization
error [9], topographic error [8], trustworthiness, neighborhood
preservation [17], and population-based convergence [2].

The remainder of the paper is organized as follows. Sec-
tion II provides a brief overview of the SOM training algo-
rithm. We introduce the quality measures in Section III. In
Section IV we describe our experimental procedure and we
discuss our data sets we used for this study in Section V. Our
results are reported in Section VI and we conclude the paper
with some final remarks in Section VII.

II. THE SELF-ORGANIZING MAP

The SOM is an artificial neural network developed by Teuvo
Kohonen [9]. The training algorithm uses an unsupervised,
iterative procedure to model an input space with a fixed lattice
of nodes.

A high-level version of the SOM training algorithm is
shown in Algorithm 1. The SOM can also be described in
terms more typical of artificial neural networks [5]. Given X ,
a set of n k-dimensional input vectors xi ∈ Rk, i = 1, ..., n.
Let M be a 2-dimensional grid of m neurons with m = x×y,
where x and y are the dimensions of the grid. Each neuron
in M has a weight vector wj ∈ Rk with index j = 1, ...,m.
The following training steps are repeated for a given number
of iterations.

• Select an input xi ∈ X . Use (1) to determine the index
of the best-matching unit (BMU) b in M for xi.

b = argminj(‖wj − xi‖) (1)

Algorithm 1 The SOM training algorithm.
Initialize map.
repeat

for each training observation do
Find the neuron that best matches the observation.
Make that neuron look more like the observation.
Smooth the immediate neighborhood of that neuron.

end for
until done
return trained map.



Fig. 1. Starburst visualization for Ecoli data set.

• The point xi is used to update the BMU b and its
neighboring nodes using (2) for all j = 1, ...,m, where α
is the learning rate, r is the current neighborhood radius,
h(b, j, r) is the loss function, and δi = wj − xi.

wj ← wj + αδih(b, j, r) (2)

The loss function h(b, j, r) is defined as,

h(b, j, r) =

{
1 if j ∈ Γ(b, r)

0 otherwise
(3)

Here the neighborhood function Γ(b, r) returns the set of
neurons within the radius r centered at index b.

Within each training epoch, the steps represented by equa-
tions 1 and 2 are repeated for all xi ∈ X . The radius is
initialized as r =

√
x2 + y2, that is, initially it encompasses

the entire map, and shrinks until it reaches 1 (after each epoch

the value is decreased by
√

x2+y2

L , with L the total number
of iterations the algorithm is to run).

There are a number of ways of looking at the resulting map.
One is as a projection of the input data onto the map. This
projection allows the topography of the high-dimensional input
to be preserved in the low-dimensional output space. Another
interpretation is that, effectively, SOM tries to create a sample
of points equivalent to the input data and we can view the
training data and the trained neurons as two populations drawn
from the same underlying distribution.

It is perhaps surprising for readers accustomed to the
traditional Gaussian that we only consider the “bubble” neigh-
borhood here. However, we have shown that the Gaussian
leads to much longer convergence times with very little if any
effects on the quality of the map [14], [15]. We also dispense
with the idea of multi-phase training since it can be shown to
have no effect on the quality of the map.

III. QUALITY MEASURES

The quality measures chosen for this study represent a cross
section of different approaches of looking at map conver-
gence. Some taking a more traditional data fitting approach
(quantization error and population-based convergence) and
others a more topology based approach (topographic error and
trustworthiness/neighborhood preservation):

• The quantization error was first proposed by Kohonen
and is computed by calculating the average distance
between the nodes and the training data points [9].

• Topographic error accounts for a SOM’s preservation of
local topological features in a low dimensional output
space [8].

• Trustworthiness and neighborhood preservation evaluate
to what degree the neighborhoods in the projection are
actually present in the input space and vice versa [17].

• Population-based convergence is a measure based on a
statistical analysis of the map where the training data
and the neurons are considered two different populations
drawn from the same underlying distribution [2], [4], [6].

Detailed surveys of a variety of other methods appear in [12],
[13].

A. Computational Complexity

Table I gives the computational complexity of the quality
measures. Here we ignore the effect of data dimensionality
and only report the complexity in terms of number of training
samples n. This is a reasonable assumption given that in most
cases n � d where d is the dimensionality of the training
data.



TABLE I
COMPUTATIONAL COMPLEXITY OF QUALITY MEASURES

Quality Measure Complexity Short Name
Qantization Error O(n2) qe
Topographic Error O(n2) te
Pop. Based Convergence O(n) cv
Trustworthiness O(n3log(n)) np.trust
Neighborhood Preservation O(n3log(n)) np.pres

IV. EXPERIMENT DESIGN

Here we provide a quantitative analysis and comparison of
the quality measures defined above. It follows an empirical
procedure in which the learned structure of SOMs trained with
various data sets is evaluated. The experimentation procedure
for each data set has two high-level steps:

1) Train a large number of maps to determine when each
quality measure converges.

2) Evaluate the clustering and accuracy of converged maps
and compare the results to determine how well each
convergence criteria performs.

A. Training

Training a SOM using the above training algorithm requires
that the number of iterations must be known in advance.
Therefore, a large number of maps are trained at fixed iteration
steps (i.e. powers of two) to compute the value of the quality
measure at each step.

In order to determine when a quality measure has converged,
we must have a concise definition of convergence. Borrowing
from conventional artificial neural network training, a qual-
ity measure is converged when its rate of change between
steps falls below a set threshold. More specifically, when
∆Q(t, d) < ε with ∆Q defined in (4).

∆Q(t, d) =
1

d

t∑
i=t−d

Qi −Qi−1

Qi−1
(4)

With t the iteration step, d the number of steps to include, and
Qi the value of the quality measure at step i. The average of
several steps is used to prevent a smaller than expected change
between steps from causing premature convergence. For the
following experiments we have ε = 0.05 and d = 5. We
should also mention that we set an upper limit of 220 training
iterations where we terminate the experiment regardless of
convergence.

The overall training strategy is as follows:
• Select a map size with a number of neurons equal to

approximately 75% of the training data size for each data
set.

• For each iteration step a sufficiently large number of
training runs is used to determine the value of the quality
measure at that step. Here we construct 300 maps at each
step.

• For each of the training runs at some iteration step: the
data set is shuffled, the map is randomly initialized and
trained, and the quality measure is calculated.

• The resulting maps and values are stored for subsequent
analysis.

Note that this research is meant to compare the quality
measures and not to determine the optimal parameters for
SOM training. Beyond the iterations, map size, and map ini-
tialization, all other parameters (i.e. learning rate (α = 0.35),
etc.) are kept static.

B. Evaluation

Although the SOM algorithm uses unsupervised learning
(i.e. a target attribute is not factored into the training), labeled
data is used to assist in evaluating the structure of the con-
verged maps. For the purposes of this analysis, a SOM can be
interpreted in two ways: as a clustering for the input data and
as a classifier for the input data. Both of these approaches are
used to evaluate how well a trained map models the underlying
structure of the data.

Extraction of the clustering structure of a map is accom-
plished by viewing the map as a planar graph in which clusters
are connected components [3]. The clustering structure can
then be validated against the labels of the input data by ex-
amining cluster homogeneity and completeness. Homogeneity
means that only data points with the same class are assigned to
the same cluster; completeness means that all data points with
the same class are assigned to the same cluster. The V-measure
[7] is an entropy-based cluster evaluation measure that reports
a single score combining homogeneity and completeness.

When a map is interpreted as a classifier, the label of an
input instance can be predicted by finding its best matching
neuron and assigning the majority label of the data points
mapped to that neuron to the input instance. We can express
the quality of the map in terms of its labeling accuracy.

The maps converged under each quality measure will be
compared using the clustering (V-measure) and classifier (la-
beling accuracy) views of the maps.

V. DATA

Both synthetic and real world data sets were selected
to represent a variety of scenarios under which the quality
measures are compared. In the following sections we briefly
describe the data sets.

A. Fundamental Clustering Problem Suite

The Fundamental Clustering Problem Suite (FCPS) [16] is a
collection of synthetic data sets that present various problems
for clustering algorithms (e.g. overlapping clusters, linearly
non-separable clusters, etc.) . All of the data sets have class
labels and are in three dimensions which makes them ideal for
both evaluating the accuracy of a clustering and visualization.
The data sets we used for experimentation are Hepta and
Chainlink

The Hepta data set was selected based on the assumption
that a well-trained SOM would model the clustering well. The
data set has well-defined, convex clusters and represents the
simplest case. It has 212 instances and seven classes. It is
visualized in Figure 2.



Fig. 2. Hepta and Chainlink data visualizations, respectively.

TABLE II
Ecoli CLASS COUNTS

cp im pp imU om omL imL imS
143 77 52 35 20 5 2 2

The Chainlink data set was selected knowing that a SOM
could not model it completely. The data set has interlinking
rings as clusters that are non-linearly separable. It has 1000
instances and two classes. It is also visualized in Figure 2.

B. Ecoli

The Ecoli data set [11] is a real world data set consisting
of attributes for classifying the localization site of E. coli
proteins. The data has seven real-valued independent attributes.
The dependent attribute is a categorical variable with eight
levels. The data has 336 instances and the value counts for
the various levels is highly unbalanced as shown in Table II.

VI. RESULTS

For each of our data sets, the convergence of the quality
measures is visualized and the clustering quality and label
accuracy are graphed.

A. FCPS Results

1) Hepta: Figure 3 shows the graphs with the values of
each quality measure as a function of the number of iterations
using a map of size 10×15 for the Hepta data set. The graphs
display the mean and the range of each of the quality measure
values. The range indicates that due to the stochastic nature of
the SOM training algorithm, the outcome of the training runs
with the same data set is not deterministic.

Note that all of the quality measures display a convergence
behavior and can be considered to be converged after about
32,000 training iterations. Because the Hepta data set is the
prototypical clustering data set with seven convex clusters,
we can observe that the error quality measures report very
small errors and the other quality measures report values close
to 1 after they have converged. The convergence behavior is
consistent with our convergence graph in Figure 4.

The blue line in Figure 4 represents the label accuracy
(lab.acc) with respect to the number of training iterations
and the red line represents the V-measure (v.measure) with
respect to the number of training iterations. We then plot the

Fig. 3. Hepta quality measures.

Fig. 4. Hepta V-measure and labeling accuracy.



convergence points of our various quality measures according
to (4) against the V-measure and labeling accuracy.

What is striking is that the topographic error (te) is the most
optimistic quality measure reporting convergence at about
32,000 iterations and that the population-based convergence
(cv) is the most conservative quality measure reporting conver-
gence at around 250,000 iterations. However, all of the quality
measures capture the essence of SOM learning. We can easily
observe that both the V-measure and the labeling accuracy
are at 100% long before any of the quality measures report
convergence.

The large difference in terms of reported convergence by
the topographic error and the population-based convergence is
due to the fact that neighborhoods and clusters start forming
very early during learning but that learning the underlying data
distribution takes some time. Therefore, the topographic error
is a good quality estimate for the underlying cluster structure
and topology but not a good estimate for the underlying data
fit.

What is perhaps interesting is that the converse seems to
hold: once the map has learned the underlying data dis-
tribution, it follows that it has learned the topology and
neighborhoods in the data. This observation certainly holds for
all the remaining experiments; and has been our observation
during the running of many other experiments.

2) Chainlink: Figure 5 shows the graphs with the values of
each quality measure as a function of the number of iterations
using a map of size 25×30 for the Chainlink data set. We can
easily observe a convergence behavior of the various quality
measures similar to the one we observed for Hepta. With
the exception perhaps of the graph for the population-based
convergence. Here, the mean of the 300 different map does not
appear to have converged at our cutoff of 1,048,576 training
iterations. However, we can observe that the top end of the
range envelope appears to have converged and therefore we
expect that the mean would also converge with additional
training iterations. Here we use the cutoff value of 220 training
iterations as our convergence point.

Recall that the Chainlink data set is made up of two
interlocking rings that are not linearly separable. Therefore,
the structure cannot be completely modeled by the SOM.
Observe that only the population-based convergence reports
this fact by converging on a value much less than 1 (we can
assume that because the upper bound of the range envelope
has converged to the value 0.7); implying that the SOM cannot
represent the underlying data distribution appropriately. All
other quality measures converge on an almost perfect score,
which seems to highlight the fact that assessing the quality
of a map by only looking at local structures leads to overly
optimistic assessments.

The V-measure and labeling accuracy are shown in Figure 6.
Note that the V-measure does not exceed 0.45, again highlight-
ing the fact that the interlocking rings cannot be represented
appropriately by the SOM. This is consistent with the finding
using the population-based convergence.

Fig. 5. Chainlink quality measures.

Fig. 6. Chainlink V-measure and labeling accuracy.



Surprisingly, the labeling accuracy for this map is at 100%
after only about 1,000 iterations. The discrepancy between the
V-measure and the labeling accuracy can be explained by the
fact that labels for an input are computed by looking at the
majority label at each neuron.

From Figure 6 we can see that the population-based conver-
gence quality measure (cv) and the topographic error (te) are
the most conservative ones. Our observation that convergence
of the population-based quality measure implies that all other
quality measures have also converged still holds.

B. Ecoli Results

Figure 7 shows the graphs with the values of each quality
measure as a function of the number of iterations using a
map of size 14 × 18 for the Ecoli data set. We can observe
the now familiar convergence pattern for each of the quality
measures, again with the exception perhaps of the graph for the
population-based convergence. As before we can observe that
the top end of the range envelope appears to have converged
and therefore we expect that the mean would also converge
with additional training iterations. Here we use the cutoff value
of 220 training iterations as our convergence point.

All of the quality measures with the exception of the
population-based convergence report near perfect scores after
convergence. This is somewhat disconcerting because a peek
at Figure 8 shows that neither the V-measure nor the labeling
accuracy reach 100%. Only the mean of the population-based
convergence reports a value of about 0.9 of the top of the
range envelope at the cut-off indicating that the map cannot
model the given cluster structure completely.

The Ecoli data set comprises eight clusters in 7-dimensional
space where some of the clusters are very small (see Table II).
It is therefore not surprising that the map cannot completely
model this cluster structure. Figure 1 shows a slightly larger
map at 15 × 20 of the Ecoli data set after 100,000 iterations
with a population-based convergence of 0.9. It is easy to
see that of the eight existing clusters the map only modeled
three (light areas surrounded by darker areas). With a close
inspection of the labels that appear in each of the clusters,
we can see that only the three larger classes were modeled
and that the clusters themselves are not homogeneous. This
reinforces the findings of Figure 8 that a complete modeling
of this data set is not possible with this size map.

Figure 8 also confirms what we have seen before, that
the population-based convergence is the most conservative of
all the quality measures. Meaning that convergence of this
measure implies convergence of all the other measures.

C. Observations and Remarks

The previous set of experiments has shown that the
population-based convergence is the most conservative of the
quality measures studied here in a twofold sense:

1) The convergence of this quality measure implies conver-
gence of all the other measures studied here, and

Fig. 7. Ecoli quality measures.

Fig. 8. Ecoli V-measure and labeling accuracy.



2) it is conservative in its estimate of the quality of the
produced map and is consistent with the V-measure
analysis of the learned cluster structures.

The latter point is particularly important because ultimately we
would like to use these measures to tell us something about the
quality of the maps that we are constructing. If we are using
a measure that is overly optimistic, we are tempted to make
unwarranted inferences on the cluster structures displayed on
the induced map.

Here we have kept a number of parameters static. One of
question one might ask is: is it not possible that some of these
parameters may affect the evaluated measures differently? This
is certainly possible. However, it does not matter if on other
maps the measures would behave differently. We have shown
that they do not work properly in this setting and therefore are
unreliable according to Popper’s theory falsification [21].

Our findings here reinforce our earlier findings [19]
that population-based convergence is more conservative than
neighborhood stability [20].

From Table I we see that population-based convergence
is computationally the most efficient quality measure where
execution time grows linearly with the number of training
samples. Compare this to the exponential nature of trust-
worthiness and neighborhood preservation which makes these
measures practical only for the smallest of training sets. The
complexity of quantization and topographic error grows as the
square of the number of training examples, again limiting their
usefulness for large data sets. In [2] we proposed the estimated
topographic accuracy as a computationally efficient analog to
the topographic error.

VII. CONCLUSIONS

By looking at our five quality measure values as a function
of training iterations and evaluating the values they report
against cluster quality assessments such as the V-measure and
labeling accuracy, we found that, with the exception of the
population-based convergence, the quality measures were too
optimistic in the sense that they reported near perfect scores
for maps that were demonstrably far from perfect. This has
far reaching consequences in that the user might be tempted
to make unwarranted inferences on the cluster structures dis-
played on the induced map reported to be perfectly converged
if, in fact, it has not.

Another result that surprised us is that reporting conver-
gence on the underlying distribution using the population-
based convergence implies convergence of all the other quality
measures. In hindsight this should perhaps be obvious in the
sense that, in an attempt to model the underlying distribution,
the SOM will in fact reconstruct clusters and neighborhoods
– the targets of many of the proposed quality measures.

Finally, it turns out that the population-based convergence is
the most computationally efficient quality measure considered
here. Its execution time grows linearly with the size of the
training data, making it an extremely practical tool for the
evaluation of maps.

We have implemented the population-based convergence in
our popsom R-package [6]. We will be releasing a Python-
based version of this package in the near future.
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