
DECLARATIVE PROGRAMMING IN MODERN
IMPERATIVE LANGUAGES

Lutz Hamel
Dept. of Computer Science & Statistics

University of Rhode Island
Kingston, Rhode Island, USA

ABSTRACT

Declarative features provide new ways of solving programming problems in imperative programming languages. It is now
a given that modern imperative programming languages support declarative features such as first-class functions and
higher-order programming, and increasingly pattern matching. To further explore declarative programming and in
particular pattern matching in the imperative programming paradigm we designed and implemented the Asteroid
programming language. Asteroid is an imperative, dynamically typed programming language that not only supports
common declarative features, but also supports pattern matching to a degree not found in many imperative languages and,
in particular, it supports first-class patterns. In this short paper we briefly review some common declarative programming
techniques and then briefly survey programming in Asteroid with first-class patterns.

KEYWORDS

Declarative programming; pattern matching; first-class patterns; first-class functions; higher-order programming.

1. INTRODUCTION

Declarative features provide new ways of solving programming problems in imperative programming
languages. It is now a given that modern imperative programming languages support declarative features such
as functions as first-class citizens. This includes anonymous functions and higher-order programming features
such as the map function. Also supported by many imperative programming languages are declarative features
such as list comprehensions and generator expressions. However, from our perspective the most interesting
development is the increasing adoption of pattern matching, a declarative programming technique. This not
only includes structural matching on structures like lists and tuples but also conditional pattern matching and
pattern matching on objects. The latter is particularly interesting because it stands in direct conflict with the
classical object-oriented notion of encapsulation and protection of object members. Pattern matching provides
novel ways of solving problems analogous to the way higher-order programming provides novel ways of
accomplishing things.

To explore declarative programming and in particular pattern matching in the imperative programming
paradigm further we designed and implemented the Asteroid programming language (asteroid-lang.org).
Asteroid is an imperative, dynamically typed programming language that not only supports common pattern
matching features like the match and let statements, but it also supports pattern matching on function arguments
in the style of functional programming languages like ML (Milner, 1997). Furthermore, Asteroid supports
first-class patterns (Jay & Kesner, 2009). The latter opens whole new avenues of programming language
research such as pattern reusability, patterns as constraints, and patterns as enhancement to type systems. The
contributions of this short paper are (1) the placement of our current research into the context of the current
declarative evolution of modern imperative programming languages and (2) a brief demonstration of the utility
of first-class patterns including our pattern scope operator and our improved conditional pattern matching
operator which allows the developer to use patterns as constraints on other patterns.

Our notion of first-class patterns is related to the ideas of first-class dynamic types developed in (Homer et
al., 2019) but drastically differs from first-class patterns in Haskell (Tullsen, 2000) where they are treated as

anonymous functions. The first-class patterns in F#, also known as active patterns (Syme, 2020), are limited
in their application compared to our more general notion of first-class pattern.

An imperative language similar to ours that also implements first-class patterns is Thorn (Bloom & Hirzel,
2012). Unfortunately, that language is no longer under development. Furthermore, our ideas of patterns
constraining patterns as well as our pattern scope operator seem to be novel.

The remainder of the paper is structured as follows. Section 2 is a brief survey of the most common
declarative features found in today’s imperative programming languages and places our work in the context of
those features. Section 3 introduces first-class patterns and highlights some of our findings with regards to
programming with first-class patterns. The features discussed here will be available in our upcoming 2.0
release. Section 4 presents our conclusions and points to some interesting directions for further work.

2. DECLARATIVE PROGRAMMING

Declarative programming features are now implemented to varying degrees by almost every modern, popular
programming language. We define popularity of a programming language as being in the top ten programming
languages on indexes like TIOBE (www.tiobe.com/tiobe-index) and IEEE (spectrum.ieee.org/top-
programming-languages-2022) and we define modern by the fact that a programming language was initially
designed/release from the 1990’s onward. This includes languages like Go (go.dev), Java (www.java.com),
JavaScript (Severance, 2012), Python (www.python.org), R (www.r-project.org), Rust (www.rust-lang.org),
and Swift (www.swift.org).

The power of declarative features is that they provide new ways of accomplishing programming tasks in
imperative programming languages. Consider the task of transforming a list. Higher-order programming
techniques allow this to be done without explicit looping as in this JavaScript code snippet that transforms an
integer list into a list of squared values by mapping an anonymous function onto the integer list,
const numbers = [1, 2, 3, 4, 5];
const squaredNumbers = numbers.map((num) => num * num);

Here the anonymous function (num) => num * num transforms a number into its square and the map function
applies this function to each member of the list producing a new list. The reduce or fold function available in
virtually all functional languages and many of today’s imperative languages is a variation on the map function.
Here, a given list is reduced or folded into a single value. Consider the problem of checking whether all
elements on a list are positive values. Instead of writing a loop which traverses the list and checks whether the
elements fulfill the constraint, the reduce function allows us to accomplish this with a single expression,
Asteroid 2.0.1
(c) University of Rhode Island
Type "help" for additional information
ast> [1, 2, 3, 4, 5] @reduce (lambda with (acc,i) do (i > 0) and acc, true)
true
ast> [1, 2, 3, -4, 5] @reduce (lambda with (acc,i) do (i > 0) and acc, true)
false
ast>

In this Asteroid example the first list is reduced to the value true, and the second list is reduced to the value
false. List comprehensions and generator expressions are another feature that is available in many modern
imperative programming languages. These expressions allow us to construct lists again without explicit
looping constructs. The following is a code snippet in Swift demonstrating list comprehensions by computing
a list of squares,
let squaredNumbers = [number * number for number in 1...5]

The construction on the right of the let statement is a list comprehension. In languages that do not support list
comprehensions directly, higher-order programming techniques like we have seen in the above JavaScript
example can usually be employed in order to achieve similar results.

This brings us to pattern matching, an increasingly important part of declarative programming in imperative
languages. For example, the match statement, which supports full structural pattern matching, was added to
Python very recently (Kohn et al., 2020). The simplest form of pattern matching is found in let/assignment

statements. The following Rust code snippet illustrates accessing the components of a Point object using
pattern matching (also called destructuring),
struct Point { x: i32, y: i32 } // define a Point structure
let p = Point { x: 5, y: 10 }; // instantiate a Point object using a constructor
let Point { x: a, y: b } = p; // destructure a Point object using a pattern
assert_eq!(a, 5);
assert_eq!(b, 10);

The construction on the left of the equal sign on the third line of the code above is called a pattern. The power
of this declarative programming techniques derives from the fact that a pattern mirrors the structure of the
object to be destructured; in this case it is the Point object whose structure is defined on the first line. Notice
that the pattern-match instantiates the two variables a and b with the contents of the given object—therefore
the notion of destructuring.

In general, more advanced pattern matching techniques are available in match statements. The following
Python code snippet demonstrates the use of the match statement applied to a list structure,
def f(data):
 match data:
 case []:
 return("Empty list.")
 case [x, *_] if isinstance(x, int) and x > 0:
 return("List whose first element is a positive integer.")
 case _:
 return("Unknown object.")

Here we define a function f that uses the match statement and pattern matching to analyze the list passed to the
function. The first case clause uses an empty list pattern to detect whether the data variable contains an empty
list. The second case clause is interesting in that the pattern can match non-empty lists of any length and then
uses a conditional pattern-match to only match lists whose first element is a positive integer. The last case
clause uses a wild-card pattern which matches any object and works as a default case. All the above declarative
programming features are also available in our Asteroid programming language.

Before we move on to first-class patterns it is interesting to look at function invocation. The imperative
languages mentioned above except for Asteroid look at function invocation as a “function call” with a function
name and a list of parameters to pass to the function. This is different from the more mathematically motivated
view of function invocation as “function application” in the declarative paradigm. Here a function is applied
to a single object. This single object could be a member of a cross-product set to accommodate multivariate
functions. The imperative view of function invocation as function call has unexpected implications at function
invocation sites. For example, in Python this means that for calls to a function foo which expects two
parameters we have foo(1,2)¹foo((1,2)), that is, parenthesizing an expression changes its semantics at the
function call site. In the declarative view of function invocation as function application to a single object this
paradoxical problem does not occur. Consider the snippet of Asteroid which supports function application,
Asteroid 2.0.1
(c) University of Rhode Island
Type "help" for additional information
ast> function foo with (a,b) do a+b end. –- define foo
ast> foo(1,2) == foo((1,2))
true
ast>

Since Asteroid looks at function invocations as function applications, parenthesizing the object (1,2) has no
impact on the semantics of the function application.

3. FIRST-CLASS PATTERNS.

To further explore pattern matching in imperative programming we implemented patterns as first-class entities
in Asteroid. In Asteroid, first-class patterns are introduced with the keyword pattern and patterns themselves
are first-class values that we can store in variables, amongst other things, and then reference them when we
want to use them like so,

let p = pattern (x,y).
let *p = (1,2).

The first let statement assigns a pattern value to the variable p and on the left side of the second let statement
we dereference the pattern stored in variable p and use it to match against the term (1,2) on the right side. The
match introduces the bindings x ® 1 and y ® 2 into the current scope.

Promoting patterns to first-class status separates pattern definition points from pattern usage points enabling
new use-cases for pattern matching. Consider the following Asteroid code snippet,
let pos_int = pattern x if (x is %integer) and (x > 0).
let neg_int = pattern x if (x is %integer) and (x < 0).

function fact
 with 0 do return 1.
 with *pos_int do return x*fact(x-1).
 with *neg_int do throw Error("illegal value: "+tostring(x)).
end

function sign
 with 0 do return 1.
 with *pos_int do return 1.
 with *neg_int do return -1.
end

The first two lines define first-class patterns for positive and negative integers, respectively. Next, we define
the function fact which computes the factorial of an integer. We use pattern matching on the function argument
to determine what value to return. Most notably, we use the patterns defined earlier to accomplish this. The
first two with-clauses define the usual behavior for a factorial computation. Observe that the constant 0 is also
considered a pattern. The last with-clause matches if the function is called with a negative integer and throws
an exception indicating so. If the function is called with a value that does not match any of the patterns, then
the runtime system will throw an exception indicating that the function was called with a value that the function
does not recognize.

Next, we define the mathematical sign function which returns the value 1 for integer input values greater
than or equal to zero. Otherwise it returns the value -1. Again we use pattern matching on the function
argument and, most notably, we reuse our positive and negative integer patterns.

First-class patterns promote pattern reuse and encourage developing interesting and perhaps complex
patterns since they are no longer “one shot deals” but can be reused in many different contexts. We leverage
this insight in our current library design for Asteroid where we plan to publish a pattern module containing
reusable patterns.

It is interesting to observe that by restricting the scope of the variables instantiated by a pattern to just the
pattern itself using the %[…]% scope operator, patterns essentially become constraints and as such behave
almost like data types. The latter is particularly appealing in dynamically typed languages like Asteroid as it
allows the developer to recover some sort of type safety. The following Asteroid code snippet demonstrates
this,
let nat = pattern %[x if (x is %integer) and (x >= 0)]%.

function nat_add with (a,b):(*nat,*nat) do
 return a+b.
end

The first line defines a first-class pattern for the natural numbers. Observe the %[…]% scope operator which
ensures that x will not be bound into the current scope when the pattern is used but is only visible within the
pattern.

The function definition for nat_add needs some explanation. First observe that the function expects a pair
of values given by the pattern (a,b). Next, we use our colon pattern construction which is a shorthand notation
for a conditional pattern match: The match of pattern (a,b) is only successful if this pattern matches a pair of
natural numbers (*nat,*nat). In that way, the pattern (*nat,*nat) acts like a data type restricting the values that
can be passed to the function. Note, here we have patterns constraining other patterns. The pattern (*nat,*nat)
also demonstrates that first-class patterns allow us to construct patterns in a modular fashion by assembling
complex patterns from simpler ones.

4. CONCLUSIONS

We discussed declarative programming in today’s imperative languages. Many declarative features have been
seamlessly adopted and enable new problem solutions in the imperative paradigm. One interesting note is that
function invocations in imperative languages have resisted the shift to declarative programming. Function
invocations are still viewed as function calls with a function name and a parameter list. This leads to
paradoxical issues as shown above. We should note that Asteroid supports the more declarative view of
function invocation via function application.

Pattern matching is being increasingly adopted by imperative languages and first-class patterns as
implemented in the Asteroid programming language are a natural extension to the current declarative
programming evolution within modern, imperative programming languages. Pattern reuse and patterns viewed
as constraints are interesting applications of first-class patterns.

We are currently implementing a pattern library to be shipped with the next release of Asteroid. One of the
more intricate patterns in this library is a pattern that describes integer lists,
pattern %[(x:%list) if x @reduce (lambda with (acc,i) do (i is %integer) and acc, true)]%

For dynamically typed languages where lists are inherently polymorphic this is an important pattern because it
allows for some type safety on lists. Also notice that as a first-class pattern we only have to specify it once and
then use it wherever we need it.

Another topic we are exploring are parameterized patterns. That is, patterns that take other patterns as
parameters. The integer list pattern above is clearly a good candidate for this, where the data type of the list
elements specified as the built-in pattern %integer could be replaced by a pattern parameter specifying the
element type.

REFERENCES

Bloom, B. and Hirzel, M.J., 2012. Robust scripting via patterns. ACM SIGPLAN Notices, 48(2), pp.29-40.
Kohn, T., van Rossum, G., Bucher II, G.B. and Levkivskyi, I., 2020, November. Dynamic pattern matching with Python.

In Proceedings of the 16th ACM SIGPLAN International Symposium on Dynamic Languages (pp. 85-98).
Homer, M., Jones, T. and Noble, J., 2019, October. First-class dynamic types. In Proceedings of the 15th ACM SIGPLAN

International Symposium on Dynamic Languages (pp. 1-14).
Jay, B. and Kesner, D., 2009. First-class patterns. Journal of Functional Programming, 19(2), pp.191-225.
Milner, R., Tofte, M., Harper, R. and MacQueen, D., 1997. The definition of standard ML: revised. MIT press.
Severance, C., 2012. Javascript: Designing a language in 10 days. Computer, 45(2), pp.7-8.
Syme, D., 2020. The early history of F#. Proceedings of the ACM on Programming Languages, 4(HOPL), pp.1-58.

