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ABSTRACT 

Declarative features provide new ways of solving programming problems in imperative programming languages. It is now 
a given that modern imperative programming languages support declarative features such as first-class functions and 
higher-order programming, and increasingly pattern matching. To further explore declarative programming and in 
particular pattern matching in the imperative programming paradigm we designed and implemented the Asteroid 
programming language.  Asteroid is an imperative, dynamically typed programming language that not only supports 
common declarative features, but also supports pattern matching to a degree not found in many imperative languages and, 
in particular, it supports first-class patterns.  In this short paper we briefly review some common declarative programming 
techniques and then briefly survey programming in Asteroid with first-class patterns. 
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1. INTRODUCTION 

Declarative features provide new ways of solving programming problems in imperative programming 
languages. It is now a given that modern imperative programming languages support declarative features such 
as functions as first-class citizens.  This includes anonymous functions and higher-order programming features 
such as the map function.  Also supported by many imperative programming languages are declarative features 
such as list comprehensions and generator expressions.  However, from our perspective the most interesting 
development is the increasing adoption of pattern matching, a declarative programming technique.  This not 
only includes structural matching on structures like lists and tuples but also conditional pattern matching and 
pattern matching on objects.  The latter is particularly interesting because it stands in direct conflict with the 
classical object-oriented notion of encapsulation and protection of object members.  Pattern matching provides 
novel ways of solving problems analogous to the way higher-order programming provides novel ways of 
accomplishing things. 

To explore declarative programming and in particular pattern matching in the imperative programming 
paradigm further we designed and implemented the Asteroid programming language (asteroid-lang.org).  
Asteroid is an imperative, dynamically typed programming language that not only supports common pattern 
matching features like the match and let statements, but it also supports pattern matching on function arguments 
in the style of functional programming languages like ML (Milner, 1997).  Furthermore, Asteroid supports 
first-class patterns (Jay & Kesner, 2009). The latter opens whole new avenues of programming language 
research such as pattern reusability, patterns as constraints, and patterns as enhancement to type systems.  The 
contributions of this short paper are (1) the placement of our current research into the context of the current 
declarative evolution of modern imperative programming languages and (2) a brief demonstration of the utility 
of first-class patterns including our pattern scope operator and our improved conditional pattern matching 
operator which allows the developer to use patterns as constraints on other patterns.  

Our notion of first-class patterns is related to the ideas of first-class dynamic types developed in (Homer et 
al., 2019) but drastically differs from first-class patterns in Haskell (Tullsen, 2000) where they are treated as 



anonymous functions.  The first-class patterns in F#, also known as active patterns (Syme, 2020), are limited 
in their application compared to our more general notion of first-class pattern. 

An imperative language similar to ours that also implements first-class patterns is Thorn (Bloom & Hirzel, 
2012).  Unfortunately, that language is no longer under development.  Furthermore, our ideas of patterns 
constraining patterns as well as our pattern scope operator seem to be novel. 

The remainder of the paper is structured as follows.  Section 2 is a brief survey of the most common 
declarative features found in today’s imperative programming languages and places our work in the context of 
those features.  Section 3 introduces first-class patterns and highlights some of our findings with regards to 
programming with first-class patterns.  The features discussed here will be available in our upcoming 2.0 
release. Section 4 presents our conclusions and points to some interesting directions for further work. 

2. DECLARATIVE PROGRAMMING 

Declarative programming features are now implemented to varying degrees by almost every modern, popular 
programming language. We define popularity of a programming language as being in the top ten programming 
languages on indexes like TIOBE (www.tiobe.com/tiobe-index) and IEEE (spectrum.ieee.org/top-
programming-languages-2022) and we define modern by the fact that a programming language was initially 
designed/release from the 1990’s onward. This includes languages like Go (go.dev), Java (www.java.com), 
JavaScript (Severance, 2012), Python (www.python.org),  R (www.r-project.org), Rust (www.rust-lang.org), 
and Swift (www.swift.org).   

The power of declarative features is that they provide new ways of accomplishing programming tasks in 
imperative programming languages. Consider the task of transforming a list. Higher-order programming 
techniques allow this to be done without explicit looping as in this JavaScript code snippet that transforms an 
integer list into a list of squared values by mapping an anonymous function onto the integer list,  
const numbers = [1, 2, 3, 4, 5]; 
const squaredNumbers = numbers.map((num) => num * num); 

Here the anonymous function (num) => num * num transforms a number into its square and the map function 
applies this function to each member of the list producing a new list.  The reduce or fold function available in 
virtually all functional languages and many of today’s imperative languages is a variation on the map function. 
Here, a given list is reduced or folded into a single value.  Consider the problem of checking whether all 
elements on a list are positive values.  Instead of writing a loop which traverses the list and checks whether the 
elements fulfill the constraint, the reduce function allows us to accomplish this with a single expression, 
Asteroid 2.0.1 
(c) University of Rhode Island 
Type "help" for additional information 
ast> [1, 2, 3, 4, 5] @reduce (lambda with (acc,i) do (i > 0) and acc, true) 
true 
ast> [1, 2, 3, -4, 5] @reduce (lambda with (acc,i) do (i > 0) and acc, true) 
false 
ast>  

In this Asteroid example the first list is reduced to the value true, and the second list is reduced to the value 
false.  List comprehensions and generator expressions are another feature that is available in many modern 
imperative programming languages.  These expressions allow us to construct lists again without explicit 
looping constructs. The following is a code snippet in Swift demonstrating list comprehensions by computing 
a list of squares, 
let squaredNumbers = [number * number for number in 1...5] 

The construction on the right of the let statement is a list comprehension.  In languages that do not support list 
comprehensions directly, higher-order programming techniques like we have seen in the above JavaScript 
example can usually be employed in order to achieve similar results.   

This brings us to pattern matching, an increasingly important part of declarative programming in imperative 
languages.  For example, the match statement, which supports full structural pattern matching, was added to 
Python very recently (Kohn et al., 2020). The simplest form of pattern matching is found in let/assignment 



statements.  The following Rust code snippet illustrates accessing the components of a Point object using 
pattern matching (also called destructuring), 
struct Point { x: i32, y: i32 } // define a Point structure 
let p = Point { x: 5, y: 10 };  // instantiate a Point object using a constructor 
let Point { x: a, y: b } = p;   // destructure a Point object using a pattern 
assert_eq!(a, 5); 
assert_eq!(b, 10); 

The construction on the left of the equal sign on the third line of the code above is called a pattern.  The power 
of this declarative programming techniques derives from the fact that a pattern mirrors the structure of the 
object to be destructured; in this case it is the Point object whose structure is defined on the first line.  Notice 
that the pattern-match instantiates the two variables a and b with the contents of the given object—therefore 
the notion of destructuring. 

In general, more advanced pattern matching techniques are available in match statements.  The following 
Python code snippet demonstrates the use of the match statement applied to a list structure, 
def f(data): 
   match data: 
        case []: 
            return("Empty list.") 
        case [x, *_] if isinstance(x, int)  and x > 0: 
            return("List whose first element is a positive integer.") 
        case _: 
            return("Unknown object.") 

Here we define a function f that uses the match statement and pattern matching to analyze the list passed to the 
function.  The first case clause uses an empty list pattern to detect whether the data variable contains an empty 
list.  The second case clause is interesting in that the pattern can match non-empty lists of any length and then 
uses a conditional pattern-match to only match lists whose first element is a positive integer.  The last case 
clause uses a wild-card pattern which matches any object and works as a default case.  All the above declarative 
programming features are also available in our Asteroid programming language.  

Before we move on to first-class patterns it is interesting to look at function invocation.  The imperative 
languages mentioned above except for Asteroid look at function invocation as a “function call” with a function 
name and a list of parameters to pass to the function.  This is different from the more mathematically motivated 
view of function invocation as “function application” in the declarative paradigm.  Here a function is applied 
to a single object.  This single object could be a member of a cross-product set to accommodate multivariate 
functions.  The imperative view of function invocation as function call has unexpected implications at function 
invocation sites.  For example, in Python this means that for calls to a function foo which expects two 
parameters we have foo(1,2)¹foo((1,2)), that is, parenthesizing an expression changes its semantics at the 
function call site.  In the declarative view of function invocation as function application to a single object this 
paradoxical problem does not occur.  Consider the snippet of Asteroid which supports function application, 
Asteroid 2.0.1 
(c) University of Rhode Island 
Type "help" for additional information 
ast> function foo with (a,b) do a+b end. –- define foo 
ast> foo(1,2) == foo((1,2)) 
true 
ast> 

Since Asteroid looks at function invocations as function applications, parenthesizing the object (1,2) has no 
impact on the semantics of the function application.  

3. FIRST-CLASS PATTERNS. 

To further explore pattern matching in imperative programming we implemented patterns as first-class entities 
in Asteroid.  In Asteroid, first-class patterns are introduced with the keyword pattern and patterns themselves 
are first-class values that we can store in variables, amongst other things, and then reference them when we 
want to use them like so, 



let p = pattern (x,y). 
let *p = (1,2). 

The first let statement assigns a pattern value to the variable p and on the left side of the second let statement 
we dereference the pattern stored in variable p and use it to match against the term (1,2) on the right side.  The 
match introduces the bindings x ® 1 and y ® 2 into the current scope. 

Promoting patterns to first-class status separates pattern definition points from pattern usage points enabling 
new use-cases for pattern matching.  Consider the following Asteroid code snippet, 
let pos_int = pattern x if (x is %integer) and (x > 0). 
let neg_int = pattern x if (x is %integer) and (x < 0). 
 
function fact 
   with 0 do return 1. 
   with *pos_int do return x*fact(x-1). 
   with *neg_int do throw Error("illegal value: "+tostring(x)). 
end 
 
function sign 
   with 0 do return 1. 
   with *pos_int do return 1. 
   with *neg_int do return -1. 
end 

The first two lines define first-class patterns for positive and negative integers, respectively.  Next, we define 
the function fact which computes the factorial of an integer.  We use pattern matching on the function argument 
to determine what value to return.  Most notably, we use the patterns defined earlier to accomplish this.  The 
first two with-clauses define the usual behavior for a factorial computation.  Observe that the constant 0 is also 
considered a pattern.  The last with-clause matches if the function is called with a negative integer and throws 
an exception indicating so.  If the function is called with a value that does not match any of the patterns, then 
the runtime system will throw an exception indicating that the function was called with a value that the function 
does not recognize. 

Next, we define the mathematical sign function which returns the value 1 for integer input values greater 
than or equal to zero.  Otherwise it returns the value -1.  Again we use pattern matching on the function 
argument and, most notably, we reuse our positive and negative integer patterns.  

First-class patterns promote pattern reuse and encourage developing interesting and perhaps complex 
patterns since they are no longer “one shot deals” but can be reused in many different contexts.  We leverage 
this insight in our current library design for Asteroid where we plan to publish a pattern module containing 
reusable patterns. 

It is interesting to observe that by restricting the scope of the variables instantiated by a pattern to just the 
pattern itself using the %[…]% scope operator, patterns essentially become constraints and as such behave 
almost like data types.  The latter is particularly appealing in dynamically typed languages like Asteroid as it 
allows the developer to recover some sort of type safety.  The following Asteroid code snippet demonstrates 
this, 
let nat = pattern %[x if (x is %integer) and (x >= 0)]%. 
 
function nat_add with (a,b):(*nat,*nat) do 
   return a+b. 
end 

The first line defines a first-class pattern for the natural numbers.  Observe the %[…]% scope operator which 
ensures that x will not be bound into the current scope when the pattern is used but is only visible within the 
pattern.   

The function definition for nat_add needs some explanation.  First observe that the function expects a pair 
of values given by the pattern (a,b).  Next, we use our colon pattern construction which is a shorthand notation 
for a conditional pattern match: The match of pattern (a,b) is only successful if this pattern matches a pair of 
natural numbers (*nat,*nat).  In that way, the pattern (*nat,*nat) acts like a data type restricting the values that 
can be passed to the function.  Note, here we have patterns constraining other patterns. The pattern (*nat,*nat) 
also demonstrates that first-class patterns allow us to construct patterns in a modular fashion by assembling 
complex patterns from simpler ones. 



4. CONCLUSIONS 

We discussed declarative programming in today’s imperative languages.  Many declarative features have been 
seamlessly adopted and enable new problem solutions in the imperative paradigm.  One interesting note is that 
function invocations in imperative languages have resisted the shift to declarative programming.  Function 
invocations are still viewed as function calls with a function name and a parameter list. This leads to 
paradoxical issues as shown above.  We should note that Asteroid supports the more declarative view of 
function invocation via function application. 

Pattern matching is being increasingly adopted by imperative languages and first-class patterns as 
implemented in the Asteroid programming language are a natural extension to the current declarative 
programming evolution within modern, imperative programming languages.  Pattern reuse and patterns viewed 
as constraints are interesting applications of first-class patterns. 

We are currently implementing a pattern library to be shipped with the next release of Asteroid.  One of the 
more intricate patterns in this library is a pattern that describes integer lists, 
pattern %[(x:%list) if x @reduce (lambda with (acc,i) do (i is %integer) and acc, true)]% 

For dynamically typed languages where lists are inherently polymorphic this is an important pattern because it 
allows for some type safety on lists.  Also notice that as a first-class pattern we only have to specify it once and 
then use it wherever we need it. 

Another topic we are exploring are parameterized patterns.  That is, patterns that take other patterns as 
parameters.  The integer list pattern above is clearly a good candidate for this, where the data type of the list 
elements specified as the built-in pattern %integer could be replaced by a pattern parameter specifying the 
element type. 
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