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Abstract - Establishing structure-function relationships 

on the proteomic scale is a unique challenge faced by 
bioinformatics and molecular biosciences.  Large protein 
families represent natural libraries of analogues of a given 
catalytic or protein function, thus making them ideal 
targets for the investigation of structure-function 
relationships in proteins. To this end, we have developed a 
new technique for analyzing large amounts of detailed 
molecular structure information focusing on the functional 
centers of homologous proteins.  Our approach uses 
unsupervised machine learning, in particular, self-
organizing maps.  The information captured by a self-
organizing map and stored in its reference models 
highlights the essential structure of the proteins under 
investigation and can be effectively used to study detailed 
structural differences and similarities among homologous 
proteins.  Our preliminary results obtained with a 
prototype based on these techniques demonstrate that we 
can classify proteins and identify common and unique 
structures within a family and, more importantly, identify 
common and unique structural features of different 
conformations of the same protein. The approach 
developed here outperforms many of today’s structure 
analysis tools.  These tools are usually either limited by the 
number of proteins they can process at the same time or 
they are limited by the structural resolution they can 
accommodate, that is, many of the structural analysis tools 
that can handle multiple proteins at the same time limit 
themselves to secondary structure analysis and therefore 
miss fine structural nuances within proteins.  It is 
worthwhile noting that the ability of our approach to 
analyze different conformations of the same protein is 
beyond the capabilities of multiple residue sequence 
alignment techniques.    

I. INTRODUCTION 
The eukaryotic proteome contains a number of large 

protein families, including the protein kinases, GTPases, and 
G-protein coupled receptors, vital to the proper development 
and functioning of the cells in an organism.  For example, the 
protein kinase family contains over 500 proteins that are 
involved in various specific cellular signal pathways 

controlling virtually all aspects of cellular function [1].  
Disruption of their function or regulation by gene 
amplification or mutations often leads to a number of serious 
diseases, making many of the protein families important 
targets for drug discovery. 

Large protein families represent natural libraries of 
analogues of a given catalytic or protein function ideal for the 
investigation of structure-function relationships in proteins.  In 
particular, proteins that belong to large families tend to 
perform similar functions with varying specificities. They 
usually have similar overall structures with minor variations in 
certain substructures. In particular, functional centers enabling 
the protein functions are highly conserved within protein 
families. While these conserved structures are responsible for 
functions that are common to all the proteins within a family, 
the variable substructures tend to be responsible for protein 
specific functions. It is the combination of these common and 
unique functions that gives each member a unique functional 
identity, allowing each to perform specific roles in the cell, 
and to respond to different regulatory signals.  

In order to understand the structural basis of functional 
similarities and specificities of proteins, it is essential that we 
analyze the structural information in detail and correlate the 
structural patterns to the functional patterns.  It is also 
important to distinguish between different functional 
conformations of the same protein.  Here, the function of the 
protein or enzyme is regulated by covalent or non-covalent 
modifications that result in conformational changes.  Many 
proteins have been crystallized in multiple functional states.  
The detailed analysis of the structural information of such 
multiple conformations is beyond the capabilities of tools 
which are mostly concerned with structure alignment based on 
the secondary structure of proteins, e.g., VAST [2, 3], DALI 
[4, 5].  It is also beyond structural comparison tools such as 
K2 [6] due to the fact that these tools can only perform pair 
wise comparisons and do not perform any kind of feature 
selection. 

In this paper, we develop an approach to protein structure 
analysis based on unsupervised learning that goes beyond 
looking at secondary structure.  It distinguishes itself from 
structural comparison tools such as K2 by the fact that it can 
process detailed three dimensional structure information of 
more than two proteins at a time.  Just as in structural 



alignment tools we only consider the structure of the protein 
proper; ligands and other complexes are ignored.  
Theoretically there is no limit as to how many proteins we can 
process at a time; it is purely a function of available 
computing power.  Another essential difference between tools 
such as K2 and our approach is that we compute the relative 
importance of differences and similarities between proteins 
whereas tools such as K2 leave this interpretation up to the 
user. 

To summarize, our unsupervised machine learning 
approach to the structural analysis of proteins based on self-
organizing maps is driven by the following observations: 
i) The poignant structural differences or similarities 

between proteins in a protein family are function 
specific, that is, the specificity of a protein function is 
supported by local structural variations around a 
particular functional center [7].  

ii) Machine learning allows us to discern structural 
patterns by considering many proteins at the same 
time [8].   

iii) Machine learning constructs patterns by considering 
highly predictive or the most relevant structures.  Part 
of the machine learning process is the differentiation 
of relevant versus non-relevant features [9-11].   

iv) A fairly large number of the protein kinase structures 
have already been deposited in PDB [12] (108 
protein structures representing 46 unique protein 
kinases, ca. December 2004) and more are added 
continuously. This is also true for other large protein 
families such as the GTPases [13]. 

v) The detailed structure analysis envisioned here is 
beyond the capabilities of most other structural 
comparison tools. 

The remainder of the paper is structured as follows: 
Section II briefly introduces self-organizing maps.  We 
explain functional center-based protein structure analysis in 
Section III.  Our first set of experiments with GTPases using 
this technique is discussed in Section IV and the second set of 
experiments with human protein kinases is discussed in 
Section V.  In Section VI we highlight some related work and 
we conclude the paper with final remarks and notes on further 
research in Section VII. 

II. SELF-ORGANIZING MAPS 
Self-organizing maps [14] were introduced by Kohonen 

in 1982 and can be viewed as tools to visualize structure in 
high-dimensional data [15].  Self-organizing maps are 
considered members of the class of unsupervised machine 
learning algorithms, since they do not require a predefined 
concept but will learn the structure of a target domain without 
supervision [16]. 

Typically, a self-organizing map consists of a rectangular 
grid of processing units.  Multidimensional observations are 
represented as feature vectors.  Each processing unit in the 
self-organizing map also consists of a feature vector called a 
reference vector or reference model.  The goal of the map is to 

assign values to the reference models on the map in such a 
way that all observations can be represented on the map with 
the smallest possible error. However, the map is constructed 
under constraints similar to regression surfaces in multiple-
regression analysis in the sense that the reference models 
cannot take on arbitrary values but are subject to a smoothing 
function called the neighborhood function.  During training 
the values of the reference models on the map become ordered 
so that similar reference models are close to each other on the 
map and dissimilar ones are further apart from each other.  

The training of the map is carried out by a sequential 
regression process, where t = 1,2,... is the step index.  For each 
observation x(t), we first identify the index c of some 
reference model which represents the best match in terms of 
Euclidean distance by the condition, 
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Here, the index i ranges over all reference models on the map.  
The construction ||x - y|| represents the Euclidean distance 
between feature vectors x and y.  Next, all reference models on 
the map are updated with the following regression rule where 
model index c is the reference model index as computed in (1), 
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Here hci is the neighborhood function that is defined as follows, 
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|c – i| represents the distance between the best matching 
reference model c and some other reference model i on the 
map, β is the neighborhood distance and α is the learning rate. 
It is customary to express α and β also as functions of time.  
This regression is usually repeated over the available 
observations many times during the training phase of the map. 
 

 
Fig. 1: Mapping animals on to a self-organizing map. 

 
An advantage of self-organizing maps is that they have an 

appealing visual representation.  Fig. 1 shows animals mapped 
onto a self-organizing map. Each animal is described by a set 
of 13 features [14] such as how many legs, does it possess 
feathers, does it hunt, etc. Each square in the map represents a 
reference model.  The shading of the map represents the level 
of quantization or mapping error for the map: light shading 



represents a small quantization error; dark shading represents 
a large quantization error.  Contiguous areas of low 
quantization error represent clusters of similar entities. 

For example, in Fig. 1 we find two major clusters: 
mammals and birds.  Within these major clusters we can find 
areas of small quantization error representing sub-clusters 
such as large predatory mammals in the top left corner of the 
map and domesticated birds in the bottom right corner.  The 
same reasoning applies to the maps computed in this paper 
where the structure of proteins is described by appropriate 
feature vectors and the resulting maps display clusters of 
similar protein structures. 

III. FUNCTIONAL CENTER-BASED ANALYSIS  
In the approach discussed here we assume that the 

functional center is the most conserved and stable structure 
across individual proteins within a family. It is the functional 
center that is essential for the core functions of a protein with 
peripheral structures playing important roles in assisting and 
differentiating the functional center.  Comparing proteins 
within a protein family based on the molecular structure 
surrounding a chosen functional center provides a detailed 
view of the structure-function relationship of a given 
functional site on a protein by protein basis.   

In order to maximize the possibility of extracting 
interesting structural patterns around the functional center we 
use local protein alignment techniques. Local alignment 
techniques tend to minimize the local alignment error 
compared to global alignment techniques. Fig. 2 shows the 
alignment of the catalytic loops for the protein kinases 1FPU 
and 1PHK with a) a global technique [17] and b) a local 
technique [18]. As can be seen from Fig. 2, the alignment 
error of the global alignment technique can be substantial due 
to the global optimization criterion.  Global alignment errors 
are often of the same order of magnitude of the typical 
resolution in the crystallographic process and therefore there 
exists the distinct possibility that this global alignment error 
obliterates important structural patterns surrounding a 
functional center. 

  
a) b) 
  

Fig. 2: Global versus local structural alignment of proteins: a) global 
alignment with FAST, b) local alignment with DS Viewer.  The 
numbers indicate the distance in Å between the residues of the 
aligned proteins. 

In our current prototype active site structures are extracted 
with a filter that uses the coordinates of a given residue as the 
functional center and the size of the analysis radius.  The 
resulting protein fragments of the functional sites are then read 
into a tool such as DS ViewerPro [18] for local alignment.  
Fig. 3 illustrates this process for two proteins.  The functional 
centers of both proteins are extracted - black circles in the 
original protein structures a) and b) - and then locally aligned 
in c). 

 
Fig.3: Alignment of active site structures in proteins; a) active site 
of cAMP-dependent protein-kinase (1ATP), b) active site of 
glycogen synthase kinase-3� (1GNG), c) the extracted and locally 
aligned structures surrounding the active sites are shown.  
 
The extracted and locally aligned protein structures are 

then encoded in such a way that they become amenable to 
mechanical analysis.  This encoding encompasses a number of 
steps and is conceptually similar to the process in [19].  Fig. 4 
illustrates this process.  First we represent protein structures 
by the α-carbons of their amino acid residues.  We then 
normalize the positions of these α-carbons according to a grid 
structure with a user defined resolution (typically chosen to be 
close to the resolution of the crystallographic process).  We 
call the resulting structures our normalized protein models. 
Finally, we use the grid structure as a way to partition the 
space holding the protein.  Each subspace in the grid is 
assigned either a 1 or 0 depending on whether it holds a 
normalized α-carbon atom or not, respectively. Finally, we 
unfold the 3D subspace structure into a linear feature vector 
where each element of the feature vector describes the state of 
exactly one subspace.  This gives rise to a feature vector 
which holds a 0 or a 1 at each subspace location depending 
whether the corresponding subspace holds an α-carbon atom 
or not. 

We can view our feature vector computation as a 
transformation from 3D protein structure space into a k-
dimensional feature space where k is the number of subunits 
of the original 3D protein space. In this k-dimensional feature 
space each protein is represented by a k-dimensional bit vector 
and proteins appear as points in this high-dimensional feature 
space.  Moreover, proteins with similar structure will appear 
close together in this feature space, whereas, proteins with



 
 
 
Fig. 4: Protein feature vector construction: a) the 3D structure of a protein without side-chains; b) the normalized structure of the functional center of the protein, 
the crosses pinpoint the normalized locations of the α-carbons representing our normalized model; c) encoding the normalized model by using cubic subunits; if 
there is a normalized α-carbon atom in a cubic subunit then the subunit is assigned a 1, otherwise it is assigned a 0; d) the 3D structure of the cubic subunits is 
unfolded giving rise to a one dimensional feature vector describing the structure of the protein; each position in the feature vector describes the state of a single 
subunit of the original 3D structure. 

 
dissimilar structure will appear further apart.  The self-
organizing map algorithm investigates this space for protein 
similarity/dissimilarity and the structure of the feature space 
can then be visualized with the typical 2D SOM visualization. 

The workflow of our approach is summarized in Fig. 5.  
We start with a set of PDB files describing the 3D structures 
of the proteins under investigation.  We decide on a functional 
center F and an analysis horizon r.  We then extract the 
relevant structures and perform a local alignment.  Finally, we 
compute the normalized models and the corresponding feature 
vectors which are then submitted to the self-organizing map 
for analysis.  Once the analysis is completed the characteristic 
2D visualization for the self-organizing map can be obtained. 
 

 
 

Fig. 5:  Summary of Workflow. 

IV.  STRUCTURAL CLASSIFICATION OF PROTEINS 
The small GTPases include two large subfamilies, the Rho 

GTPases and the Ras GTPases [13].  We used two Rho 
GTPases, 1A2B and 1OW3, and three Ras GTPases, 121P, 
1CTQ, and 1QRA for this experiment. One of the highly 
preserved Glycine residues on the respective p-loops was 

defined as the reaction center F and the analysis horizon r was 
set to be 10Å. 

The question we investigated in this experiment was: Can 
our technique structurally distinguish between Rho and Ras 
GTPases? 

Fig. 6 shows that our technique can structurally distinguish 
between the Rho and Ras GTPases: Rho GTPases appear on 
the left side of the self-organizing map and Ras GTPases 
appear on the right side of the map.  The fact that the proteins 
1A2B and 1OW3 are mapped to one square and the proteins 
1CTQ and 1QRA are mapped to another square, respectively, 
means that each pair shares substantial structure.   

 
 

Fig. 6: Self-organizing map showing the structure analysis of small GTPases: 
Rho GTPases appear on the left side of the map; Ras GTPases appear on the 
right. 

It is comforting that this agrees with the phylogenetic tree 
for these proteins as in Fig. 7 obtained with ClustalW [20].  
This allows us to conclude that structure can be used to 
classify the proteins.  It is perhaps also surprising that our 
small analysis horizon of 10Å suffices to identify the 
characteristic structural features of each subfamily reinforcing 
the power of functional center-based analysis.  If we were to 
identify the functional properties of these GTPases subfamilies 
we could directly relate them to the structural patterns 
identified here. 

 
Fig. 7: A phylogenetic tree of the five GTPases. 

d) 
 

b) a) 

[0 0 1 0 0 ⋅⋅⋅⋅ ⋅⋅⋅⋅0 1 0 0] 

c) 



V.  ANALYZING PROTEIN TYROSINE KINASE REGULATION 
Protein tyrosine kinases are a family of important enzymes 

in cellular regulation [1].  Their activities are often under the 
control of multiple activation and inactivation mechanisms.  It 
is difficult to elucidate the structural basis of their activation 
and inactivation.  Even in cases where the structures of both 
the activated and inactivated kinases are available, it is still 
difficult to determine what conformational changes are 
responsible for the activation or inactivation.  Since the active 
and inactive protein tyrosine kinases are different 
conformations of the same protein with the same primary 
sequence, traditional sequence alignment is completely useless 
for this analysis (as we will demonstrate). We determined 
whether our technique can distinguish active versus inactive 
kinases and identify the conformational features that make a 
kinase active or inactive.  For this purpose we chose two 
families (Table 1).  Csk and Src/Lck represent two distinct 
protein tyrosine kinase families with different regulatory 
mechanisms that lead to activation and inactivation.  The 
catalytic domain of Csk is activated by the presence of the 
regulatory domains, 1K9A_A is the structure of the full length 
and active Csk, and 1BYG is the structure of only the catalytic 
domain, and represents an inactive Csk structure.  Src/Lck is 
inactivated by phosphorylation on Tyr527.  3LCK is the 
structure of unphosphorylated, and thus active Lck, while 2Src 
is the structure of the Tyr527 phosphorylated and inactive Src.  
Not only is it important to identify the conformational features 
that make a kinase active or inactive, it is also interesting to 
determine if different mechanisms of activation/inactivation 
lead to the same conformational changes in different kinase 
families or not.   

We break our analysis into three parts. First, we use our 
SOM-based technique.  Second, we use sequence-based 
techniques.  Finally, we use structure comparison and 
alignment tools for the analysis. 

TABLE I 
ACTIVE AND INACTIVE HUMAN KINASES 

 
Kinase Family Active Inactive 
Csk 1K9A_A* 1BYG 
Src/Lck 3LCK 2SRC 
  

*here the A indicates that we used the first chain from 
the PDB file for our analysis. 

A.  Self-Organizing Maps 

The first question: Can we structurally distinguish 
between active and inactive kinases? In order to answer this 
question we constructed two maps according to our 
methodology.  As the functional center (F) for the proteins we 
picked the highly conserved Aspartic acid residue in the 
catalytic loops and we chose an analysis horizon (r) of 8Å.  
The training set for each map contained the kinases 3LCK and 
2SRC as “prototypes” of active and inactive kinases, 
respectively. Then we added the active kinase 1K9A_A to one 
training set and the inactive kinase 1BYG to the other.  Fig. 7 

shows the resulting self-organizing maps.  Map a) shows the 
active kinases clustered at the bottom right corner of the map.  
This means that the self-organizing map recognized that the 
1K9A_A kinase was structurally more similar to the active 
kinase 3LCK than to the inactive kinase 2SRC.  The converse 
is true for map b).  Here we see the inactive kinase 1BYG 
appears in the same area of low quantization error (light grey 
area) as the inactive kinase 2SRC.  This means that in this case 
the self-organizing map recognized that 1BYG and 2SRC 
structurally more similar than 1BYG and 3LCK.  It is 
intriguing that the active kinases form a “tighter” cluster in the 
sense that both active kinases are mapped to the same 
reference model whereas the inactive kinases merely appear in 
the same low quantization error region of the map.  Perhaps 
regulated structures of active kinases are structurally much 
more uniform than the structures of inactive kinases, 
consequently the active kinases cluster much more tightly than 
the inactive kinases.  These results demonstrate that out SOM-
based methodology can group protein tyrosine kinases 
according to their activation state. 

  
a) b) 

Fig. 7: Self-organizing maps of active and inactive kinases: a) the kinases 
1K9A_A and 3LCK are recognized as active kinases and clustered together; 
b) the kinases 2SRC and 1BYG are recognized as inactive kinases and 
clustered together. 

We investigated next: Can we detect the regulated sub-
structures? The balls in Fig. 8 identify the normalized α-
carbon atoms which represent the predictive features of the 
active kinases 3LCK and 1K9A_A as computed by the self-
organizing map. The predictive features in this case are the 
structural features that uniquely identify active kinases.  There 
exists no analogous structure to the identified structure in Fig. 
8 within our analysis horizon for the 2SRC protein.  
Consequently we have to assume that this represents the 
regulated substructure of the kinases.   The fact that the self-
organizing map identified the regulated structures as 
predictive features for active kinases underscores the power of 
this approach.  This kind of automatic feature extraction is not 
available in other structural analysis tools. 

From the above we can conclude that the shape of the 
regulated sub-structures is not depended on the precise 
activation mechanism. 

Fig. 9 shows the structures of the two inactive kinases 
1BYG and 2SRC.  The balls indicate the predictive features of 
1BYG.  Two observations are interesting: 1) The predictive 
features of inactive kinases are different and distinct from the 
predictive features of the active kinases; there does not exist a 
structure in the inactive kinases which is analogous to the 



regulated structure in the active kinases.  2) The predictive 
features of inactive kinases are not as uniform as the 
predictive features of active kinases corroborating our findings 
with the self-organizing maps in Fig. 7. 

 
Fig. 8: The predictive features of active kinases.  The balls indicate the α-
carbon atoms computed by the self-organizing map as predictive features.  
Note that all the features lie on the regulated structures of the active kinases. 

 
Fig. 9: Comparing the structures of the inactive kinases 1BYG and 2SRC with 
the predictive features of 1BYG shown. 

B.  Residue Sequences 
It is instructive to look at residue sequence based tools 

and show that an analysis of regulated structures in proteins is 
not possible with these tools.  Fig. 10 shows the phylogenetic 
tree based on the residue sequences of the active and inactive 
proteins from Table 1 using ClustalW [20].  There is virtually 
no structure in this tree; all proteins appear to be identical. The 
structure that does appear can be considered noise.    

 

Fig. 10: Phylogenetic tree based on the protein residue sequences. 

Examining the multiple residue alignments of our proteins 
confirms the findings of the phylogenetic tree: the residue 
sequences line up almost perfectly with many substantially 
conserved sections. Fig. 11 shows the residue sequence 
alignments for all four proteins. 

 
              10        20        30        40        50        60 
     ....*....|....*....|....*....|....*....|....*....|....*....| 
3LCK KPWWEDEWEVPRETLKLVERLGAgqFGEVWMGYYNGHTKVAVKSLKQGSMSPDAFLAEAN 
2SRC qglakDAWEIPRESLRLEVKLGQgcfGEVWMGTWNGTTRVAIKTLKPGTMSPEAFLQEAQ 
1K9A DEFYRSGWALNMKELKLLQTIGKgefgDVMLGDY-RGNKVAVKCik-nDATAQAFLAEAS 
1BYG defyrsGWALNMKELKLLQTIGKgeFGDVMLGDYR-GNKVAVKCIKnd-atAQAFLaeas 
              70        80        90       100       110       120 
     ....*....|....*....|....*....|....*....|....*....|....*....| 
3LCK LMKQLQHQRLVRLYAVVTQ--E--PIYIITEYMENGSLVDFLKTPSGIKLTINKLLDMAA 
2SRC VMKKLRHEKLVQLYAVVSE--E--PIYIVTEYMSKGSLLDFLKGETGKYLRLPQLVDMAA 
1K9A VMTQLRHSNLVQLLGVIVEekG--GLYIVTEYMAKGSLVDYLRSrgrsVLGGDCLLKFSL 
1BYG vMTQLRHSNLVQLLGVIVE--EkgGLYIVTEYMAKGSLVDYLRSRgrsVLGGDCLLKFSL 
             130       140       150       160       170       180 
     ....*....|....*....|....*....|....*....|....*....|....*....| 
3LCK QIAEGMAFIEERNYIHRDLRAANILVSDTLSCKIADFGLARLIednextaregaKFPIKW 
2SRC QIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARliedneytarqgakFPIKW 
1K9A DVCEAMEYLEGNNFVHRDLAARNVLVSEDNVAKVSDFGLTKEAsstq----dtgKLPVKW 
1BYG DVCEAMEYLEGNNFVHRDLAARNVLVSEDNVAKVSDFGltkeass----tqdtgkLPVKW 
             190       200       210       220       230       240 
     ....*....|....*....|....*....|....*....|....*....|....*....| 
3LCK TAPEAINYGTFTIKSDVWSFGILLTEIVTHGRIPYPGMTNPEVIQNLERGYRMVRPDNCP 
2SRC TAPEAALYGRFTIKSDVWSFGILLTELTTKGRVPYPGMVNREVLDQVERGYRMPCPPECP 
1K9A TAPEALREKKFSTKSDVWSFGILLWEIYSFGRVPYPRIPLKDVVPRVEKGYKMDAPDGCP 
1BYG TAPEALREKKFSTKSDVWSFGILLWEIYSFGRVPYPRIPLKDVVPRVEKGYKMDAPDGCP 
             250       260       270 
     ....*....|....*....|....*....|....* 
3LCK EELYQLMRLCWKERPEDRPTFDYLRSVLEDFFTAT 
2SRC ESLHDLMCQCWRKEPEERPTFEYLQAFLEDYFTSt 
1K9A PAVYDVMKNCWHLDAATRPTFLQLREQLEHIRTHE 
1BYG PAVYEVMKNCWHLDAAMRPSFLQLREQLEHIKTHE 
 

Fig. 11: Multiple residue sequence alignment of the proteins under 
investigation. 

 
As expected, multiple sequence alignment techniques 

cannot provide any details on the structure of regulated 
proteins. 

C.  Structure Comparison and Alignment Tools 
Structure servers such as K2 [6] and DALI [4, 5] simply 

return structurally aligned proteins.  It is up to the user to 
interpret the results.  No mechanical support is provided for 
these interpretations.  The limitation to pair wise structural 
alignments makes studies such as the one undertaken here 
very cumbersome: instead of constructing two maps as we 
have done above one would have to construct four pair wise 
alignments, extract the essential structural features from these 
alignments, and then perform an overall comparison of the 
essential structures over the four pair wise alignments by 
hand.  Tools such as VAST [2, 3] use protein structure as 
query parameters in order to find the structural neighbors of 
the proteins under investigation.   That VAST is not sensitive 
to regulated conformational changes in proteins is witnessed 
by the fact that a query given an active conformation of a 
protein returns the inactive conformation of this protein as a 
structural neighbor.  This makes VAST unsuitable for the kind 
of studies we envision here. 

VI.  RELATED WORK 

It is clear from the above discussion that our approach is 
closely related to structure comparison and alignment tools 



such as K2, VAST, etc [3, 5, 6, 17, 21].  A relatively new 
algorithm for 3D protein structure alignment is FAST [22]. It 
utilizes a directionality-based scoring scheme to compare the 
intra-molecular residue-residue relationships in two structures. 
Another approach is to model the folding of proteins given an 
amino acid sequence [23].  The protein folding simulation 
program Wurst [24] is a protein threading program with an 
emphasis on high quality sequence to structure alignments. It 
takes submitted sequences and aligns them to a large number 
of templates with a conventional dynamic programming 
algorithm. The 3-D structures of submitted sequences are 
deduced from a log-odds probability of sequence to structure 
fragment compatibility, obtained from a Bayesian 
classification procedure.  In both cases overall statements 
about structural similarity between proteins can be made but 
both techniques have limited facilities for providing in-depth 
analyses on function-specific structures.   

We can also consider purely visual interpretations and 
comparisons of protein structures [18, 25] which allow the 
user to examine the molecular structures in much more detail. 
However, our innate ability to see patterns in protein 
structures is easily overwhelmed by the vast amount of 
structural information available for typical proteins. 

Unsupervised machine learning techniques, particularly 
the self-organizing map technique, have been widely used in 
the evaluation of biological data. To evaluate protein 
secondary structures, Unneberg and co-workers trained a 
SOM with a set of protein circular dichroism data and the 
SOM was able to classify secondary structures of a group of 
proteins [26]. In their attempt to locate HIV protease cleavage 
sites in proteins, Yang and Chou partitioned a set of protein 
sequences using SOM and applied conventional homology 
alignment to each cluster to determine the conserved local 
motif (biological pattern) for the cluster. These local motifs 
were then regarded as rules for prediction and classification. 
They found that the rules derived from this method are much 
more robust than those derived from the decision tree method 
[27]. Andrade and co-workers have applied SOM to classify 
sequences within a protein family into subgroups that 
generally correspond to biological subcategories. Combining 
maps generated at different levels of resolution, they captured 
the structure of relations in protein families that could not 
otherwise be represented in a single map. The underlying 
representation of maps enabled them to retrieve characteristic 
sequence patterns for individual subgroups of sequences. Such 
patterns tended to correspond to functionally important 
regions. Their modified SOM algorithm included a 
convergence test that dynamically controls the learning 
parameters to adapt them to the learning set instead of being 
fixed and externally optimized by trial and error [28].  
Kohonen has applied SOM’s to protein sequence data by 
considering a sequence distance measure based on 
phylogenetic distances between the sequences [29, 30].  The 
advantage of this method is that the sequences under 
consideration are not constrained by the “equal length” 

requirement imposed by the SOM algorithm.  However, these 
approaches did not take protein structure into consideration. 

VII.  CONCLUSIONS AND FURTHER RESEARCH 
Here we have introduced a novel technique for the 

analysis of protein structure based on self-organizing maps.     
Our technique goes beyond the capabilities of similar existing 
structure comparison tools.  Preliminary results demonstrate 
that our technique can be successfully applied to protein 
families in order to classify the proteins within these families 
by their local structure around a functional center.  We have 
also demonstrated that we can analyze conformational changes 
due to different functional states of the same proteins.  The 
information captured by the self-organizing map and stored in 
its reference models highlights the essential or predictive 
structures of the proteins under consideration and can be 
effectively used to study detailed structural differences 
between the proteins further, promising answers to interesting 
and difficult biochemical and biological questions.  The 
automatic nature of our approach due to the machine learning 
techniques will enable us to scale this to a high-throughput 
structure analysis in the future allowing us to study large 
subsets, if not whole families of proteins.  It is hoped that 
studying larger number of proteins will solidify the initial 
findings reported here. In order to accomplish this effectively 
we are currently investigating a more compact feature vector 
representation and automatic local protein alignment 
techniques.  Our feature vector computation will need to be 
more sophisticated.  In our current version small 
conformational deviations between proteins can lead to large 
differences in the associated normalized models inducing 
artificially inflated dissimilarities between the molecules.  
Algorithms and techniques from computer vision and 
computational geometry seem promising for improving our 
feature vector computation. 

We have also conducted some initial experiments that go 
beyond the α-carbon representation and integrate amino acid 
side chain structures into our normalized model representation 
of proteins. The results of these experiments look promising 
but the visual presentation of these normalized and reference 
models represents a challenge and will be addressed as part of 
our research program.  Another research aspect is the 
extension of the analysis horizon from a local neighborhood 
around the functional center to the inclusion of whole protein 
domain structures and perhaps complete proteins. 
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