
Breeding Algebraic Structures – An Evolutionary Approach to
Inductive Equational Logic Programming

Lutz Hamel
Department of Computer Science and Statistics

University of Rhode Island, Kingston, Rhode Island 02881, USA
email: hamel@cs.uri.edu

to appear, Genetic and Evolutionary Computation Conference 2002

Abstract

Concept learning is the induction of a de-
scription from a set of examples. Inductive
logic programming can be considered a spe-
cial case of the general notion of concept
learning specifically referring to the induction
of first-order theories. Both concept learn-
ing and inductive logic programming can be
seen as a search over all possible sentences
in some representation language for sentences
that correctly explain the examples and also
generalize to other sentences that are part of
that concept. In this paper we explore in-
ductive logic programming with equational
logic as the representation language and ge-
netic programming as the underlying search
paradigm. Equational logic is the logic of
substituting equals for equals with algebras
as models and term rewriting as operational
semantics.

1 INTRODUCTION

The aim of concept learning is to induce a description
of a concept from a set of examples. Typically the set
of examples are ground sentences in a particular rep-
resentation language. Concept learning can be seen as
a search over all possible sentences in the representa-
tion language for sentences that correctly explain the
examples and also generalize to other sentences that
are part of that concept [11, 16]. Inductive logic pro-
gramming (ILP) can be considered a special case of the
general notion of concept learning specifically referring
to the induction of first-order theories as descriptions
of concepts [17].

Specialized search mechanisms for specific representa-
tion languages have been devised over the years. For

example, in the propositional setting we have Quin-
lan’s entropy based decision tree algorithm ID3 [21].
In the first-order logic setting we have Muggleton’s
inductive logic programming system Progol whose un-
derlying search paradigm is based on inverting logical
entailment [19].

Since concept learning and inductive logic program-
ming imply complex searches, it is natural to ask
whether evolutionary algorithms are applicable in this
area. Briefly, evolutionary algorithms are a class of al-
gorithms that traverse complex search spaces by mim-
icking natural selection. The algorithms maintain a
large population of individuals with different charac-
teristics where each individual represents a point in the
search space. By exerting selective pressures on this
population, fitter individuals representing better solu-
tion points according to the search criteria will emerge
from the population. These fitter individuals in turn
are allowed to reproduce in a preferential manner in
subsequent generations increasing the overall fitness of
the population. At the end of the run the fittest indi-
viduals in the final population represent the final solu-
tion points in a complex search space [9, 14]. To date
evolutionary algorithms, particularly genetic program-
ming systems, have successfully been applied to con-
cept learning and inductive logic programming tasks in
a variety of formalisms. For example, they have been
successfully applied in the propositional case [13], in
the first-order logic setting [24, 10], as well as in the
higher-order functional logic programming setting [11].

In this paper we examine an evolutionary approach to
concept learning based on another formalism – many-
sorted first-order equational logic. Equational logic is
the logic of substituting equals with equals. Here the
examples are ground equations and the induced con-
cept descriptions are first-order equational theories.
We have implemented a prototype by incorporating a
specialized genetic programming engine into the equa-
tional logic programming system and algebraic speci-

fication language OBJ3 [5, 6]. Informally, the system
operates by maintaining a population of candidate the-
ories that are evaluated against the examples using
OBJ3’s deductive machinery. The fittest theories are
allowed to reproduce in accordance to standard ge-
netic programming practices. Because of the fact that
we are inducing first-order equational theories we tend
to refer to this approach as inductive equational logic
programming.

This search based view of inductive logic programming
is a very operational view. It is possible to formulate
a semantics to inductive logic programming that is in-
dependent of any particular search strategy. We will
discuss this normal semantics to ILP in more detail
below. Equational theories have a very strong notion
of sorts and operators; i.e., they have a very strong
notion of signatures. We recast the first-order logic
normal semantics for ILP into an algebraic light that
deals with the strong notion of signature effectively.
This algebraic formulation of the normal semantics for
ILP forms the basis of our system implementation with
the genetic programming strategy as the operational
semantics.

The system most closely related to ours is the FLIP
system [2, 7]. It also concerns itself with the induction
of first-order equational theories from ground equa-
tions. However, the FLIP system uses inverse narrow-
ing as a search strategy instead of the evolutionary ap-
proach as advocated here. On a technical equational
logic level the FLIP system deals with signatures only
implicitly, which means that by design it is limited to
single-sorted equational logic.

The rest of this paper is organized as follows. Sec-
tion 2 provides a brief introduction to many-sorted
equational logic, algebra and term rewriting. In Sec-
tion 3 we examine the normal semantics for inductive
logic programming. We develop an algebraic seman-
tics for our setting in Section 4. Section 5 sketches
our system implementation. In Section 6 we take a
critical look at results obtained with the preliminary
implementation so far. We end with the conclusions
in Section 7.

2 EQUATIONAL LOGIC

Equational logic is the logic of substituting equals for
equals with algebras as models and term rewriting as
the operational semantics [15, 23, 1]. The following
formalizes these notions.

An equational signature defines a set of sort symbols
and a set of operator or function symbols.

Definition 1 An equational signature is a pair
(S,Σ), where S is a set of sorts and Σ is an (S∗×S)-
sorted set of operation names. The operator σ ∈ Σw,s
is said to have arity w ∈ S∗ and sort s ∈ S. Usually
we abbreviate (S,Σ) to Σ. 1

We define Σ-algebras as models for these signatures as
follows:

Definition 2 Given a many sorted signature Σ, a Σ-
algebra A consists of the following:

• an S-sorted set, usually denoted A, called the car-
rier of the algebra,

• a constant Aσ ∈ As for each s ∈ S and σ ∈ Σ[],s,

• an operation Aσ : Aw → As, for each non-
empty list w = s1 . . . sn ∈ S∗, and each s ∈ S
and σ ∈ Σw,s, where Aw = As1 × . . .×Asn.

Mappings between signatures map sorts to sorts and
operator symbols to operator symbols.

Definition 3 An equational signature morphism
is a pair of mappings φ = (f, g) : (S,Σ)→ (S′,Σ′), we
write φ : Σ→ Σ′.

A theory is an equational signature with a collection
of equations.

Definition 4 A Σ-theory is a pair (Σ, E) where
Σ is an equational signature and E is a set of Σ-
equations. Each equation in E has the form (∀X)l =
r, where X is a set of variables distinct from the equa-
tional signature Σ and l, r ∈ TΣ(X) are terms over the
set Σ and X. If X = ∅, that is, l and r contain no
variables, then we say the equation is ground. When
there is no confusion Σ-theories are referred to as the-
ories and are denoted by their collection of equations,
in this case E.

The above can easily be extended to conditional
equations2. However, without loss of generality we
continue the discussion here based on unconditional
equations only. Also, our current prototype solely

1Notation: Let S be a set, then S∗ denotes the set
of all finite lists of elements from S, including the empty
list denoted by []. Given an operation f from S into a
set B, f : S → B, the operation f∗ denotes the exten-
sion of f from a single input value to a list of input val-
ues, f∗ : S∗ → B, and is defined as follows: f∗(sw) =
f(s)f∗(w) and f∗([]) = [], where s ∈ S and w ∈ S∗.

2Consider the conditional equation, (∀X)l = r if c,
which is interpreted as meaning the equality holds if the
condition c is true.

considers the evolution of theories with unconditional
equations.

The models of a theory are the Σ-algebras that sat-
isfy the equations. Intuitively, an algebra satisfies an
equation if and only if the left and right sides of the
equation are equal under all assignments of the vari-
ables. More formally:

Definition 5 A Σ-algebra A satisfies a Σ-equation
(∀X)l = r iff θ(l) = θ(r) for all assignments
θ : TΣ(X) → A. We write A |= e to indicate that
A satisfies the equation e.

We define satisfaction for theories as follows:

Definition 6 Given a theory T = (Σ, E), a Σ-algebra
A is a T -model if A satisfies each equation e ∈ E. We
write A |= T or A |= E.

In general there are many algebras that satisfy a par-
ticular theory. We also say that the class of algebras
that satisfy a particular equational theory represent
the denotational semantics of that theory.

Semantic entailment of an equation from a theory is
defined as follows.

Definition 7 An equation e is semantically en-
tailed by a theory (Σ, E), write E |= e, iff A |= E
implies A |= e for all Σ-algebras A.

Mappings between theories are defined as theory mor-
phisms.

Definition 8 Given two theories T = (Σ, E) and
T ′ = (Σ′, E′), then a theory morphism φ : T → T ′

is a signature morphism φ : Σ → Σ′ such that E′ |=
φ(e), for all e ∈ E.

In other words, the signature morphism φ is a theory
morphism if the translated equations of the source the-
ory T are semantically entailed by the target theory
T ′.

Goguen and Burstall have shown within the framework
of institutions [1] that the following holds for many
sorted algebra3:

Theorem 9 Given the theories T = (Σ, E) and T ′ =
(Σ′, E′), the theory morphism φ : T → T ′, and the T ′-
algebra A′, then A′ |=Σ′ φ(e) ⇒ φA′ |=Σ e, for all
e ∈ E.

3Actually, Goguen and Burstall have shown the much
more powerful result that the implication holds as an equiv-
alence relation. However, for our purposes here we only
need the implication.

In other words, if we can show that a given model of
the target theory satisfies the translated equations of
the source theory, it follows that the reduct of this
model, φA′, also satisfies the source theory, thus, the
models behave as expected.

Our approach to equational logic so far has been purely
model theoretic. A proof theory for many-sorted equa-
tional logic is defined by the following rules of deduc-
tion. Given a signature Σ and a set of Σ-equations,
the following are the rules for deriving new equations
[15] (here t, u, and v denote terms over the signature
Σ and an appropriate variable set):

1. Reflexivity. Each equation (∀X)t = t is derivable.

2. Symmetry. If (∀X)t = t′ is derivable, then so is
(∀X)t′ = t.

3. Transitivity. If the equations (∀X)t = t′,
(∀X)t′ = t′′ are derivable, then so is (∀X)t = t′′.

4. Substitutivity. If (∀X)t1 = t2 of sort s is deriv-
able, if x ∈ X is of sort s′, and if (∀Y)u1 = u2
of sort s′ is derivable, then so is (∀Z)v1 = v2,
where Z = (X − {x}) ∪ Y , vj = tj(x ← uj) for
j = 1, 2, and ‘tj(x ← uj)’ denotes the result of
substituting uj for x in tj.

5. Abstraction. If (∀X)t = t′ is derivable, if y is a
variable of sort s and y is not in X, then (∀X ∪
{y})t = t′ is also derivable.

6. Concretion. Let us say that a sort s is void in a
signature Σ iff TΣ,s = ∅. Now, if (∀X)t = t′ is
derivable, if x ∈ Xs does not appear in either t or
t′, and if s is non-void, then (∀X − {x})t = t′ is
also derivable.

Given a theory (Σ, E), we say that an equation
(∀X)t = t′ is deducible from E if there is a deduc-
tion from E using rules 1-6 whose last equation is
(∀X)t = t′ [23]. We write: E ` (∀X)t = t′.

The model theoretic and the proof theoretic ap-
proaches to equational logic are related by the notion
of soundness and completeness.

Theorem 10 (Soundness and Completeness of
Equational Logic) Given an equational theory
(Σ, E), an arbitrary equation (∀X)t = t′ is semanti-
cally entailed iff (∀X)t = t′ is deducible from E. For-
mally, E |= (∀X)t = t′ iff E ` (∀X)t = t′, where
t, t′ ∈ TΣ(X).

This theorem is very convenient, since it lets us use
equational deduction to check the theory morphism

conditions above which plays an important part in our
system implementation.

Term rewriting [12, 15] can be considered an efficient
implementation of unidirectional equational deduction
by viewing equations as rewrite rules from left to right.
Given a Σ-equation (∀X)t = t′, consider: a term t0 can
be rewritten into a term t1 provided that t0 contains a
subterm that is a substitution instance of the left side
t of the equation. Then t1 is the result of replacing the
substitution instance of t with the appropriate substi-
tution instance of t′ in t0. Given this, every term can
be rewritten to a unique canonical form under mild
conditions on the set E of Σ-equations, such as every
variable of a right side of an equation must also appear
in the left side. This forms the basis of the operational
semantics of the OBJ specification language [5, 6].

3 INDUCTIVE LOGIC
PROGRAMMING

Traditionally, inductive logic programming has con-
cerned itself with the induction of first-order logic
theories from facts and background knowledge. The
normal semantics for ILP is usually stated as follows
[3, 20],

Definition 11 Given a set B of horn clause defini-
tions (background theory), a set P of ground facts to
be entailed (positive examples), a set N of ground facts
not to be entailed (negative examples), and a hypothe-
sis language L, then a construct H ∈ L is an hypoth-
esis if

B ∪H |= p, for every p ∈ P (Completeness),
B ∪H 6|= n, for every n ∈ N (Consistency).

Here, L is the set of all well-formed logical formu-
lae over a fixed vocabulary. Completeness states that
the conjunction of the background and the hypothesis
entail the positive facts. Consistency states that the
background and the hypothesis do not entail the neg-
ative facts or counter examples. Logical entailment is
derived by interpreting the clauses in the appropriate
Herbrand models [22].

Please note that this semantic definition does not say
anything about the quality of a particular hypothe-
sis. In fact, it is interesting to note that this seman-
tic definition admits a number of trivial solutions; for
instance, let H = P . Also consider the case where
B |= p for every p ∈ P . Typically, the weighing of
one hypothesis over another is left to the operational
or search semantics of an ILP system. In practical
ILP systems trivial solutions like the ones above are

typically immediately dismissed by the system on its
search for an “optimal” hypothesis, since these trivial
solutions tend not to pass a set of performance criteria
when compared to other more general hypotheses.

4 AN ALGEBRAIC SEMANTICS

The above semantics for ILP treats signatures implic-
itly. However, type information and signatures play
a central role in many-sorted equational logic. There-
fore, we recast the above semantics in an algebraic
setting based on signatures, equational theories, and
theory morphisms. We start by defining what we mean
by facts.

Definition 12 A theory (Σ, E) is called Σ-facts if
each e ∈ E is a ground equation.

This allows us to define our notion of induced theory.

Definition 13 Given a background theory B =
(ΣB , EB), positive facts P = (ΣP , EP), and nega-
tive facts N = (ΣN , EN), then an induced theory
H = (ΣH , EH), is a theory with a pair of mappings
φB and φP

H

B

φB

>>~~~~~~~~
P

φP

``@@@@@@@

such that

• φB : B → H is a theory morphism,

• φP : P → H is a theory morphism,

• and H 6|= φN (e), for all e ∈ EN , and signature
morphism φN : ΣN → ΣH .

Our induced theory is not unlike the hypothesis in the
normal semantics. In fact, by making φB an inclu-
sion morphism we have the algebraic equivalent for-
mulation of the normal semantics for ILP. We like the
added generality our semantics supports and will ex-
plore this in future implementations. Currently, the
prototype interprets φB as the inclusion morphism.

Taking a closer look at φB , from the definition we have
φB : B → H is a theory morphism if H |= φB(e), for
each e ∈ EB . This is equivalent of saying that in order
for this mapping to be valid the induced theory must
semantically entail the given background knowledge.
Of course this holds trivially if φB is the inclusion mor-
phism.

A closer look at the theory morphism φP that maps the
positive facts into the induced theory reveals a similar

relationship. Again from the definition, φP : P → H
is a theory morphism if H |= φP (e), for each e ∈ EP .
This can be considered the algebraic formulation of
the completeness criteria of the normal ILP seman-
tics. Please note, by replacing the semantic entailment
with proof theoretic deduction which follows from the
soundness and completeness of equational logic we ob-
tain a computable relation. This is precisely what we
use in our system implementation below.

The last part of the definition above is the algebraic
formulation of the consistency statement: negative
facts should not be entailed by the induced theory.
Similar to the normal semantics our algebraic seman-
tics says nothing about the quality of the induced the-
ory. This is left to the search semantics of the system;
in our case this is left to the genetic programming en-
gine.

So far we have treated models that satisfy H implicitly.
It is interesting to take a look at the models per se.

Proposition 14 Given an induced theory H, with the
background theory B, the positive facts P , and the neg-
ative facts N , then each model m that satisfies the
induced theory H and is consistent with the negative
facts N also satisfies the background theory B and the
positive facts P .

Proof: From the previous section we know that for
every theory morphism φ : T → T ′ and a model m′ |=
T ′ there is a reduct φm′ such that φm′ |= T . Let
us assume that there exists a model m that satisfies
the induced theory H and is consistent with N , i.e.,
m |= H and m 6|= N . We then have two reducts along
the theory morphisms φB : B → H and φP : P → H,
namely φBm and φPm, respectively, where φBm |= B
and φPm |= P . Thus, consistent models that satisfy
the induced theory H have reducts along the theory
morphisms and behave as expected. 2

5 SYSTEM IMPLEMENTATION

We have implemented our prototype system within the
OBJ3 algebraic specification system [5, 6]. OBJ3 im-
plements many-sorted equational logic4 with algebras
as its denotational semantics and many-sorted term
rewriting as its operational semantics.

The following specification of a stack of elements can
be considered a prototypical OBJ3 specification.

4Actually, OBJ3 implements order-sorted equational
logic, which means that the sorts are related to each other
through a type lattice. In our current implementation we
do not support this type ordering.

obj STACK is sorts Stack Element .
op empty : -> Stack .
op push : Stack Element -> Stack .
op top : Stack -> Element
op pop : Stack -> Stack .
var X : Element . var S : Stack .
eq top(push(S,X)) = X .
eq pop(push(S,X)) = S .

endo

The first line of the specification names the theory and
also defines two sorts; namely, Stack and Element.
The following four lines define the operations on the
stack. We then define the variables we need in the
equations on the following two lines.

The current prototype incorporates a genetic program-
ming engine based on Koza’s canonical LISP imple-
mentation [14] into the OBJ3 system. The engine
performs the following steps given a (possibly empty)
background theory and the facts:

1. Compute initial (random) population of candi-
date theories;

2. Evaluate each candidate theory’s fitness using the
OBJ3 rewrite engine;

3. Perform candidate theory reproduction according
to the genetic programming paradigm;

4. Compute new population of candidate theories;

5. Goto step 2 or stop if target criteria have been
met.

This series of steps does not significantly differ from
the standard genetic programming paradigm. The
fittest individual of the final population is considered
to be the induced theory satisfying the given facts.

A couple of things are noteworthy. The signatures of
the candidate theories are computed using the signa-
ture morphism constructions underlying the algebraic
semantics outlined above. Both, for the background
theory as well as for the positive facts we let the sig-
nature morphisms be inclusions. In order to complete
the candidate theories the system adds equations to
the computed signatures according the to the genetic
programming paradigm.

For the negative facts we take advantage of OBJ3’s
builtin boolean operator =/=. This operator allows
us to recast negative facts as inequality relations that
need to hold in the candidate theories. In effect, these
inequalities become positive facts and we treat them
as such by adding them to the positive facts theory.
Consequently we set the negative fact theory to the
empty theory. This technique facilitates the coding
for the genetic programming engine, since the notion

of positive facts aligns very nicely with the notion of
fitness cases in the genetic programming paradigm. An
example of this technique can be seen in the results
section.

The system uses the OBJ3 rewrite engine to evalu-
ate candidate theories against the positive facts. The
proof obligation arises from the theory morphism con-
dition for the positive facts. Given a fact equation
and a candidate theory, the theory morphism condi-
tion is tested by rewriting the left and right sides of
the fact equation to their unique canonical forms using
the equations of the candidate theory as rewrite rules.
If the unique canonical forms of the left and right sides
are equal then the fact equation is said to hold.

Since the equations in the candidate theories are gener-
ated at random, there is no guarantee that the theories
do not contain circularities throwing the rewriting en-
gine into an infinite rewriting loop when evaluating the
facts. To guard against this situation we allow the user
to set a parameter that limits the number of rewrites
the engine is allowed to do per fact evaluation. This
pragmatic approach proved very effective. The alter-
native would have been an in-depth analysis of the
equations in each candidate theory adding significant
overhead to the execution time of the evolutionary al-
gorithm. In some sense this is analogous to guarding
against division by zero when evaluating arithmetic
expressions within the canonical genetic programming
paradigm.

The fitness function used by the system to evaluate
each candidate theory is

fitness(T) = (facts(T))2 +
1

length(T)
,

where T denotes a candidate theory, facts(T) is the
number of facts or fitness cases entailed by the can-
didate theory, and length(T) is the number of equa-
tions in the candidate theory. The fitness function is
designed to primarily exert evolutionary pressure to-
wards finding candidate theories that match all the
facts (the first term of the function). In addition, in
the tradition of Occam’s Razor [8] the function also ex-
erts pressure towards finding the shortest theory that
supports all the facts (second term). The system at-
tempts to maximize this function in each generation
of candidate theories.

The genetic programming engine itself is implemented
as a strongly typed genetic programming system [18, 4]
in the sense that it knows about the syntactic structure
of theories and equations and does not have to redis-
cover these notions with every run. The only genetic
operators we have implemented so far are fitness pro-
portionate reproduction and a type sensitive crossover

operator. We found that mutation proved too disrup-
tive probably due to our incomplete type system im-
plementation, as the current prototype does not prop-
erly support user declared equational logic types. This
did not prevent us from performing some interesting
experiments, however. We are currently working on
the next generation system that supports user defined
types fully.

6 EXPERIMENTS AND RESULTS

To study the system we performed three experiments
with encouraging results. These experiments were in-
spired by case studies on the FLIP home page [2].

6.1 INFERRING STACK PROPERTIES
FROM EXAMPLES

In the first example we were looking for the general
concept of the stack operator top given a set of facts.
The facts are as follows:

obj STACK-FACT is sort Sort .
ops a b u v s: -> Sort .
op top : Sort -> Sort .
op push : Sort Sort -> Sort .
eq top(push(v,a)) = a .
eq top(push(push(v,a),b)) = b .
eq top(push(push(v,b),a)) = a .
eq top(push(push(v,u),s)) = s .

endo

Each ground equation in the fact theory gives a spe-
cific application instance of the operator top. We ex-
pect the equational inductive logic system to discover
a theory that generalizes the description the operator
beyond the seen instances. After 28 generations with
200 individuals the system discovered the following in-
duced theory:

obj STACK is sort Sort .
ops a b u v s: -> Sort .
op top : Sort -> Sort .
op push : Sort Sort -> Sort .
vars X1 X2 X3 X4 X5 : Sort .
eq top(push(X4,X2)) = X2 .

endo

This theory correctly characterizes all the ground
equations in the fact theory by stating that the top
of a stack is the last element pushed. The following
parameters were used during this run:

Maximum number of Generations: 60
Size of Population: 200
Maximum equations for theories: 4
Maximum Rewrites: 20
Maximum depth of new individuals: 5
Maximum depth of new subtrees for mutants: 5
Maximum depth of individuals after crossover: 10
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.8
Crossover at function points fraction: 0.1
Number of fitness cases: 4
Selection method: fit-prop
Generation method: ramped
Randomizer seed: 1.0

The Maximum Rewrites parameter limits the number
of rewrites the OBJ3 rewriting engine is allowed to
perform when evaluating a fact. Readers familiar with
Koza’s implementation will notice that the above pa-
rameter setting does not allow for mutation.

6.2 INFERRING A RECURSIVE
FUNCTION DEFINITION

In the following example we want to infer the recur-
sive definition of the function sum from a set of ground
equations. The fact theory is given in Peano nota-
tion where the naturals are represented as s(0) 7→ 1,
s(s(0)) 7→ 2, etc. The fact theory is as follows:

obj SUM-FACT is sort Sort .
op 0 : -> Sort .
op s : Sort -> Sort .
op sum : Sort Sort -> Sort .
eq sum(0,0) = 0 .
eq sum(s(0),s(0)) = s(s(0)) .
eq sum(0,s(0)) = s(0) .
eq sum(s(s(0)),0) = s(s(0)) .
eq sum(s(0),0) = s(0) .
eq sum(s(0),s(s(0)))= s(s(s(0))) .
eq sum(s(s(0)),s(s(0)))= s(s(s(s(0)))) .
eq sum(s(s(s(0))),s(0)) = s(s(s(s(0)))) .
eq sum(s(s(s(0))),s(s(0))) = s(s(s(s(s(0))))) .
eq (s(0) =/= 0) = true .
eq (s(s(0)) =/= 0) = true .
eq (s(s(s(0))) =/= 0) = true .
eq (sum(s(0),0) =/= 0) = true .
eq (sum(0,0) =/= s(0)) = true .
eq (sum(s(0),s(0)) =/= s(0)) = true .
eq (sum(s(0),0) =/= s(s(0))) = true .
eq (sum(0,s(0)) =/= s(s(0))) = true .
eq (sum(0,s(0)) =/= 0) = true

endo

The first half of the theory are positive facts and
the second half are negative facts coded as positive
facts taking advantage of OBJ3’s builtin boolean op-
erator =/=. As hinted at before, we take advantage
of this builtin capability to express everything as posi-
tive facts rather than trying to prove that the negative
facts do not hold in the induced theory. Additionally,
this is more inline with the notion of fitness cases in
the genetic programming engine.

After 10 generations with 200 individuals the system
converged on the following theory as the induced the-
ory:

obj SUM is sort Sort .
op 0 : -> Sort .
op s : Sort -> Sort .
op sum : Sort Sort -> Sort .
vars X0 X1 : Sort .
eq sum(X1,0) = X1 .
eq sum(X1,s(X0)) = s(sum(X1,X0)) .

endo

The first equation of this recursive definition of the
operator sum states that that adding 0 to a value leaves
the value unchanged. The second equation states that
adding a value to the successor of another value is the
same as the successor of the sum of the two values.

The parameters for the genetic programming engine in
this experiment were:

Maximum number of Generations: 20
Size of Population: 200
Maximum equations for theories: 8
Maximum Rewrites: 25
Maximum depth of new individuals: 5
Maximum depth of new subtrees for mutants: 5
Maximum depth of individuals after crossover: 10
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.8
Crossover at function points fraction: 0.1
Number of fitness cases: 18
Selection method: fit-prop
Generation method: ramped
Randomizer seed: 1.0

6.3 INFERRING ANOTHER RECURSIVE
FUNCTION DEFINITION

In this last example we would like to infer the concept
of even from a set of facts. Again we use the Peano
notation for naturals. The fact theory is given as fol-
lows:

obj EVEN-FACT is sort Sort .
op 0 : -> Sort .
op s : Sort -> Sort .
op even : Sort -> Bool .
eq even(0) = true .
eq even(s(s(0))) = true .
eq even(s(s(s(s(0))))) = true .
eq (s(0) =/= 0) = true .
eq (s(s(0)) =/= 0)= true .
eq (s(s(s(0))) =/= 0) = true .
eq (s(s(s(s(0)))) =/= 0) = true .
eq (even(s(0)) =/= true) = true .
eq (even(s(s(s(0)))) =/= true) = true .

endo

Please note that as in the previous example we employ
the convention of coding negative examples as inequal-
ities that must hold in the induced theory.

Unfortunately, here the system did not converge on
a sensible induced theory even after as many as fifty
generations with 200 individuals. We had expected
something like the following:

obj EVEN is sort Sort .
op 0 : -> Sort .
op s : Sort -> Sort .
op even : Sort -> Bool .
var X0 : Sort .
eq even(s(s(X0))) = even(X0) .
eq even(0) = true .

endo

We suspect that the failure to converge is due to the
fact that in this particular case it is paramount to dis-
tinguish between the user defined type Sort and the
builtin type Bool. Due to the incomplete implemen-
tation of our type system the genetic programming
engine is allowed to produce too many “junk” terms,
i.e., syntactically malformed terms, which prevents the
system from converging. We suspect that the system
will not have any problems with this specification once
we implement our type system fully.

7 CONCLUSIONS

Starting with the general notion of concept learning
we developed an approach to inductive logic program-
ming based on many-sorted equational logic with ge-
netic programming as the underlying search paradigm.
Many-sorted equational logic has a strong notion of
signature and we accommodated this by developing an
algebraic semantics for inductive equational logic pro-
gramming using the the normal semantics for inductive
logic programming as a starting point. Based on these
underpinnings we implemented a prototype inductive
equational logic programming system within the alge-
braic specification language OBJ3. Results of initial
experiments looked encouraging and we expect that a
more complete implementation of the type system in
the prototype will remedy the current short comings.

References

[1] R. Burstall and J. Goguen. Institutions: abstract
model theory for specification and programming.
Journal of the Association for Computing Machinery,
39(1):95–146, 1992.

[2] C. Ferri-Ramı́rez, J. Hernández-Orallo, and M.J.
Ramı́rez-Quintana. The FLIP system homepage,
2000. http://www.dsic.upv.es/ flip/.

[3] P. A. Flach. The logic of learning: a brief intro-
duction to inductive logic programming. In Proceed-
ings of the CompulogNet Area Meeting on Computa-
tional Logic and Machine Learning, pages 1–17, 1998.
http://citeseer.nj.nec.com/flach98logic.html.

[4] P. A. Flach, C. Giraud-Carrier, and J. W. Lloyd.
Strongly typed inductive concept learning. In D. Page,
editor, Proceedings of the 8th International Confer-
ence on Inductive Logic Programming, volume 1446,
pages 185–194. Springer-Verlag, 1998.

[5] J. Goguen. The OBJ homepage. http://www-
cse.ucsd.edu/users/goguen/sys/obj.html.

[6] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi,
and J. Jouannaud. Software Engineering with OBJ:
algebraic specification in action, chapter Introducing
OBJ. Kluwer, 2000.

[7] J. Hernández-Orallo and M. J. Ramı́rez-Quintana. A
strong complete schema for inductive functional logic
programming. In S. Džeroski and P. Flach, editors,
Proceedings of the 9th International Workshop on In-
ductive Logic Programming, volume 1634, pages 116–
127. Springer-Verlag, 1999.

[8] F. Heylighen. Principia cybernetica, July 1997.
http://pespmc1.vub.ac.be/OCCAMRAZ.html.

[9] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975.

[10] R. Ichise. Inductive logic programming and genetic
programming. In H. Prade, editor, European Confer-
ence on Artificial Intelligence, 1998.

[11] C. J. Kennedy and C. Giraud-Carrier. An evolu-
tionary approach to concept learning with structured
data. In Proceedings of the fourth International Con-
ference on Artificial Neural Networks and Genetic Al-
gorithms, pages 1–6. Springer Verlag, 1999.

[12] J. W. Klop. Term rewriting systems. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors, Handbook of
Logic in Computer Science, volume 2, pages 1–116.
Oxford University Press, 1992.

[13] J. R. Koza. Concept formation and decision tree in-
duction using the genetic programming paradigm. In
H.-P. Schwefel and R. Männer, editors, Parallel Prob-
lem Solving from Nature - Proceedings of 1st Work-
shop, PPSN 1, volume 496, pages 124–128, Dortmund,
Germany, 1-3 1991. Springer-Verlag.

[14] J. R. Koza. Genetic Programming: On the Program-
ming of Computers by Natural Selection. MIT Press,
Cambridge, MA, 1992.

[15] J. Meseguer and J. Goguen. Initiality, induction and
computability. In M. Nivat and J. Reynolds, editors,
Algebraic Methods in Semantics, pages 459–541. Cam-
bridge, 1985.

[16] T. M. Mitchell. Generalization as search. Artificial In-
telligence, 18(2):203–226, 1982.

[17] T. M. Mitchell. Machine Learning. McGraw-Hill,
1997.

[18] D. J. Montana. Strongly typed genetic programming.
Evolutionary Computation, 3(2):199–230, 1995.

[19] S. Muggleton. Inverse entailment and Progol. New
Generation Computing, Special issue on Inductive
Logic Programming, 13(3-4):245–286, 1995.

[20] S. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods. Journal of Logic
Programming, 19/20:629–679, 1994.

[21] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1:81–106, 1986.

[22] L. Sterling and E. Shapiro. The Art of Prolog: Ad-
vanced Programming Techniques. The MIT Press,
1986.

[23] W. Wechler. Universal Algebra for Computer Scien-
tists. Springer-Verlag, 1992. EATCS Monographs on
Theoretical Computer Science, Volume 25.

[24] M. Wong and K. Leung. Genetic logic programming
and applications. IEEE Expert, October 1995.

