
Asteroid
The Programming Language

Dr Lutz Hamel
Dept. of Computer Science & Statistics
University of Rhode Island
asteroid-lang.org

© 2022, Lutz Hamel

https://asteroid-lang.org/

Asteroid: The Programming
Language
¢ The Asteroid programming language is,

l modern
l application-oriented
l open-source
l dynamically typed
l multi-paradigm
l heavily influenced by Python, Rust, ML, and Prolog
l currently under development at the University of Rhode

Island
¢ Project page:

https://asteroid-lang.org
¢ A cloud-based version is available for this talk:

https://replit.com/@lutzhamel/asteroid-talk-f22
¢ Documentation:

https://asteroid-lang.readthedocs.io

https://asteroid-lang.org/
https://replit.com/@lutzhamel/asteroid-talk-f22
https://asteroid-lang.readthedocs.io/

Design Objectives

¢ Seamless integration of imperative,
functional, and object-oriented
programming.

¢ Full support of first-class patterns.
¢ Expressive, conversational syntax

geared towards use in a classroom
setting.

“Hello, World!”

¢ As is tradition when looking at a new
programming language…hello
world…

hello.ast

Imperative Programming
¢ Should look familiar.
¢ Here is an imperative version of computing a factorial…

fact-iter.ast

Imperative Programming

¢ Something a bit more
interesting – the
bubble sort.

¢ Note the access
operator ‘@’ for list
element access.

¢ ‘@’ is a universal
access operator:
l Member functions
l Tuple components
l List elements

bubble.ast

Strongly Typed

¢ Asteroid supports several type hierarchies,

boolean < integer < real < string
list < string
tuple < string
none (or ‘()’)

¢ These are all built-in types.
¢ User defined types are introduced with the ‘structure’

keyword (more on that later).
l User defined types do not belong to any hierarchy

¢ No generics,
l Dynamic typing together with duck typing cover most

of the use cases of generics in Asteroid.

Functional Programming

¢ Asteroid has a complete functional
sublanguage.
l ‘asteroid –F’ turns the Asteroid interpreter

into a functional language interpreter.
l Lisp/Scheme style functional

programming – no monads or algebraic
data types here.

l But Asteroid offers pattern-matchable
objects similar to Rust.

Functional Programming

¢ The functional version of the factorial
computation…

Multi-dispatch with pattern matching
on function arguments.

fact-rec.ast

Functional Programming

¢ Something a bit
more interesting –
the quick sort

¢ Note:
l [1|[2,3]] = [1,2,3]

qsort-fun.ast

Multi-Paradigm
Programming

¢ Asteroid allows you to “mix
‘n match” paradigms.

¢ E.g. in the QuickSort we
keep the functional multi-
dispatch with structural
pattern matching but
replace the ‘filter’ functions
with a ‘for’ loop from the
imperative paradigm.

¢ Our experience is that the
various paradigms
complement each other in
a very natural way.

Function Calls

¢ In the functional programming tradition, Asteroid’s function calls are
constructed by juxtaposing a function with a value, e.g.

fact 3.

¢ The implication is that all functions have only a single argument. If
you want to pass more than one value to a function you have to
construct a tuple of values, e.g.

foo (1,2).

¢ Syntactically this looks the same as a function call to foo in Python
but semantically it is very different – call foo with the value (1,2) in
Asteroid as apposed to call foo with the list of values (1,2) in
Python.

¢ This slight change of perspective enables effective pattern
matching in the multi-dispatch within function definitions in Asteroid.

Function Calls
¢ The interpretation of function arguments as a list

of values has unexpected implications in Python
l foo (1,2) ≠ foo ((1,2)), but
l (1,2) = ((1,2))

¢ Inconsistent handling of parenthesized tuples!

but…

In Asteroid it works
as expected…

Higher-Order Programming

¢ Asteroid implements a very clean and intuitive framework for
higher-order programming, e.g. the ‘map’ function
l A program that creates a list of alternating positive and

negative ones.
l The list constructor [1 to 10] constructs a list of values [1,

2,...,10].
l The first map turns this list into the list [1,0,1,...0].
l The second map turns that list into the list [1,-1,1,-1,...,-1].

map.ast

Higher-Order Programming

¢ The improvements in the conceptual
framework for higher-order programming
in Asteroid are non-trivial.

¢ Let’s try the same program in Python…

Python:

Compared to Asteroid:

Structures
¢ Like in many modern programming languages such as Rust

and Go, classes have given way to structures with member
functions in Asteroid,
l No member protection
l No inheritance
l But object identity (‘this’)

rect.ast

Structures
Asteroid

Go

Rust

First-Class Patterns

¢ The support of first-class patterns implies
that patterns can be
l stored in variables
l passed to/from functions

¢ Asteroid implements the idiom
l Patterns as values and values as patterns

First-Class Patterns

¢ In classical
pattern matching
patterns are
syntactically
static – consider
the quick sort

qsort-fun.ast

Pattern Reuse

¢ First-class
patterns are
values and
therefore
dynamic in their
nature

¢ First-class
patterns enable
pattern reuse

fact-pat.ast

n:*pos_int ≡ n if n is ∗pos_int

Pattern Factoring
¢ Patterns can become quite complex, first-class patterns

allow us to break patterns into smaller chunks.
¢ In the process we can also give sub-patterns meaningful

names making pattern expressions much more
comprehensible.

factoring.ast

Enhancing Type Systems
¢ First-class

patterns can act
like types

¢ Here we use the
first-class pattern
‘Shape’ to define
a subtype
polymorphic
function

basetype.ast

Structures and Objects

¢ In Asteroid the ‘let’
statement is a pattern-
match statement of the
form,

let <pattern>=<value>
¢ We pattern-match objects

for data decomposition!

struct-pat.ast

Structures and Objects

¢ Here are some fun pattern-match identities on
objects using first-class and static patterns.

ident.ast

Asteroid in the Classroom

¢ In CSC301 (Foundations of PLs) I use Asteroid mostly to teach
functional programming concepts,
l “Everything is a Value”
l Higher-order programming
l Pattern matching

¢ In CSC493 (Multi-Paradigm Programming) we look deeply into
the different programming paradigms and study how they
interact
l In particular, we look at the effect first-class patterns have on

programming in general
¢ The fact that Asteroid is dynamically typed and basically looks

familiar to most students let’s us get to the interesting bits very
in functional programming quickly…
l …in contrast to using something like Haskell or ML where we

would have to wrangle the type system in non-trivial ways
before we get to the interesting bits.

l …or Lisp/Scheme where we would have to wrestle the
uncommon syntax before we get to the interesting bits.

Future Work

¢ Near term,
l We are developing a compiler for Asteroid

that produces native code.
l Key to this development is the Asteroid

Virtual Machine (AVM) framework.
¢ Long term,

l Asteroid has a niche as a development
platform for performant programs within the
WebAssembly (https://webassembly.org)
framework geared toward frontend
developers that are not used to working in C
or Rust.

https://webassembly.org/

Thank You!

¢ I wanted to take this opportunity to thank
the folks who have contributed to this
project over the years, in particular,
l Ariel Finkle

Calvin Higgins
Christian Tropeano
Oliver McLaughlin
Theodore Henson
Timothy Colaneri

¢ If you are interested in programming
language design and implementation, we
are always looking for contributors!

Questions?

¢ lutzhamel@uri.edu
¢ or stop by my office for a chat.

¢ Homepage
l https://asteroid-lang.org

¢ Example code at
l https://replit.com/@lutzhamel/asteroid-talk-f22

mailto:lutzhamel@uri.edu
https://asteroid-lang.org/
https://replit.com/@lutzhamel/asteroid-talk-f22

