\@ Asteroid
The Programming Language

Dr Lutz Hamel
Dept. of Computer Science & Statistics
University of Rhode Island

asteroid-lang.org

© 2022, Lutz Hamel


https://asteroid-lang.org/

Asteroid: The Programming
Language

o The Asteroid programming language is,
modern
application-oriented
open-source
dynamically typed
multi-paradigm
heavily influenced by Python, Rust, ML, and Prolog
currently under development at the University of Rhode
Island
o Project page:
https://asteroid-lang.org
o A cloud-based version is available for this talk:
https://replit.com/@Ilutzhamel/asteroid-talk-f22
o Documentation:
https://asteroid-lang.readthedocs.io



https://asteroid-lang.org/
https://replit.com/@lutzhamel/asteroid-talk-f22
https://asteroid-lang.readthedocs.io/

Design Objectives

o Seamless integration of imperative,
functional, and object-oriented
programming.

o Full support of first-class patterns.

o Expressive, conversational syntax
geared towards use in a classroom
setting.



X | “Hello, World!”

o As is tradition when looking at a new
programming language...hello
world...

load system io.

io @println "Hello World!".

» asteroid hello.ast
Hello World!

hello.ast . I



Imperative Programming

o Should look familiar.
o Here is an imperative version of computing a factorial...

fact-iter.ast

load system io.
load system type.

VSl RS = asteroid fact-iter.ast
let val = 1. g .
_ Enter a positive integer: 3
while n > 1 do : ;
The factorial of 3 i1s 6
let val = valxn.
> i
let n = n-1.
end
return val.
end

let x = type @tointeger (io @input "Enter a positive integer: ").
io @println ("The factorial of "+x+" is "+(fact x)).



o Something a bit more
Interesting — the
bubble sort.

o Note the access
operator ‘@’ for list
element access.

o ‘@’ is a universal
access operator:
Member functions
Tuple components
List elements

bubble.ast

» asteroid bubble.ast
unsorted list: [6,5,3

sorted list: [1,2,3,4

- 1l

Imperative Programming

load system io.

function bubblesort with 1 do
loop
let swapped = false.
for i in @ to len(1)-2 do
if 1@(i+l) < @i do
let (l@i,1@(i+1)) = (l@(i+l),1@i).
let swapped = true.
end
end
if not swapped do
break.
end
end
return 1.
end

tet k= [6,5.,3,1,8.7.2.4].
io @println ("unsorted list: "+k).
io @println ("sorted list: "+(bubblesort k)).



Strongly Typed

o Asteroid supports several type hierarchies,

boolean < integer < real < string
list < string

tuple < string

none (or ())

o These are all built-in types.

o User defined types are introduced with the ‘structure’
keyword (more on that later).

User defined types do not belong to any hierarchy
o No generics,

Dynamic typing together with duck typing cover most
of the use cases of generics in Asteroid.



Functional Programming

o Asteroid has a complete functional
sublanguage.
‘asteroid —F’ turns the Asteroid interpreter
into a functional language interpreter.

Lisp/Scheme style functional
programming — no monads or algebraic
data types here.

But Asteroid offers pattern-matchable
objects similar to Rust.



Functional Programming

o The functional version of the factorial
fact-rec.ast COm pUtatIOn . s s

load system 1io.

load system type. Multi—dispatch with pattern matching
on function arguments.
function fact '
‘th 1 d » asteroid -F fact-rec.ast
wi > Enter a positive integer: 3
1 The factorial of 3 is 6
with n do > 1
nxfact(n-1).
end

let x = type @tointeger (io @input "Enter a positive integer: ").
io @println ("The factorial of "+x+" is "+(fact x)).



o Something a bit

more interesting —

the quick sort
o Note:
[11[2,3]] = [1,2,3]

gsort-fun.ast

= asteroid -F qsort-fun.ast
[0,1)2,3]

-

Functional Programming

load system io.

function qsort
with [] do
[]
with [a] do
[a]
with [pivot|rest] do
function filter
with (e, [],fcmp) do
[]
with (e, [a]|rest],fcmp) do
[al+filter(e,rest, fcmp)
if fcmp(a,e)
else filter(e,rest, fcmp)
end
let less=filter(pivot,rest,lambda with (x,y) do x < y).
let more=filter(pivot, rest,lambda with (x,y) do x >= y).

gsort less + [pivot] + gsort more.
end

io @println (qsort [3,2,1,0]).



Multi-Paradigm
Programming

o Asteroid allows you to “mix
‘n match” paradigms.

O Eg |n the QU'Cksor‘t we function gsort

load system io.

keep the functional multi- "o
dispatch with structural e
pattern matching but with [pivot|rest] do
replace the ‘filter’ functions e
with a ‘for’ loop from the fF.S =t oo
imperative paradigm. Lot less = less + [el.
o Our experience is that the i i
various paradigms e
complement each other in s s < k] - G e

end

a very natural way.

for@Eprintin (gsort [3.2,1,0]):



Function Calls

o

In the functional programming tradition, Asteroid’s function calls are
constructed by juxtaposing a function with a value, e.g.

fact 3.

The implication is that all functions have only a single argument. If
you want to pass more than one value to a function you have to
construct a tuple of values, e.g.

foo (1,2).

Syntactically this looks the same as a function call to foo in Python

but semantically it is very different — call foo with the value (1,2) in

éstﬁroid as apposed to call foo with the list of values (1,2) in
ython.

This slight change of perspective enables effective pattern
matching in the multi-dispatch within function definitions in Asteroid.



Function Calls

o The interpretation of function arguments as a list
of values has unexpected implications in Python

foo (1,2) # foo ((1,2)), but
(1,2) = ((1,2))

o Inconsistent handling of parenthesized tuples!

Python 3.8.11 (default, Jun 28 2021, 10:57:31)

[GCC 10.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> def foo(a,b):

pass

>>> foo (1,2)

>>> foo ((1,2))

Traceback (most recent call last): but..
File "<stdin>", line 1, in <module>

TypeError: foo() missing 1 required positional argument: 'b'

>>>

>>> (1,2) == ((1,2))
True

>>> |

Asteroid Version 1.1.2

Run "asteroid -h" for help

Press CTRL+D to exit

> function foo with (a,b) do .
In Asteroid it works RIS 2 )F=—"((152]])
as expected... true

> foo (1,2)

> foo ((1,2))

>




Higher-Order Programming

o Asteroid implements a very clean and intuitive framework for
higher-order programming, e.g. the ‘map’ function

A program that creates a list of alternating positive and
negative ones.

Zhe I1|%t] constructor [1 to 10] constructs a list of values [1,

The first map turns this list into the list [1,0,1,...0].
The second map turns that list into the list [1,-1,1,-1,...,-1].

map.ast
load system 1io.

load system math.

let a = [1 to 10] @map (lambda with x do math @mod (x,2))
@map (lambda with x do 1 if x else -1).

io @println a. » asteroid -F map.ast
[1s'1’1,'1,1)'1:1s'1s1a'1]

-




@ Higher-Order Programming

o The improvements in the conceptual
framework for higher-order programming
In Asteroid are non-trivial.

o Let's try the same program in Python...

* python map.py
[1’ _13 17 _1s 13 _1, 1’ '17 1: '1]

1 1 =[x for x in range(1,10+1)] -

Python: | 2 1iter = map(lambda x : x%2, 1)
3 out = list(map(lambda x : 1 if x else -1, iter))
4 print(out)

load system io.
Compared to Asteroid: load system math.

let a = [1 to 10] @map (lambda with x do math @mod (x,2))
@map (lambda with x do 1 if x else -1).

io @println a.



Structures

o Like in many modern programming languages such as Rust
and Go, classes have given way to structures with member
functions in Asteroid,

No member protection
No inheritance
But object identity (‘this’)

» asteroid rect.ast
The area of Rectangle(4,2) is 8

load system io. > I

structure Rectangle with
data xdim.
data ydim.
function area with () do
return this@xdim x this@ydim.
end
rect.ast end

let r = Rectangle(4,2).
io @println ("The area of Rectangle ("+r@xdim+","+r@ydim+") is "+r@area()).



Asteroid

structure Rectangle with
data xdim.
data ydim.
function area with () do —-

return this@xdim * this@ydim.

end
end

Rust

struct Rectanéle {
width: u32,
height: u32,

}

impl Rectangle {

fn area(&self) -> u32 {
self.width * self.height

}

Structures

Go

type rect struct {
width int
height int

}

func (r xrect) area() int {
return r.width x r.height

}



\@ First-Class Patterns

o The support of first-class patterns implies
that patterns can be

stored in variables
passed to/from functions
o Asteroid implements the idiom
Patterns as values and values as patterns



First-Class Patterns

load system io.

o In classical |
pattern matChmg with 1 do

[]
with [a] do

patterns are 2

with [pivot|rest] do

SyntaCt|CaIIy function filter

with (e, []1,fcmp) do

[]
StatIC ConSIder with (e, [a|rest],fcmp) do
. [a]+filter(e,rest, fcmp)
the qUICk Sort if fcmp(a,e)
else filter(e,rest,fcmp)
end
let less=filter(pivot,rest,lambda with (x,y) do x < y).
let more=filter(pivot,rest,lambda with (x,y) do x >=y).
gsort less + [pivot] + gsort more.
end

gsort-fun.ast
io @println (gsort [3,2,1,0]).



o First-class
patterns are
values and
therefore
dynamic in their
nature

o First-class
patterns enable
pattern reuse

n:*pos_int = nifnis *pos_int

Pattern Reuse

load system io.

pattern x if (x is
pattern x if (x is

let pos_int
let neg_int

function fact
with 0 do
1
with n:ikpos_int do
nkxfact(n-1)
with *xneg_int do
throw Error "negative values
end

function sign
with 0 do
i
with xpos_int do
i
with xneg_int do
-1
end

io @rintln (fact 3).
io @rintln (sign 3).

fact-pat.ast

%integer) and (x > 0).
%integer) and (x < 0).

not supported".

asteroid fact-pat.ast




factoring.ast

Pattern Factoring

o Patterns can become quite complex, first-class patterns
allow us to break patterns into smaller chunks.

o Inthe process we can also give sub-patterns meaningful
names making pattern expressions much more
comprehensible.

load system io.

function fool with (x if (x is %integer) or (x is %real), y) do _
io @println (x,y).
end

let scalar = pattern v if (v is %integer) or (v is %real).

function foo2 with (x:xscalar, y) do _
io @println (x,y).
end

ool (1, 2):
fico2 (1,2).



o First-class
patterns can act
like types

o Here we use the
first-class pattern
‘Shape’ to define
a subtype
polymorphic
function

basetype.ast

> asteroid basetype.ast
circle: 10

rectangle: 5, 20

= 1

Enhancing Type Systems

load system io.

structure Circle with
data radius.
function print_shape with () do
io @rintln ("circle: "+this@radius).
end
end

structure Rectangle with
data a.
data b
function print_shape with () do
io @println ("rectangle: "+this@a+", "+this@b).
end
end

let Shape = pattern x if (x is %Circle) or (x is %Rectangle).

function print_any with obj:xShape do

obj @print_shape ().
end

print_any (Circle(10)).
print_any (Rectangle(5,20)).



\@ Structures and Objects

o In Asteroid the ‘let’
statement is a pattern-
match statement of the

form,
let <pattern>=<value> |
. structure A with
o We pattern-match objects data a.
for data decomposition! data b.

end
let o = A(1,2).

let A(x,y) = o.
assert(x==1 and y==2).

struct-pat.ast



\@ Structures and Objects

o Here are some fun pattern-match identities on
objects using first-class and static patterns.

structure A with
data a.
data b.

end

let A(1,2) = A(1,2).
let o = A(1,2).

let %0 = A(1,2).

let %0 = o.

ident.ast



Asteroid in the Classroom

o In CSC301 (Foundations of PLs) | use Asteroid mostly to teach
functional programming concepts,
“Everything is a Value”
Higher-order programming
Pattern matching
o In CSC493 (Multi-Paradigm Programming) we look deeply into
the different programming paradigms and study how they
interact
In particular, we look at the effect first-class patterns have on
programming in general
o The fact that Asteroid is dynamically typed and basically looks
familiar to most students let’s us get to the interesting bits very
in functional programming quickly...
...In contrast to using something like Haskell or ML where we

would have to wrangle the type system in non-trivial ways
before we get to the interesting bits.

...or Lisp/Scheme where we would have to wrestle the
uncommon syntax before we get to the interesting bits.



Future Work

o Near term,

We are developing a compiler for Asteroid
that produces native code.

Key to this development is the Asteroid
Virtual Machine (AVM) framework.

o Long term,

Asteroid has a niche as a development
platform for performant programs within the
WebAssembly (https://webassembly.org)
framework geared toward frontend

developers that are not used to working in C
or Rust.



https://webassembly.org/

Thank You!

o | wanted to take this opportunity to thank
the folks who have contributed to this
project over the years, in particular,

Ariel Finkle

Calvin Higgins
Christian Tropeano
Oliver McLaughlin

Theodore Henson
Timothy Colaneri

o If you are interested in programming
language design and implementation, we
are always looking for contributors!



@ Questions?

o lutzhamel@uri.edu
o or stop by my office for a chat.

o Homepage
https://asteroid-lang.org

o Example code at
https://replit.com/@Ilutzhamel/asteroid-talk-f22



mailto:lutzhamel@uri.edu
https://asteroid-lang.org/
https://replit.com/@lutzhamel/asteroid-talk-f22

