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Motivation

Build and Test

Use requirements to construct a theory.

Use requirements to construct test cases.

Validate theory with the test cases.

Inductive Programming

Use requirements to construct test cases.

Induce a theory on the test cases.

⇒ Inductive programming seems promising in that it puts less cognitive burden

on the engineer/developer.
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Equational Logic

Why equational logic?

Intuitive - substituting equals for equals.

Simple proof theory.

Support for automated deduction.

Straight forward model theory.
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Equational Logic and some Classical
Results
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Equational Logic

A simple theory:
theory STACK is

sorts Stack Element .

op nil : -> Stack .

op top : Stack -> Element .

op pop : Stack -> Stack .

op push : Stack Element -> Stack .

var S : Stack . var E : Element .

eq top(push(S,E)) = E .

eq pop(push(S,E)) = S .

endth

Note: Theories are typed (many-
sorted) to prevent common pro-
gramming mistakes.
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Equational Theories

An equational theory or specification is a pair

(Σ, E)

where Σ is an equational signature (sort and operator names) and E is a set of

Σ-equations.

Each equation in E has the form

(∀X) l = r

where

X is a set of variables distinct from the equational signature Σ,

l and r are terms over Σ and X.
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Equational Deduction

Given a theory (Σ, E), then the following rules of deduction define the

equations that are deduciblea:

Reflexivity “the equation t = t is deducible"

Symmetry “if t = t′ is deducible, then t′ = t is deducible"

Transitivity “if t = t′ and t′ = t′′ are deducible, then t = t′′ is deducible"

Instantiation “any substitution instance of an equation is a deducible equation”

Congruence “substituting equal terms into the same term yields equal terms”

aAlgebra and Theorem Proving, Joseph Goguen, unpublished manuscript
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Model Theory

Models for equational theories are algebras.

Algebras are sets with operations defined on them, one for each symbol in a
corresponding signature.

We say that an algebra M satisfies an equational theory (Σ, E) if it preserves
the equality relations of the equational theory.

We write,

M |= e, for each e ∈ E,

or

M |= E.

Note: In algebraic specification programs or software systems are considered

models for equational theories; types are models for the sorts, functions and
operators are models for the operation symbols in the equational signature
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Example

Given an equational theory

theory SEMIGROUP is

sort S .

op * : S S -> S .

vars A B C : S .

eq (A * B) * C = A * (B * C) .

endth

The algebra (I, +) with I as the interpretation of the sort symbol S and

+ : I× I→ I as the interpretation of the ∗-operator is a model, such that

(I, +) |= SEMIGROUP

⇒ Integer addition preserves the associativity specified in the equational

theory.
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Soundness & Completeness

Let (Σ, E) be an equational theory, then for all M |= E,

M |= (∀X) l = r iff E ⊢ (∀X) l = r.

AAIP ’07 – Lutz Hamel, University of Rhode Island – p. 11/45



Automated Deduction

In equational logic automated deduction is accomplished via term rewriting:

Each equation (∀X) l = r is considered a rewrite rule (∀X) l→ r.

A variant of the instantiation rule is used as a rewrite rule application.

⇒We loose symmetry and congruence; and therefore term rewriting is in
general not complete, but it is sound.

Let (Σ, E) be an equational theory, then for all M |= E,

E ⊢RW (∀X) l = r implies M |= (∀X) l = r.
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Theory Morphisms & Reducts

Given two theories T = (Σ, E) and T ′ = (Σ′, E′), then a theory morphism

φ : T → T ′ is a signature morphism φ : Σ→ Σ′, such that

E′ ⊢ φ(e), for all e ∈ E.

“a theory morphism is a translation of a source theory into a target

theory in such a way that the translated equations of the source
theory can be deduced in the target theory."
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Theory Morphisms & Reducts

Let φ : T → T ′ be a theory morphism, let M ′ be an algebra such that

M ′ |= T ′, then

φM ′

M ′
Φ

oo

|= |=

T
φ

// T ′

The theory morphism φ induces a mapping Φ that takes any T ′-algebra M ′ to

the reduct φM ′ such that φM ′ |= T .
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A Simple Example

Given two theories,

theory SEMIGROUP is

...

eq (A * B) * C = A * (B * C) .

endth

The algebra (I, +) with + : I × I → I as the
interpretation of the ∗-operator is a model, such
that

(I, +) |= SEMIGROUP

and,

theory MONOID is

...

eq (A * B) * C = A * (B * C) .

eq 1 * A = A .

eq A * 1 = A .

endth

The algebra (I, +, 0), with + : I × I → I as
the interpretation of the ∗-operator and 0 ∈ I

as the interpretation for the 1 constant symbol,
is a model, such that

(I, +, 0) |= MONOID

Then,

SEMIGROUP
φ
→֒ MONOID implies (I, +)

Φ
← (I, +, 0).
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Machine Learning – an Algebraic
Perspective
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Learning

Goal: Induce algebraic specifications that

(1) entail the positive test cases,

(2) must not entail the negative test cases,

(3) utilize available background information.

⇒ In our case, test cases or facts are ground equations (equations that

contain no variables).

Let F be a theory that contains only positive test cases, then we can restate

part (1) of our goal with the following diagram,

F
φ

// A

“find a theory A such that there exists a theory morphism φ from the
facts F to A, that is, A ⊢ φ(e) for all e ∈ F "
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A Simple Example

theory FACTS is

sorts Stk Elt .

ops a b : -> Elt .

op nl : -> Stk .

op top : Stk -> Elt .

op pop : Stk -> Stk .

op push : Stk Elt -> Stk .

eq top(push(nl,a)) = a .

eq top(push(push(nl,a),b)) = b .

eq top(push(push(nl,b),a)) = a .

eq pop(push(nl,a))= nl .

eq pop(push(push(nl,a),b)) = push(nl,a) .

eq pop(push(push(nl,b),a)) = push(nl,b) .

endth

φ
−→

theory STACK is

sorts Stk Elt .

ops a b : -> Elt .

op nl : -> Stk .

op top : Stk -> Elt .

op pop : Stk -> Stk .

op push : Stk Elt -> Stk .

var S : Stk .

var E : Elt .

eq top(push(S,E)) = E .

eq pop(push(S,E)) = S .

endth

Notes:

Let some algebra M be a model of STACK, then its reduct φM is a model of FACTS.

The ground equations in FACTS are the test cases that need to be deducible in the induced theory
STACK.
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Inequality Constraints

Inequality constraints allow us to specify properties that should not hold in an

induced theory - part (2) of our goal.

An inequality constraint is an equation of the form

(∀∅)(l 6= r) = true

An equational theory (Σ, N̂), where each e ∈ N̂ is an inequality constraint, is
an inequality constraint theory.

Observe: Given an equational ground theory (Σ, N) of test cases that should not hold in
an induced theory A, i.e. A 6⊢ φ(e) for all e ∈ N , we can rewrite these as an inequality
constraint theory (Σ, N̂) that should hold in the induced theory, that is, A ⊢ φ(e) for all
e ∈ N̂ .
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Inequality Constraints

We can now extend our notion of theory induction by including
inequality constraints.

This can represented as the commuting diagram

F // A

N̂

??�������

OO

“both the facts F and the induced theory A must satisfy the
inequality constraints N̂ "
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Background Knowledge

A theory (Σ, B) is called a background theory if it defines auxiliary
concepts that are appropriate for the domain to be learned – part (3) of
our goal.

The equations in B do not necessarily have to be ground equations.
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Theory Induction

Putting it all together we obtain the following commuting diagram,

A

B

>>~~~~~~~~
F

``@@@@@@@

N̂

__???????

OO

??�������

The induced theory A is the apex object of a cone over the specification
diagram,

B F

N̂

__???????

??�������

- A specification diagram represents an induc-
tive program.

- There is more structure to an inductive pro-
gram than a deductive program.
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Theory Induction

Given the cone

A

B

>>~~~~~~~~
F

``@@@@@@@

N̂

__???????

OO

??�������

we can recover classic notions of inductive logic:

completeness - given by theory morphism F → A,

consistency - given by the theory morphism N̂ → A,

prior necessity - enforced by the fact that B 6→ F ,

prior satisfiability - given by the theory morphism N̂ → B.
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Search Space

Let S be some specification diagram, then the cones over S form a category,

H(S), with cone morphisms between them;

let P and Q be cones in H(S), then a cone morphism c : P → Q is a
theory morphism such that the following diagram commutes, a

P
c

// Q

S

[c???????

???????

;C

�������

�������

aTo be technically more accurate, we should say that the diagram commutes for each node in the specifi-

cation diagram.
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Search Space

From an inductive programming point of view we are interested in the most

general cone in H(S), where we define the relation more general as follows.

Let P and Q be cones in H(S), then we say that Q is more general
than P iff there exists a cone morphism P → Q.

⇒ The most general cone cannot be constructed, therefore, we will need to
search the category H(S) for an appropriate object.

⇒ “Generalization as search” a

aMitchell, T.M.: Generalization as search. Artificial Intelligence 18(2) (1982) 203 – 226
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Search Space

Observation: The cone we obtain by simply memorizing the facts,
inequality constraints, and background theory, call it I, is the least
general cone in H(S) – it is the initial object in this category.

P Q

I

@@�
�

�
�

77o
o

o
o

o
o

o

S

[c???????

???????

KS CK

��������������

��������������
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Implementation
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New Command in Maude

We have implemented an equational theory induction system in the
specification language Maude.

The induction system is accessible via the new command,

> induce theory-name pfacts nfacts background parameters

which gives rise to the following specification diagram

background pfacts

n̂facts

eeJJJJJJJJJ

;;xxxxxxxx

The induce command is implemented as an evolutionary search in the

category of cones over a specification diagram for the most general cone. a

aMore specifically, an approximation to the most general cone, since evolutionary systems are not guar-

anteed to find the global optimum. AAIP ’07 – Lutz Hamel, University of Rhode Island – p. 28/45



Genetic Programming

1. Compute an initial (random) population of cones;
2. Evaluate the fitness of each cone H,

fitness(H) = facts(H) + constraints(H) +
1

length(H)
+

1

terms(H)
,

3. Perform reproduction using genetic crossover and mutation
operators;

4. Compute new population of cones;

5. Goto step 2 or stop if target criteria have been met.

Note: If a cone does not satisfy all facts or constraints we often talk about a

pre-cone.

Note: In order to prevent premature convergence we use a multi-deme genetic

programming model
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Genetic Operators: Crossover

Expression-level crossover - exchange expression subtrees at the level of the left

and right sides of equations between theories.

Equation-level crossover - exchange whole equations or sets of equations
between theories.

ThTh

Eq

=

L R

Eq

=

L R
Eq

=

L R

(a)

Th

Eq

=

L R
Eq

=

L R

Th

Eq

=

L R
t1

type(t1)= a

t2

type(t2) = a

(b)

Th

Eq

=

L R
Eq

=

L R

Th

Eq

=

L R
t1 t2

swap

(c)
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Genetic Operators: Mutation

Expression-level mutation - replace an expression with a newly generated
expression of the same sort.

Equation addition/deletion - delete an equation from some theory or add a newly

generated equation to some theory.

Literal generalization - replace a literal expression with a variable of the

appropriate sort.

Th

Eq

=

L R
Eq

=

L R

t1

type(t1)= a

(a)

t2

type(t2) = a

Generate new tree:

Th

Eq

=

L R
Eq

=

L R

t1

replace

(b)

t2
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Implementation Notes

Theories are represented as strongly typed syntax trees.

We use fitness convergence rate as a termination criterion.

Should the fitness of the best individuals increase by less than 1%

over 25 generations we terminate the evolutionary search.

Our genetic programming engine is implemented as a strongly typed

genetic programming system using Matthew Wall’s GALib C++ library
within Maude.

Since the equations in the hypotheses are generated at random, there is
no guarantee that the theories do not contain circularities throwing the

rewriting engine into an infinite rewriting loop while computing the fitness
of a particular hypothesis. To guard against this situation we allow the

user to set a parameter that limits the number of rewrites the engine is
allowed to perform.
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Results
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Overview

Experiments:

Primitive stack operators
multi-concept learning

Sum of natural numbers
recursive definition of sum operator

Evenness
recursive definition of even operator

Sum of list elements
recursive iteration over a list, background theory

Play tennis

classification problem with a fixed number of attributes

Train directions

Michalski’s train classification problem, structural classificationAAIP ’07 – Lutz Hamel, University of Rhode Island – p. 34/45



Overview

Genetic Algorithm Parameters:

300 Total population

100 Maximum number of generations

15 Number of demes (sub-populations)

2 Migration number

0.7 Probability of crossover

0.3 Probability of mutation

0.99 Convergence ratio

25 Convergence window (generations)
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List Sum

fmod SUM-LIST-PFACTS is

...

eq suml(cons(nil,0)) = 0 .

eq suml(cons(nil,s(0))) = s(0) .

eq suml(cons(nil,s(s(0)))) = s(s(0)) .

eq suml(cons(cons(nil,0),s(0))) = s(0) .

eq suml(cons(cons(nil,s(0)),s(0))) = s(s(0)) .

eq suml(cons(cons(nil,s(s(0))),s(0))) = s(s(s(0))) .

eq suml(cons(cons(nil,s(s(0))),s(s(0)))) = s(s(s(s(0)))) .

eq suml(cons(cons(nil,0),s(s(0)))) = s(s(0)) .

eq suml(cons(cons(nil,0),s(s(s(0))))) = s(s(s(0))) .

eq suml(cons(cons(nil,s(s(0))),0)) = s(s(0)) .

endfm

fmod SUM-LIST-NFACTS is

...

eq suml(cons(nil,0)) = s(0) .

eq suml(cons(nil,s(0))) = 0) .

eq suml(cons(nil,s(s(0)))) = s(0) .

eq suml(cons(cons(nil,0),s(0))) = s(s(0)) .

eq suml(cons(cons(nil,s(0)),s(0))) = s(s(s(0))) .

eq suml(cons(cons(nil,s(0)),s(0))) = s(0) .

eq suml(cons(cons(nil,s(0)),s(s(0)))) = s(s(0)) .

eq suml(cons(cons(nil,0),s(s(0)))) = s(s(s(0))) .

eq suml(cons(cons(cons(nil,s(0)),s(0)),s(0))) = s(s(0)) .

eq suml(cons(cons(cons(nil,s(0)),0),s(0))) = s(0) .

endfm

fmod SUM-LIST-BACKGROUND is

...

eq sum(0,X0) = X0 .

eq sum(s(X0),X1) = s(sum(X0,X1)) .

endfm
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List Sum

A typical hypothesis:

fmod SUM-LIST is

sorts Nat NatList .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

op nil : -> NatList .

op cons : NatList Nat -> NatList .

op suml : NatList -> Nat .

vars X0 X1 X2 : Nat .

vars NatA NatB NatC : Nat .

vars NatListA NatListB NatListC : Nat .

eq sum(0,X0) = X0 .

eq sum(s(X0),X1) = s(sum(X0,X1)) .

eq suml ( nil ) = 0

eq suml ( cons ( NatListA , NatB ) ) = sum ( suml ( NatListA ) , NatB )

endfm

Notes:

A correct solution was found in 38 out of 50 runs.

The average number of generations to convergence as 35.54 with a standard
deviation of 13.88. AAIP ’07 – Lutz Hamel, University of Rhode Island – p. 37/45



Trains

Eastbound Westbound

...

eq direction( addCar(addCar(addCar(emptyTrain,

makeCar( ushaped, short, makeWheels(s(s(0))), open, makeLoad(triangle, s(0)) ) ),

makeCar( bucketshaped, short, makeWheels(s(s(0))), open, makeLoad(rectangle, s(0)) ) ),

makeCar( rectangular, short, makeWheels(s(s(0))), flat, makeLoad(circle, s(s(0))) ) )

) = east .

...

eq direction( addCar(addCar(emptyTrain,

makeCar( ushaped, short, makeWheels(s(s(0))), open, makeLoad(rectangle, s(0)) ) ),

makeCar( rectangular, long, makeWheels(s(s(0))), open, makeLoad(rectangle, s(s(0))) ) )

) = west .

...

Hypothesis:

eq direction (addCar(TrainA,makeCar(ShapeA,LengthB,WheelsB,flat,LoadB))) = east

eq direction (addCar(addCar(addCar(TrainA,CarC),CarA),makeCar(rectangular,short,WheelsC,RoofA,LoadC))) = east

eq direction ( TrainB ) = west
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Trains

Notes:

Hypothesis: “trains ending with a flat-roofed car, or trains at least three cars

long and ending with a short, rectangular car are east-bound; all other trains
are heading west.”

The system found a correct solution in 40 out of 50 runs.

The average number of generations to convergence was 62.04 with a standard

deviation of 15.33.
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Related Work
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Related Work

The synthesis of equational and functional programs has a long history in com-

puting extending back into the mid 1970’s, see:

Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive Programs. Journal
of the Association for Computing Machinery 24(1) (1977) 44–67

Summers, P.: A Methodology for LISP Program Construction from Examples. JACM 24(1) (1977)
161–175

Manna, Z., Waldinger, R.: A Deductive Approach to Program Synthesis. TOPLAS 2(1) (1980) 90–121

Dershowitz, N., Reddy, U.: Deductive and Inductive Synthesis of Equational Programs. JSC 15(5/6)
(1993) 467–494

Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: An explanation based

generalization approach. Journal of Machine Learning Research 7 (2006) 429–454
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Related Work

Related systems that share evolutionary search as the generalization strategy
are:

Kennedy, C.J., Giraud-Carrier, C.: An evolutionary approach to concept learning with structured data.
In: Proceedings of ICANNGA, Springer Verlag (1999) 1–6

Olsson, R.: Inductive functional programming using incremental program transformation. Artificial

Intelligence 74(1) (1995) 55–58
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Conclusions and Future Research
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Conclusions and Future
Research

We have developed a system that supports an inductive programming
approach to algebraic specification.

As part of that effort we have developed an algebraic semantics for inductive
equational logic programming.

Further work:

Extend the system to include order-sorted, conditional equational logic.

We have a general algebraic framework, can we instantiate this framework

with other logics that form an institution? e.g. hidden equational logic

Better genetic operators and primitives in the evolutionary search strategy

– hybrid algorithms, viz. Kennedy et. al and Olsson.
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Thank You!

hamel@cs.uri.edu
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