
High-Level Synthesis Parallelization and
Optimization of Vectorized Self-Organizing Maps

Omar X. Rivera-Morales
Dept. of Computer Science
University of Rhode Island

Kingston, RI USA
omar.riveramorales@my.uri.edu

Lutz Hamel
Dept. of Computer Science
University of Rhode Island

Kingston, RI USA
lutzhamel@uri.edu

Abstract—The nature of the Self-Organized Maps (SOM) re-
quires a constant improvement of performance to address the in-
creasing complexity of datasets. These demands have led to high-
performance algorithms that run in hardware accelerators such
as Graphical Processing Units (GPU) and Field Programmable
Gate Array (FPGA). This work introduces a novel High-Level
Synthesis (HLS) FPGA implementation for the vectorized SOM
algorithm. The proposed algorithm is implemented using HLS
parallelization and design optimization techniques available on
the Xilinx Alveo FPGA Accelerator Card. This paper introduces
the HLS-based algorithm and discusses the pipelining, unrolling,
systolic array matrix reduction, and memory transformation
techniques to improve the VSOM algorithm performance. Our
HLS-VSOM experimental results show a significant performance
increase over SOM CPU and parallel GPU variants.

Index Terms—SOM, FPGA, parallel computing, High-Level
Synthesis

I. INTRODUCTION

The self-organizing map (SOM) is a neural network de-
signed for unsupervised machine learning [1]. After cluster-
ing the neurons, the generated maps can be utilized in a
diverse range of domains such as atmospheric science, nuclear
physics, medical diagnosis, and other data domains [2]. See
reference [1] for a more comprehensive literature survey.

This paper demonstrates the performance achievable using
various HLS techniques for the VSOM, a highly efficient SOM
algorithm published by Hamel [3]. The HLS-VSOM replaces
all iterative constructs of the algorithm with a highly optimized
kernel running in an FPGA. The HLS kernel provides sub-
stantial performance increases over Kohonen’s SOM iterative
algorithm, VSOM, and other GPU SOM variants.

The FPGA implementation addresses the increasing de-
mands for high-performance computing and optimization by
using various HLS transformations. The HLS optimization can
be categorized into three major classes: Pipelining, Scaling,
and Memory. Pipelining transformations allow overlapping
the instructions from the processor through increasing the
execution flow. Scaling are transformations that increase the
computational parallelism, and memory transformation in-
creases the read and write efficiency. In addition, we utilized a
systolic array matrix reduction using Digital Signal Processors
(DSPs) to accelerate some portions of the algorithm.

Our experimental results show that the maps produced by
the HLS-VSOM are equivalent in quality to the maps produced

by the VSOM and the original SOM iterative algorithm. The
current HLS-VSOM model is parallel and highly optimized,
therefore, well suited as a replacement for other parallel
algorithms to train the self-organizing maps. Since the FPGAs
are currently the only hardware accelerators allowing the use
of HLS tools, the algorithm HLS transformations are focused
on the context of the FPGA accelerator. The HLS-VSOM
implementation presented here is written in OpenCL with
Pragmas directives and compiled with the Xilinx Vitis Vivado
compiler. The Vitis compiler uses a high-level synthesis to
generate traditional hardware design languages like VHDL
or Verilog. The HLS connects the hardware and software
developments on a single compilation environment and enables
basic performance portability [4].

The paper is organized as follows: In Section II starts
our discussion with an overview of the HLS and a brief
description of the major stages. Under section III, we included
an introduction to the VSOM [3] vectorized rules; this is an
implementation of a competitive learning scheme comprised of
a competitive step and an update step with vector and matrix
training. The relevant details about related research work are
included in Section V. As part of Section IV, we develop the
HLS-VSOM training and examine the instruction pipelining,
scaling data level parallelisms, array partitioning, and memory
optimization transformations. Under section VI, we included
the study of the performance of our parallel vectorized training
implementation by comparing it to various CPU and GPU
SOMs variants. Finally, in Section VII , we conclude our
discussion with a summary of the observations and some
future research ideas under consideration.

II. HIGH LEVEL SYNTHESIS

The HLS acceleration serves as an answer to address the
complex and error-prone hardware design process. The HLS
has been known to cope with these losses, obtaining design
productivity gains by separating functional system verification,
performed from a time-agnostic high-level language, from
timed system verification, performed after automatically in-
ferring hardware-specific code [5].

Nowadays, the software and hardware communities are
embracing the HLS tools. The HLS bridges the gap between



hardware and software development and enables fundamen-
tal performance portability implemented in the compilation
system. [4]. Generally, the HLS systems rely on the abstrac-
tion and low-level hardware control provided by C/C++ and
OpenCL languages.

Companies like Xilinx with the Vivado/Vitis HLS design
suite and Intel FPGA SDK offer a structured high-level
languages solution for people trying to program configurable
hardware, such as FPGAs. However, the HLS approach does
not come with some problems. Robattu in [6] listed some of
the significant drawbacks of using the HLS.

• Imperative high-level programming languages imperative
formulations can not differentiate between iterations over
time and iterations over space. This limitation does not
translate appropriately to hardware architecture where all
the events are occurring in parallel.

• The substantial level of parallelization leads to a ”bottle-
neck” on memory accesses at the implementation level,
which immediately leads to a “bottleneck” on memory
accesses [7].

These drawbacks can be circumvented by relying upon so-
called applicative or functional languages in which algorithms
are described as a (mathematical) composition of side-effect
free functions [6]. Another solution is to provide a hard-
ware behavior and software iterations description. The HLS
environment allows the programmer to include “Pragmas”
directives with a vast amount of functionality encapsulating
an instruction of the expected system architecture behavior.

The HLS source to hardware stacks process transforms an
imperative code into a hardware design language (HDL) such
as Verilog or Vhdl. Here, we provide a sequential description
of the major stages based on Johannes [4]:

1) High-level synthesis converts an imperative and proce-
dural source code description into functional hardware-
level description. This generally translates as converting
high level languages with Pragmas directives like C++ or
OpenCL into a Hardware Description Language (HDL)
such as Verilog or VHDL.

2) Hardware synthesis creates a logical mapping between
the register level circuits description from the HDL and
the physical component available in the target architec-
tures.

3) Place and Route maps the hardware logical mapping
into the physical components available in the hardware.
During this, the system performs target-specific opti-
mization to minimize between registers and cable length.
As part of the optimization, the system will configure a
hardware environment that increases the best achievable
frequency.

4) Bitstream generation creates the bitstream image that
will be translated into the gate array configuration to
form the equivalent to a specific circuit.

III. VECTORIZATION OF SELF-ORGANIZING MAPS

The origins of the self-organizing maps model can be
traced back to the Vector Quantization (VQ) method [1]. The

VQ is a signal-approximation algorithm that approximates a
finite “codebook” of vectors mi ∈ Rn, i = 1, 2, ..., k to the
distribution of the input data vector x ∈ Rn. In the SOM
context, the approximated codebook allows us to categorize
the nodes and form an “elastic network,” which becomes a
meaningful, coordinated map or grid system.

From a computational perspective, the SOM can be de-
scribed as a mapping of high dimensional input data onto a
low dimensional neural network projected as a 2D or three-
dimensional (3D) map. The mapping is accomplished by
assuming that the input data set is a real vector such as
x = [ξ1, ξ2, ..., ξn]

T ∈ Rn. The SOM neuronal map can
be defined as a model containing the parametric real vector
mi = [ui1, ui2, ..., uin]

T ∈ Rn associated with the neurons’
weights. If we consider the distance between the input vector
xk and the neuron vector mi then we can establish an initial
minimum distance relation between the input and the neurons
by calculating the Euclidean distances. Then, these distances
are used to identify the best matching unit (BMU) index with
equation (1).

c = argmini(||mi − xk||2) (1)

To define the SOM in terms of matrix and vector operations
it is assumed that the map’s neurons are stored in a n × d
matrix M where each row i represents the neuron mi with d
components,

M[i, ] = mi = (m1, . . . ,md)i, (2)

with i = 1, . . . , n. The training data x consists of a set
D= {x1, . . . ,xl}. The set can be defined as a l × d matrix
where each row k represents the training vector xk with d
components,

D[k, ] = xk = (x1, . . . , xd)k, (3)

with k = 1, . . . , l.
Essential details to consider include (1) the dimensionality

d for the input, and (2) the neuron vectors are required to be
the same for well-defined matrix operations.

A. The VSOM Competitive Step

In the SOM algorithm the competitive step is accom-
plished in a sequential manner searching for the BMU using
Equation(1). In contrast, in the VSOM competitive step, we
find the BMU for a particular training instance xk calculating
the Euclidean distance as a set of vector and matrix operations.
These operations find the c index associated with the neuron
with the minimum distance to the training instance. The BMU
c index corresponds to the neuron in the map with the highest
resemblance to the particular xk selected for training during
the epoch.

The first step to calculate the BMU requires us to compute
a matrix X to hold a randomly selected training vector. The
matrix X in equation (4) is defined with a component sizes of
n × d, where each row is holding the current epoch training



vector xk = (x1, x2, . . . , xd)k, which is randomly selected
from matrix D,

X = 1n ⊗ xk. (4)

Here, the symbol ⊗ represents the outer product and 1n is a
column vector defined as,

1n = (1, 1, . . . , 1︸ ︷︷ ︸
n

)T. (5)

Since 1n is a column vector and xk is a row vector the
operation in (4) is well defined. After populating our epoch
training instance matrix X with the duplicated xk values,
equations (6), (7) and (8) are used to compute the square of the
Euclidean distances between the map neurons and the input
vector,

∆←M−X (6)
Π←∆ ◦∆ (7)
s← Π× 1d (8)

In equation (6) we calculate the difference between the matri-
ces with an element-by-element matrix subtraction. In equation
(7) we use the Hadamard product to allow us to calculate the
Π matrix, in this context ◦ represents the element-by-element
matrix product and X, M, ∆ and Π are all n× d matrices.

Lastly, in equation (8) we use a ‘row sum’ matrix reduction
to compute the vector s of size n. Here, 1d is a column vector
similar to (5) with the dimensionality defined by the value of
d. In order to find the BMU, we search for the location of the
minimum value in vector s.

B. The VSOM Update Step

In the classic stochastic SOM, the update step occurs
after completing the BMU calculations, the updates to the
neuronal weights are accomplished using the training instance
xk to influence the best matching neuron and its surrounding
neighborhood.

mi ←mi − η(mi − xk)h(c, i) (9)

The weights update step in equation (9), affects every
neuron inside the neighborhood radius of influence. Here, the
learning rate η serves as a scaling factor between 0 and 1. The
h(c, i) acts as the loss function , where i = 0, 1, ... , n and it
can be defined as,

h(c, i) =

{
1 if i ∈ Γ(c),
0 otherwise, (10)

where Γ(c) is the neighborhood of the best matching neuron
mc with c ∈ Γ(c). In the SOM, the learning factor and the
loss function both decreased monotonically over time [1].

In the VSOM, the update step also occurs after the BMU
calculations but all the neurons update operations are accom-
plished with matrix operations and is defined as,

M←M− η∆ ◦ Γc. (11)

Algorithm 1 The HLS-VSOM training algorithm.
1: Given:
2: D ← {training instances, a l x d matrix}
3: M ← {neurons, a n x d vector of tuples}
4: η ← {learning rate 0 < η < 1}
5: Γ(c)← {neighborhood function for some neuron c}
6: minIndex(s) ← {func, returns location of min. val in s}
7: Φ← {Rowsum reduction using Systolic Array dot product}
8: Ω← {Pipeline, unrolled loops kernel operations}
9: R← {Random index values list}

10: O ← {constant column vector with value of 1’s}
11:

12: Repeat:
13: /***Select a matrix training instance as vector
14: for some k = 1, ..., l : ***/
15:
16: xk ← D[Rk]
17:
18: /***Find the winning neuron using accelerated kernels ***/
19: X← Ωx(1

n ⊗ xk)
20: ∆← Ω∆(M− X)
21: Π← ΩΠ(∆ ◦∆)
22: /***Reduction (Rowsum) Using Systolic Arrays and DSP***/
23: s← Φs(Π ·O)
24: c = minIndex(s)
25:
26: /***Update neighborhood with vector operations ***/
27: Γc ← ΩΓ(Γ(c))
28: Mnew ← ΩMnew(Mcurrent − η∆ ◦ Γc)
29: done
30: return Mnew

Here, η is the learning rate, ∆ contains the calculations of
the difference between the neurons and the selected training
instance as computed in (6), and the symbol ◦ represents the
Hadamard product. Similarly to the SOM, in the VSOM, the
learning rate η is linearly reduced as epochs increase.

The competitive and the update steps are computed during
each epoch using the randomly selected training instances
until some convergence criterion is fulfilled. After completing
multiple learning iterations and updating the neurons weights,
every vector will be assigned or clustered to specific neurons
in the grid, preserving the neighborhood topology.

IV. HIGH-LEVEL SYNTHESIS VSOM

A. HLS VSOM Algorithm

In the HLS-VSOM, the vector and matrix operations of the
original VSOM are executed using a High-Level Synthesis
kernel executing in custom FPGA architecture. The HLS
kernel allows us to generate parallel operations and obtain
performance increase gains by manipulating the algorithm be-
havior within the FPGA fabric. Algorithm 1 and 2 summarizes
the matrix and vector operations required for the parallel HLS-
VSOM training. For a more detailed explanation of the SOM
and VSOM algorithms, see reference [3].

This work proposes a set of HLS transformations that are
imperative to generate an efficient hardware kernel. As part of
our HLS algorithm design, we employ three major classes
of transformation to improve performance: pipelining, that



Algorithm 2 The HLS-VSOM Neighborhood Function Γ.
1: given:
2: c← {index of winning neuron}
3: n← {the number of neurons on the map}
4: nsize← {neighborhood radius}
5: P← {an n× 2 matrix with pi = P[i, ] = (xi, yi)}
6: 1n ← {constant column vector with value 1}
7: 0n ← {constant column vector with value 0}
8: Ω← {Pipeline and unrolled loops kernel operations}
9:

10:
11: Pc ← Ωpc(P [c, ])
12: C← ΩC(1

n ⊗ pc)
13: ∆← Ω∆(P−C)
14: Π← ΩΠ(∆ ◦∆)
15:
16: /***Perform rowsum matrix reduction
17: d← Ωd(Πx+Πy)
18: hood← Ωhood(ifelse(d < (nsize× 1.5)2,1n,0n))
19: return hood

allows us to improve execution during the for loops within the
SOM; scaling to manipulate the instructions parallelism and
allow us to execute Single Instruction Multiple Data (SIMD)
instructions and memory enhancing transformation to select
more efficient memory architectures and access ports settings.
Some of the HLS transformation are “Pragma” directives and
attribute instruction inserted in the code and interpreted by
the HLS compiler, while others may require adding or mod-
ifying the configuration files. Some of the Pragmas utilized
in our implementation included the opencl unroll hint(X),
xlc pipeline loop(X) and xlc array partition(complete, X).

B. Pipelining and Dataflow

The pipeline transformations are an essential aspect to
consider during the HLS integration. Pipelining allows to effi-
ciently send data directly from one computational unit to the
next, permitting instruction-level parallelism. This technique
maximizes the usage of every core available of the processor
with some instruction by dividing incoming instructions into
a series of sequential steps performed by different processor
units with different parts of instructions processed in parallel
[8] as shown in Figure 1.

Fig. 1: Pipelining HLS - [8]

Similarly to Pipelining, the Dataflow optimization allow
to send data efficiently but it works between the Kernel
functions. In our design, the dataflow Pragma enables the
parallel execution between the functions within a kernel.

The pipelining in terms of the HLS-VSOM, improves the
iterations within each one of the vectorized loop instruction
by overlapping the instructions to compute all the matrix
operations shown in the HLS-Vsom Algorithm 1 and 2. In
our HLS kernel, we are pipelining all the matrix and vector
operations to maximize the execution per clock ratio.

C. HLS VSOM Horizontal Unrolling (Vectorization)

In the VSOM algorithm, the stochastic SOM training is
redefined to execute as a set of vector and matrix operations.
Utilizing the unrolling HLS transformations to create vector-
ization for the loop iterations allows the FPGA fabric to create
parallel copies of the body of the loop to increase the algorithm
performance. This is the most straightforward way of adding
parallelism, as it can often be applied directly to an inner loop
without further reordering or drastic changes to the nested loop
structure. Vectorization is more powerful in HLS than SIMD
operations on load/store architectures, as the unrolled compute
units are not required to be homogeneous, and the number of
units are not constrained to fixed sizes [4].

In the HLS-VSOM, all the matrix data elements are in-
dependent of each other and they can be executed as coarse-
grained “embarrasingly parallel” [9] computing units allowing
us to exploit the available hardware resources exploit multiple
in the target platform .

In the HLS-VSOM context, the vectorization of the calcula-
tions can be implemented as vector instructions, or horizontal
unrolling similar the SIMD instructions and are a form of
Data-Level Parallelism as illustrated in Figure 2. These vector
instructions apply the same operation over multiple data el-
ements (like integers and floating-point values) concurrently,
given that these items are stored contiguously in vector/SIMD
registers [10]. For our implementation using an unrolling
Pragma with a factor of 64 provided the best performance
gains for our type of map sizes.

Fig. 2: Scalability Transformations HLS - here the rectangles
represent buffer space, such as FPGA registers or on chip Ram
[4] and the CU refers to computational units.

D. HLS Par-VOM Memory Transformations

In the classic SOM with iterative operations, the operations
per column are solved sequentially. This serial dependency



results in high overhead and additional latency during every
training epoch per memory access request. The HLS memory
access transformation allows us to optimize the efficiency of
the off-chip memory access, as shown in Figure 3

Fig. 3: Par-VSOM HLS Memory (Striping) Access Transfor-
mations.

In our Xilinx Alveo cards, multiple banks with dedicated
channels (e.g. High Bandwidth Memory (HBM) lanes) are
available, this allows increasing the arrays bandwidth accessed
by a factor equivalent to the number of memory interfaces
connected, this is known as memory striping. The HLS envi-
ronment allows us to explicitly define the striping by indicating
the modules and the variables name associated to the data
banks as shown in Figure 3. The stripping results in parallel
read and writes increase the overall bandwidth.

The Alveo accelerator cards contain HBM DRAM and
DDR DRAM as external memory resources. In addition, in
some accelerator cards, an additional internal memory resource
called PLRAM (UltraRAM and block RAM) is available. In
the HLS-VSOM the global M matrix and the buffer containing
the Data set are stored in PLRAM space. The less used buffers
such as number of iterations and X k random index array are
allocated in the HBM space. All the other algorithm matrices
are stored internally in local memory as part of the Block
RAM or in registers.

Accessing the external memory has significant latency; it
is recommended to use a burst accesses to global me High
Bandwidth Memory (HBM) memory in and from PLRAM
memory. Here, PLRAM is small shared memory that consist
of UltraRAM/block RAM memory resources available in the
FPGA.

As part of our HLS optimization, we also utilized array
partitioning for all the internal VSOM vectors. The array par-
titioning converts the vectors into smaller arrays or separates
them into individual registers elements. Since this transforms
the elements of the array into registers, it increases the ports
for read and write operations and improves the throughput of
the design. Therefore, the array partitioning is recommended
for smaller arrays since fully partitioning may cause quality
and clock delays due to design complexity.

E. HLS Matrix Reduction with Systolic Arrays

In a systolic array, all processing elements, called systolic
cells, perform computations simultaneously, while data, such
as initial inputs, partial results, and final outputs, is being
passed from cell to cell. When partial results are moved
between cells, they are computed over these cells in a pipeline
fashion. In this case, the computation of each single output is
partitioned over these cells [11].

For our systolic array matrix “rowsum” reduction operations
illustrated in Figure 4, we use the DSP available in the FPGA
as independent Processing Elements (PE); communications be-
tween the PEs between and input and output for the algorithm
will take simultaneously achieving high performance.

As part of our HLS algorithm development, we discovered
one of the major bottlenecks was the matrix rowsum reduction
included in Algorithm 1 line 23. The latency of this instruction
is due to the high amount of read and write access requested
to the same local BRAM memory locations. Using the sys-
tolic array DSP approach allow us to access and execute in
multiple PE at the same time alleviating the BRAM traffic and
increasing the overall performance.

In the algorithm, we use a dot product Φs(Π ·O) with the
systolic array. Here Π contains the square of the differences
of the distances calculated during the BME step, and O is a
column vector of one. The result is a vector representative of
a rowsum matrix reduction.

Fig. 4: Systolic Array Matrix Multiplication. [12]

V. RELATED WORK

In this section, we look at prior work related to high-
level synthesis and FPGA SOM implementations. The recent
research has demonstrated promising improvements using var-
ious methodologies associated with reconfiguration hardware
methods. Recent scientific publications on this domain include:
using a system on chip (SoC) to generate stochastic SOM
[13], SOM Network-on-Chip (NoC) based solution [14], High
Level Synthesis (HLS) targeting K-means algorithm [15],
achieving high-performance computing applications via High-
Level Synthesis [16], and using various types of hardware
optimization techniques in FPGAs [17]–[19].



In general, all the research publications share the goal of
finding optimal speed-up performance facilitating the higher
synthesis implementation or using a hardware design language.

A. Stochastic SOM with FPGA SoC

In his work, Moran proposed a novel System-on-Chip for
a stochastic Self-Organizing map implementation. As part
of his implementation, he generated several stochastic block
design the Winner-Take-All (WTA) similarity check. This
map acceleration solution can perform the self-learning and
classification task with the same error rate as Matlab and
consume 4 times less power consumption 21.5 mW than other
Internet of Things (IoT) Devices.

B. A Scalable SOM based on a Sequential Systolic NoC

Mehdi et al. adapted the NoC for SOM computations. His
architecture consisted of a Vector Element Processing block to
calculate the distance and update the weights; a Local Winner
Search circuit (LWS) which compares the local distances and
the received neighbour’s distance; an Update Signal Generator
(USG). As part of his experiments, he did a performance
comparison against Core I7, Parallel FPGA, Systolic Array
FPGA and the Noc Sequential systolic FPGA.The proposed
NoC Sequential systolic FPGA architecture performs up to
724 MCUPS during the learning and 1168 MCPS in the recall
phase for a 32-element input vector and promise a scalable
performance by optimizing the architecture pipelining [13].

C. High Level Synthesis (HLS) for K-means algorithm

The research presented by Younes [15] includes an effi-
cient architecture implementation for a K-Nearest Neighbor
(KNN) hardware accelerator targeting a modern System-on-
Chips (SoCs). This KNN approach revolves in using a HLS
design and was implemented on the Xilinx Zynqberry FPGA
platform. The results compared with other state-of-the-art
implementation indicate the proposed KNN offers between
1.4x and 875x speed and 41% and to 94% of energy con-
sumption. In addition, they enhance the architecture with
algorithmic level Approximate Computing Technique (ACTs)
and improved the classification performance by 2.3x, loss a
3% percent of accuracy and reduced the energy consumption
by 69% on average.

D. High-Performance Computing Applications via High-Level
Synthesis

In his paper [16] Muslim presents an OpenCL HLS-
based FPGA implementation applicable to K-nearest neighbor,
Monte Carlo method for financial models and the Bitonic Sort-
ing algorithm. The paper includes a performance comparison
in terms of execution time, energy, and power consumption for
some high-end GPUs is performed as well. One of the interest-
ing aspect is, both of the algorithms have been implemented in
OpenCL for the GPU and the FPGA. He concluded the FPGAs
could surpass the GPU performance with HLS optimization
directives. In addition, the FPGA are highly energy-efficient
than GPUs in all the considered algorithms.

Fig. 5: 15 x 10 Self Organizing Map for the Iris Dataset.

E. SOMs in GPUs

The GPUs also provide an excellent hardware solution for
the parallelization of the SOM. The SOM GPUs implementa-
tions are a recurrent topic in recent publications. Most of the
SOM GPU variants are based on the batch SOM algorithm
using new programming languages optimized for parallelism
like OpenCL. In his research, Davidson [20] developed a
parallel SOM with OpenCL for an Intel i7, AMD, and Nvidia
GPU architectures. His research concluded that the parallel
OpenCL SOM processing larger maps and running on a GPU
could achieve a speed-up factor of more than 10X compared
to the run time of SOM PAK run serially.

Among the SOM parallel approaches previously discussed,
not too many offer an available open-source repository to
validate the research findings or continue with further inves-
tigations. In this paper, we decided to compare our proposed
HLS implementation with some of the widely available state-
of-the-art parallel SOM projects packages. As part of the
GPU comparisons, we utilize, XPySom [21] a parallel Batch-
SOM variant implemented using the Google Tensorflow 2.0
framework and Python Numpy library. The XPySom package
is based on the Minisom [22], a non-parallel, minimalistic and
Numpy based widely known implementation of the SOM. The
XPySom research paper [21] indicates their parallel variants
outperforms the popular SOM GPU package Somoclu by two
and three orders of magnitude. In addition, we also compare
our HLS-VOM with the PAR-VSOM, our own GPU version
of the Parallel VSOM written in CUDA Thrust.

VI. EXPERIMENTS

A. Hardware setup

The Par-VSOM HLS FPGA experiments used the Xilinx
Alveo U50 Data Center accelerator cards to provide the
optimized acceleration. The Alveo FPGA includes a Xilinx
UltraScale Plus with 8 Gb of HBM memory and the host
system included 8 virtual CPUs with a 128 GB of memory.
The Par-VSOM and XPysom GPU parallel experiments were
performed using the Amazon AWS cloud service instances
with Linux and Deep Learning Amazon Machine Images
(AMI). The sequential CPU experimental setting included an



Intel Xeon E5 2686 running 2.7 GHz/ 3.0 GHz with 18 cores
and capable of executing 36 threads. The GPU tests were
performed in an AWS P3.2xlarge with 18 virtual Intel Xeon
E5 2686 CPU operating at 2.7 GHz/ 3.0 GHz turbo and an
NVIDIA Tesla V100. The Tesla V100 contains 5120 NVIDIA
Cuda cores with 16 Gb of HBM2 memory. The Tesla V100
memory clock setting was 877 Mhz, with memory graphics
clocked at 1530 Mhz.

B. HLS-VSOM setup and Hyper-Parameters

The CPU experimental setup utilized the default values of
the SOM and VSOM Popsom [23]. For XPySom [21] package,
we maintained the learning rate constant to obtain higher
convergence indexes and tune the hyper-parameters as defined
in Table I. For our map size selection, we followed the method
proposed by Vesanto in [24]. That is, the recommended map
size should contain approximately not less than 5 ∗ sqrt(N)
neurons where N is the number of data set observations. For
the IRIS dataset that will be 61 neurons, in which case we
started testing with 8 x 8 as an approximation but eventually
we decided to increase our map size to 15 x 10 larger for more
complexity.

TABLE III: Times and Speed-up gains of the HLS-VSOM
compare against a non-accelerated FPGA HLS-VSOM using
a 15 × 10 map. Our accelerated HLS-VSOM uses pipelined
loops, dataflow, horizontal unrolling, array partitioning and
systolic arrays for row sum reductions.

iter Time Time Speed-up
HLS-VSOM(ms) HLS-VSOM(ms) Accel vs

FPGA Non-Accel FPGA Accel Non-Accel

*** Iris D=4***
1 0.035 0.034 1.0

50 0.337 0.276 1.2
100 0.591 0.481 1.2
500 2.624 2.126 1.2

1000 5.074 4.052 1.3
5000 24.962 18.323 1.4

*** Epil D=8***
1 0.073 0.066 1.1

50 2.175 0.282 7.6
100 4.252 0.511 8.3
500 20.809 2.045 10.2

1000 41.449 3.811 10.8
5000 206.850 17.171 12.4

*** WDBC D=30***
1 0.233 0.143 1.6

50 5.03 0.260 10.0
100 9.860 0.505 12.1
500 48.257 0.815 15.4

1000 96.099 3.134 16.2
5000 477.866 26.052 18.3

As part of our tests, we compared the performance and the
quality of the maps generated by our parallel HLS-VSOM

with two CPU SOM and two GPU SOM variants. The quality
of the maps is based on the convergence index as defined in
[25]. The CPU single-node tests used the SOM and the VSOM
algorithms included as part of the R language Popsom package.
In addition, the GPU parallel comparison was made using the
GPU-based SOM packages Tensorflow 2.0 for XPySom and
our own Par-VSOM parallel GPU implementation based on
NVIDIA Thrust.

For our experiments, we used three real-world datasets to
train our algorithms:

1) Iris [26] - a dataset with 150 instances and 4 attributes
that describes three different species of Iris.

2) Epil [27] - a dataset on two-week seizure counts for 59
epileptics. The data consists of 236 observations with 8
attributes. The data set has two classes - placebo and
progabide, a drug for epilepsy treatment.

3) Wisconsin Breast Cancer Dataset (wdbc) [28] - a dataset
with 30 features and 569 instances related to breast
cancer in Wisconsin. The features are computed from
a digitized image of a fine needle aspirate (FNA) of a
breast mass. They describe the characteristics of the cell
nuclei present in the image. The data set has two classes:
malignant and benign.

These datasets are purposely selected to test the algorithm
performance by increasing the dimensionality complexity
of the input data. As previously mentioned, Iris has four
attributes, Epil eight attributes, and WDBC 30 attributes.
This provides significant dimensions variability to test the
algorithm. To measure the HLS-VSOM performance, we ran
each timing test three times and took the average time over
these runs. The times reported are the time required for the
CPU to perform the calculations, and it is given in CPU
seconds. Similarly, the quality tests were done by averaging
three quality measurements using the convergence index (CI)
explain in detail in [25] and included as part of the R Popsom
Package [23]. The CI provides a 0 to 1 numbering scale to
measure the maps’ quality, with 0 representing the lowest
quality and 1 the highest quality.In addition, we trained with
various iterations to discover what type of effect a change of
training duration had on the implementations.

C. Results

The following tables includes the experimental results ob-
tained for two different map sizes and three data sets.

In the 150 neurons experimental results, included in Table
II, we see the time comparison and the speed-up gains of
the algorithm. The optimization achievable by the HLS FPGA
significantly boots the performance when compared against the
SOM and VSOM CPU variants. In the maps instances under
test, the FPGA provides enough computational resource to
construct an efficient design without impacting the algorithm
performance. However, designs using larger maps (25,000
neurons) demonstrated that optimization could not be achieved
due to FPGA resources limitations (e.g clock don’t meet
thresholds, routing logic too complex and global iteration
problems making the design unable to be completed).



TABLE I: Par-VSOM Hyper-Parameters.

**Hyper-Parameter** **Values**

Training Iterations Range 1− 5000
Learning Rate η 0.7

Neighborhood Radius Bubble
Training Data Sets Iris, Epil, WDBC

TABLE II: Times and Speed-up gains of the HLS Par-VSOM for different training algorithms using a 15× 10 map.

iter Time Time Time Time Time Speed-up Speed-up Speed-up Speed-up
SOM(s) VSOM(s) P-VSOM(s) X-Som(s) H-VSOM(s) H-VSOM/ H-VSOM/ H-VSOM/ H-VSOM/

CPU CPU GPU CPU-GPU FPGA SOM VSOM Par-VSOM XPySom
R\C R\Fortran Thrust TensorFlow OpenCL

*** Iris D=4***
1 0.033 0.017 0.005 0.001 0.000034 961.1 495.1 145.6 29.1

50 0.034 0.018 0.015 0.050 0.000276 123.0 65.1 54.3 180.9
100 0.036 0.018 0.024 0.099 0.000481 74.8 37.4 49.9 205.8
500 0.038 0.019 0.096 0.494 0.002126 17.8 8.9 45.1 232.3

1000 0.075 0.021 0.170 0.986 0.004052 18.5 5.2 41.9 243.3
5000 0.251 0.028 0.794 4.937 0.018323 13.7 1.5 43.3 269.4

*** Epil D=8***
1 0.040 0.022 0.011 0.001 0.000066 600.0 330.0 162.0 15.0

50 0.041 0.020 0.023 0.050 0.000282 141.7 67.3 81.5 177.1
100 0.043 0.021 0.035 0.102 0.000511 84.0 39.1 68.4 205.2
500 0.062 0.022 0.115 0.513 0.002040 30.3 10.8 56.2 255.2

1000 0.092 0.026 0.221 1.024 0.003811 24.1 6.3 58.0 274.4
5000 0.287 0.040 1.001 5.162 0.017176 16.7 2.3 58.3 306.3

*** WDBC D=30***
1 0.041 0.020 0.018 0.001 0.000143 286.0 139.5 125.6 7.0

50 0.042 0.020 0.040 0.051 0.000505 83.1 39.6 79.1 100.9
100 0.046 0.022 0.063 0.103 0.000815 56.4 28.2 77.7 126.3
500 0.080 0.028 0.236 0.507 0.003136 25.5 8.9 75.3 161.8

1000 0.181 0.034 0.452 1.104 0.005946 30.4 5.7 76.0 185.7
5000 0.489 0.093 2.131 5.068 0.026052 18.8 3.6 81.8 194.5

The results illustrate, the HLS-VSOM achieves a speed-up
of not less than 6x on average at the convergence iteration
(1000) in comparison to the VSOM. The Table II results
demonstrates, the HLS-VSOM achieves superior speed-up
for all the three datasets comparisons, surpassing the speed
rates of all the other algorithm implementations. In this map
environment, the HLS-VSOM surpassed the SOM with a 30.4x
and the VSOM with a 6.3x when reaching the convergence
point as summarized in table V. The comparison with the GPU
version demonstrate the GPU versions are not well suited for
regular size maps with normal computational workloads. The
performance obtained for the GPU variants were 76.0x for the
Par-VSOM and 185.7x for the XPysom.

The training time charts included in Figures 6a - 6c, capture
a generalize representation of the overall results tendencies.
The HLS-VSOM offers speedup performance increases for the
three datasets. The obtained results allows us to establish a
direct relation between the dimentionality of neuronal maps
and better achievable times using the HLS-VSOM. That is,

with more dimentionality complexity in the dataset a better
speed up can be achieved making it scalable.

Table III results include the times and Speed-up gains of
the HLS-VSOM compared against a non-accelerated FPGA
HLS-VSOM using an 15 × 10 map. The proposed acceler-
ated HLS-VSOM uses pipelined loops, dataflow, horizontal
unrolling, array partitioning, and systolic arrays for row sum
reductions allow us to achieved 18.3X performance increase
gain when compared with the default Non-accelerated HLS-
VSOM. Here, the Non-Accel version refers to running only
the default pipeline implemented by the Vitis compiler without
any predefined Pragmas directives for optimization.

In terms of the quality of the maps, Table IV captures
all the algorithm convergence indexes for the three datasets.
As presented, the HLS-VSOM maintains relatively the same
quality as the original SOM and the VSOM variants in all the
maps.



TABLE IV: Quality of maps using the convergence index [25] produced by the different training algorithms. (VSM=VSOM,
P-V=Par-VSOM, X-P=XPySom, H-P=HLS and D=Dimensions)

Total CI
iters SOM VSM P-V X-P H-P

*** Iris, D=4***
50 |0.41 0.42 0.34 0.50 0.33|

100 |0.43 0.45 0.70 0.50 0.50|
500 |0.42 0.79 0.71 0.83 0.85|

1000 |0.92 0.95 0.91 0.88 0.97|
5000 |0.96 0.96 0.94 0.93 0.97|

*** Epil, D=8***
50 |0.35 0.33 0.49 0.46 0.47|

100 |0.56 0.45 0.52 0.49 0.34|
500 |0.43 0.61 0.70 0.86 0.80|

1000 |0.92 0.92 0.94 0.91 0.92|
5000 |0.90 0.91 0.93 0.90 0.94|

*** WDBC, D=30***
50 |0.28 0.19 0.50 0.62 0.40|

100 |0.23 0.40 0.55 0.53 0.47|
500 |0.32 0.74 0.72 0.62 0.84|

1000 |0.90 0.92 0.88 0.68 0.91|
5000 |0.92 0.93 0.94 0.71 0.91|

TABLE V: HLS-VSOM FPGA Speed-ups Summary

**Dataset** **MAX** **@ Convergence***
Speed-up vs SOM-CPU: 1000 iters

IRIS 961.1 18.5
EPIL 600 24.1

WDBC 286 30.4
**Dataset** **MAX** ** @ Convergence***

Speed-up vs VSOM-CPU: 1000 iters

IRIS 495.1 5.2
EPIL 330.0 6.3

WDBC 139.5 5.7

**Dataset** **MAX** ** @ Convergence***
Speed-up vs Par-V-GPU: 1000 iters

IRIS 145.6 43.3
EPIL 162.0 58.0

WDBC 125.6 76.0

**Dataset** **MAX** ** @ Convergence***
Speed-up vs Xpysom-GPU: 1000 iters

IRIS 269.4 243.3
EPIL 306.3 274.4

WDBC 194.5 185.7

VII. CONCLUSION

This work introduced the HLS-VSOM, a high-level synthe-
sis parallel version of the vectorized and matrix-based imple-
mentation of stochastic training for self-organizing maps. The
novel HLS implementation presented here provides substantial
performance increases over Kohonen’s iterative SOM algo-
rithm (up to 30.4X times faster) and the CPU based vectorized
VSOM (up to 6.3x times faster). Our comparisons against the

GPU variants also demonstrate the optimized FPGA VSOM
surpasses the GPU Par-VSOM and XPySom GPUs version by
two or three orders of magnitudes of performance in various
datasets. The achievable performance gains surpassed all the
other architectures implementations and scale exponentially
with dimensional increases, as shown in Figure[ 6a - 6c ].
Furthermore, the results demonstrate that the HLS-VSOM pro-
vides possibly the best performance SOM currently available.
In terms of the quality of the maps, the maps produced by
HLS-VSOM approximates the values generated by the VSOM
iterative algorithms and original Kohonen’s SOM algorithm.

In the proposed design, the HLS-VSOM is a highly op-
timized algorithm running in a FPGA Accelerator Card and
therefore is an adequate replacement for iterative stochastic
training of SOM and parallel SOM variants. Future research
on this topic will include investigating how the HLS-VSOM
can be implemented in a tensor-core based acceleration envi-
ronment and what kind of performance increase we can expect
from this type of hardware architecture. In the literature,
the SOM data partitioning has been used exclusively as the
starting point for parallel SOM implementations up to this
point, e.g. [29], [30]. Given the results reported here, the HLS-
VSOM can be viewed as an alternative to parallel SOM and a
new alternative starting point for other parallel algorithms for
clustering. In summary, since the training algorithms results
demonstrate the produce maps are roughly the same quality,
the HLS-VSOM provides a parallel and high-performance
alternative to SOM algorithms.



(a) Iris Training Time

(b) Epil Training Time

(c) WDBC Training Time

Fig. 6: Total Training Time for all datasets with multiple map
sizes.

REFERENCES

[1] T. Kohonen, Self-organizing maps. Springer Berlin, 2001.
[2] B. Barney, Introduction to Parallel Computing. Lawrence Livermore

National Laboratory, 2018.
[3] L. Hamel, VSOM: Efficient, Stochastic Self-organizing Map Training:

Proceedings of the 2018 Intelligent Systems Conference (IntelliSys)
Volume 2, 01 2019, pp. 805–821.

[4] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transforma-
tions of high-level synthesis codes for high-performance computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 5,
pp. 1014–1029, 2020.

[5] M. Pelcat, C. Bourrasset, L. Maggiani, and F. Berry, “Design productiv-
ity of a high level synthesis compiler versus hdl,” in 2016 International
Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation (SAMOS). IEEE, 2016, pp. 140–147.

[6] C. Rubattu, F. Palumbo, C. Sau, R. Salvador, J. Sérot, K. Desnos,
L. Raffo, and M. Pelcat, “Dataflow-functional high-level synthesis for
coarse-grained reconfigurable accelerators,” IEEE Embedded Systems
Letters, vol. 11, no. 3, pp. 69–72, 2018.

[7] J. Backus, “Can programming be liberated from the von neumann
style? a functional style and its algebra of programs,” Commun.
ACM, vol. 21, no. 8, p. 613–641, aug 1978. [Online]. Available:
https://doi.org/10.1145/359576.359579

[8] wiki.com, “Wiki pipelininig,” https://en.wikipedia.org/wiki/Instruction
pipelining, accessed: 2021-11-27.

[9] P. Jaaskelainen, “Task parallelism with opencl: A case study.” Journal
of Signal Processing Systems, pp. 33–46, 2019.

[10] L. L. Pilla, “Basics of vectorization for fortran applications,” Research
Report, vol. RR-9147, pp. 1–9, 2018.

[11] H. T. Kung, Systolic Array. GBR: John Wiley and Sons Ltd., 2003, p.
1741–1743.

[12] Z. Yang, L. Wang, D. Ding, X. Zhang, Y. Deng, S. Li, and Q. Dou,
“Systolic array based accelerator and algorithm mapping for deep
learning algorithms,” in IFIP International Conference on Network and
Parallel Computing. Springer, 2018, pp. 153–158.

[13] A. Morán, J. L. Rosselló, M. Roca, and V. Canals, “Soc kohonen maps
based on stochastic computing,” in 2020 International Joint Conference
on Neural Networks (IJCNN), 2020, pp. 1–7.

[14] M. Abadi, S. Jovanovic, K. B. Khalifa, S. Weber, and M. H. Bedoui,
“A scalable flexible som noc-based hardware architecture,” in Advances
in Self-Organizing Maps and Learning Vector Quantization. Springer,
2016, pp. 165–175.

[15] N. Paulino, J. C. Ferreira, and J. M. Cardoso, “Optimizing opencl code
for performance on fpga: k-means case study with integer data sets,”
IEEE Access, vol. 8, pp. 152 286–152 304, 2020.

[16] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno, “Efficient fpga
implementation of opencl high-performance computing applications via
high-level synthesis,” IEEE Access, vol. 5, pp. 2747–2762, 2017.

[17] R. Li, H. Huang, Z. Wang, Z. Shao, X. Liao, and H. Jin, “Optimiz-
ing memory performance of xilinx fpgas under vitis,” arXiv preprint
arXiv:2010.08916, 2020.

[18] J. de Fine Licht and T. Hoefler, “hlslib: Software engineering for
hardware design,” arXiv preprint arXiv:1910.04436, 2019.

[19] M. Masten, E. Tyurin, K. Mitropoulou, E. Garcia, and H. Saito,
“Function/kernel vectorization via loop vectorizer,” in 2018 IEEE/ACM
5th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-
HPC). IEEE, 2018, pp. 39–48.

[20] G. Davidson, “A parallel implementation of the self organising map
using opencl,” University of Glasgow, 2015.

[21] R. Mancini, A. Ritacco, G. Lanciano, and T. Cucinotta, “Xpysom: high-
performance self-organizing maps,” in 2020 IEEE 32nd International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD). IEEE, 2020, pp. 209–216.

[22] G. Vettigli, “Minisom,” https://github.com/JustGlowing/minisom, 2021.
[23] L. Hamel, B. Ott, and G. Breard, popsom: Functions for Constructing

and Evaluating Self-Organizing Maps, 2016, r package version 4.1.0.
[Online]. Available: https://CRAN.R-project.org/package=popsom

[24] J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,”
IEEE Transactions on Neural Networks, vol. 11, no. 3, pp. 586–600,
2000.

[25] L. Hamel, “Som quality measures: An efficient statistical approach,” in
Advances in Self-Organizing Maps and Learning Vector Quantization.
Springer, 2016, pp. 49–59.

[26] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[27] P. F. Thall and S. C. Vail, “Some covariance models for longitudinal
count data with overdispersion,” Biometrics, pp. 657–671, 1990.

[28] W. N. Street, W. H. Wolberg, and O. L. Mangasarian, “Nuclear feature
extraction for breast tumor diagnosis,” in IS&T/SPIE’s Symposium on
Electronic Imaging: Science and Technology. International Society for
Optics and Photonics, 1993, pp. 861–870.

[29] R. D. Lawrence, G. S. Almasi, and H. E. Rushmeier, “A scalable
parallel algorithm for self-organizing maps with applications to sparse
data mining problems,” Data Mining and Knowledge Discovery, vol. 3,
no. 2, pp. 171–195, 1999.

[30] P. Wittek, S. C. Gao, I. S. Lim, and L. Zhao, “Somoclu: An efficient par-
allel library for self-organizing maps,” arXiv preprint arXiv:1305.1422,
2013.


