
Iteration Program Correctness

Correctness of Programs without Iteration:

Let pre and post be predicates over states, and let p be a program, then

[(p, s)−−� Q ∧ pre(s)⇒ post(Q)] implies p is correct

for all s ∈ state. We often write

{pre}p{post} implies p is correct

where the state s is implicit.



Program Correctness
Unfortunately this notion of correctness does not extend to the general
case of programs with iteration.1 However, we can still use this proof rule
to prove specific programs correct. This program computes the factorial
of 3:

p ≡ while(le(1, i), assign(z ,mult(z , i)) seq assign(i , sub(i , 1)))

with the precondition

pre(S) ≡ lookup(i ,S , 3) ∧ lookup(z ,S , 1)

and the postcondition

post(Q) ≡ lookup(i ,Q, 0) ∧ lookup(z ,Q, 3!)

That is, the program is correct iff

{pre} p {post}
1Pre- and post conditions cannot be used to show program correctness for

all values of the loop index - you would need some sort of inductive argument
as we will see a little later on.



Program Correctness

This works because for specific values for i we can unfold the iteration
and view p essentially as a sequence of statements without iteration:

p′ ≡ assign(z ,mult(z , i)) seq assign(i , sub(i , 1)) seq
assign(z ,mult(z , i)) seq assign(i , sub(i , 1)) seq
assign(z ,mult(z , i)) seq assign(i , sub(i , 1))

And is clear that our proof rule

{pre} p′ {post}

applies.2

2One way to show this is to develop pre and post conditions for each
statement and then compose them to get the overall correctness proof.



Program Correctness

Now consider our program for any value of i:

p ≡ while(le(1, i), assign(z ,mult(z , i)) seq assign(i , sub(i , 1)))

with the precondition

pre(S) ≡ lookup(i ,S , vi) ∧ lookup(z ,S , 1)

and the postcondition

post(Q) ≡ lookup(i ,S , 0) ∧ lookup(z ,S , vi !)

Now, in order to prove p correct we would have to show that our proof
rule

{pre} p {post}

holds for every value of vi , that is, every possible unfolding of the while

loop. Clearly that is not possible.



Program Correctness

To get around this we could probably come up with some sort of
inductive argument on the loop iteration (recall our induction on
states a while back).

Turns out that there is a very clever way to do this without
induction: loop invariants

Loop invariants allow us to perform ”inductionless induction”.



Program Correctness

Definition of loop invariant,3

In computer science, a loop invariant is a property of a
program loop that is true before (and after) each iteration.
It is a logical assertion, sometimes checked within the code
by an assertion call. Knowing its invariant(s) is essential
in understanding the effect of a loop.

In formal program verification loop invariants are expressed
by formal predicate logic and used to prove properties of
loops and by extension algorithms that employ loops (usu-
ally correctness properties). The loop invariants will be
true on entry into a loop and following each iteration, so
that on exit from the loop both the loop invariants and
the loop termination condition can be guaranteed.

3https://en.wikipedia.org/wiki/Loop_invariant

https://en.wikipedia.org/wiki/Loop_invariant


Program Correctness

In this new approach we divide programs with loops into parts:

{pre} init seq while b do c end {post}

where init is code that sets up the loop.

We now introduce a new predicate called inv that captures the
loop invariant in such a way that it relates one iteration to the
next in a similar sense as does the inductive step during an
inductive argument.



Program Correctness & Iteration

We augment our proof procedure with an additional predicate on
states: inv.

With this we can set up the predicates for the loop as follows:

{pre}
init seq
{inv}
while b do
{inv ∧ b}
c
{inv}

{inv ∧ ¬b}
{post}

NOTE: We now have pre- and
postconditions for each state-
ment in this iterative program.
These conditions will hold in all
iterations of the loop.



Program Correctness

This gives us a new proof rule for partial correctness of loops:
if

{pre} init {inv} ∧
{inv ∧ b} c {inv} ∧
(inv ∧ ¬b)⇒ post

then
‘init seq while b do c end’ is correct

NOTE: We call this partial correctness because we make no
assertions about termination. All we assert is that, if the
computation terminates, then it will be correct.



Program Correctness

Or written in our notation, partial correctness of loops:

if
(init,S)−−� Q ∧ [pre(S)⇒ inv(Q)] ∧
(c ,S)−−� Q ∧ (b,S)−−� B ∧ [(inv(s)∧B)⇒ inv(Q)] ∧
(b,T )−−� B ∧ [(inv(T ) ∧ ¬B)⇒ post(T )]

then ‘init seq while b do c end’ is correct

Finding loop invariants automatically is an active research, good

candidates for loop invariants are usually expression that involve the loop

counter.


