Declarations

@ In programming languages, a declaration specifies the
identifier, type, and other properties (e.g. ‘static’) of language
elements such as variables and functions. !

@ A declaration is used to announce the existence of the
language element as part of the semantics of the language.

@ Many languages (such as C and Java) require variables to be
declared before use.

loosely quoted from http://en.wikipedia.org/wiki/Type_declaration



Declarations

Let's extend our IMP programming language with variable declarations. We continue
to assume that the only type we have in our language is the integer type. This means
the only job of the variable declaration at this point is to announce the existence of a

variable.

We will enforce two rules:

@ We need to declare variables before using them (‘var(x)’ syntax), using an
undeclared variable will result in an error.

@ Declaring the same variable twice is not allowed.

Consider the following programs, determine if they are valid or not valid according to

the rules:
assign(x, 3)

var(x) seq assign(x, 3)
var(x) seq assign(x, 3) seq var(x) seq assign(x, 4)
var(x) seq assign(x, 3) seq assign(x, add(y, 1))

var(x) seq assign(x, 3) seq var(y) seq assign(x, add(y, 1))



Declaration Semantics

We add the ‘var(x)' command to the syntax:

A ::=n

I x C ::= skip

| add(a,A) | var(x)

| sub(A,d) | assign(x,A)

| mult(A,A) | seq(C,C)

| if(B,C,C)

B ::= true | whiledo(B,C)

| false

| eq(A,n)

| le(A,AN)

| not(B)

| and(B,B)

| or(B,B)



Declaration Semantics

From a semantics perspective, the ‘var(x)’ command needs to
remember that the variable x was declared in the program. This
gives rise to the following rule,

(var(X),State) -->> 0OState :-— % decl, if lookup is successful
lookup(X,State,_),!, % then var(x) must fail, only
fail. % one var declaration allowed

(var(X),State) -->> OState :- % decl, we have shown that lookup is not
put(X,0,State,0State),!. % successful, therefore enter the new var

This implies that our lookup needs to fail in the initial state,

lookup(_,s0,_) :- !,fail.



Declaration Semantics

Assignments can only succeed if the variable on the left side was

declared,

(assign(X,A),State) -->> OState :- % assignment
lookup(X,State,_), % only allowed to assign to variables
(A,State) -->> ValA, % that have been declared

put(X,ValA,State,OState),!.

Since this is the only semantic rule for assignments, if the lookup
fails, the program will fail. Expressions with variables can only be
evaluated if the variable has been declared,

(X,State) -->> Val :- % variables
atom(X),
lookup(X,State,Val),!.

Note: Nothing has changed with this semantic rule, except that
lookup fails if the X is not declared.



Declaration Semantics

?- [’sem-decl.pl’].

% xis.pl compiled 0.00 sec, 6,920 bytes

% preamble.pl compiled 0.00 sec, 8,084 bytes
% xis.pl compiled 0.01 sec, 148 bytes

% sem-decl.pl compiled 0.01 sec, 14,948 bytes
true.

?7- (assign(x, 3),s0)-->>V.
false.

?- ((var(x) seq assign(x, 3)),s0)-->>V.
V = state([bind(3, x), bind(0, x)1, s0).

?- ((var(x) seq assign(x, 3) seq var(x) seq assign(x, 4)),s0)-->>V.
false.

?- ((var(x) seq assign(x, 3) seq assign(x, plus(y, 1))),s0)-->>V.
false.

?- ((var(x) seq assign(x, 3) seq var(y) seq assign(x, add(y, 1))),s0)-->>V.
V = state([bind(1, x), bind(0, y), bind(3, x), bind(0, x)], sO).



Types and type systems are fundamental in modern programming
languages. Typed variables and expressions in programs allow the
language system to assist the programmer by detecting illegally typed
expressions which usually constitutes a logic/programming error.

We define a type as follows:

A type is a set of values.

This means the type ‘real’ constitutes the set of all real values and the
type ‘int’ constitutes the set of all integer values.



When we combine the notion of a type and variable declarations we
restrict what we are allowed to store in the variable. For example, the
declaration in C,

int v;

restricts the values that are allowed to be stored in the variable ’v' to the
set of integer values.

Limiting the kind of values a variable is allowed to assume will allow the
system to catch errors. Consider the C code snippet,

int i = "1";

The compiler will reject this with a type error.?

2However, in C the statement int i = ’1’ with ’1° being a character
constant is legal — the set of character constants is a subtype of the integers.



Our notion of a type as a set of values extends to more complex types.
Consider the array declaration,

int a[5];

This declaration limits the values that the variable ‘a’ can assume to
arrays of size 5 with integer elements. Here are some example values
from that set,

{[1,2,3,4,5],[102, 4026, 798, 2,999], [22, 4,56, —654, 0], .. .}



Type errors can also appear in expressions. Consider the C statement,
String s = "hello world" + 3.0;

However, many languages allow for certain type combinations to appear
in expressions. Consider the C code,

int i = 3;

float £ i * 5.5;

Here, even though the operands of the multiplication operator are of
different types, C will allow this kind of expression. Mixed type
expressions are usually allowed as long as the types involved have a
subtype/supertype relationship.



Interestingly, the notion of a type as a set of values also extends to object
oriented languages if we view objects as values in a particular set of
object (a particular type!). Consider the following Java snippet,

class Foobar {...};

Foobar o = new Foobar();

Here the class statement introduces the new type ‘Foobar’ as a set of
objects that can be instantiated from the class. The next statement
declares a variable ‘o’ of type ‘Foobar' and thereby restricts the variable
to only accept values (objects) from the set ‘Foobar’.

The following code would fail in a Java program:

class Foobar {...};
class Goobar {...};

Foobar o = new Goobar();

It is precisely these kinds of errors that type systems are designed to
catch.



Our view of a type as a set allows us to develop the notion of a subtype:

If the values of a type are fully contained within another type,
then we call the former a subtype of the latter.

More precisely, let A and B be types and interpreting these types as sets,
then A is a subtype of B if
ACB.

Or conversely we call B a supertype of A.

In Java and C we have the following type hierarchy:

char C short C int C float C double

Not all programming languages support type hierarchies. The language
ML, for example, has no notion of subtype. Here, all types are completely
separate sets, subset inclusion is not allowed.



If a language supports subtypes then we can convert the types of
expressions along those subtype/supertype relationships.

@ Widening conversion — here we convert the value of an expression
from a subtype to its supertype. This is often also referred to as
type promotion. Consider the code snippet,

float f = 3;

To make this statement work the language system will promote the

integer constant 3 to a float value and then assign it to the variable
f.

@ Narrowing conversion — here we convert the value of an
expression from a supertype to a subtype. Consider,

int i = 3.6;

The programming language C will simply truncate the value to turn
the floating point value to an integer value.



Expressions that have types which are not related along
subtype/supertype relations cannot be converted and therefore typically
generate errors in a language system. Consider the C program snippet
from before,

String s = "hello world" + 3.0;

In C, String ¢ float and float ¢ String, therefore the above
statement cannot be executed.



Typed Arithmetic

We experiment with a very simple type system. It only has two
types, namely, int and real.

We assume that these two types are related via a
subtype/supertype relationship:

int C real.

This will allow us to implement type promotion and narrowing
conversion in our type system.



Typed Arithmetic

We introduce a new syntactic domain
Type = {int, real}

We can now have declarations of the form

C i=var(x, T)
T == int | real

In addition we introduce the syntactic domain of floating point
values R (with the semantic denotation of R) such that

An=v

where v € lUR can be either an integer or floating point constant.



Type Declaration Semantics

Putting this all together,

A =

v
x

add(4,4)
sub(A,A)
mult (A,A)

= true

false
eq(4,A)
le(A,n)
not (B)
and(B,B)
or(B,B)

int | real

skip

var (x,T)
assign(x,A)
seq(C,C)
if(B,C,C)
whiledo(B,C)



Typed Arithmetic

Our semantics needs to be able to deal with the following programs:
@ var(x, real) seq assign(x, 3) (type promotion)
@ var(y,int) seq assign(y, 3.5) (narrowing conversion)

© var(x, real) seq assign(x, add(3.5,2)) (type promotion in
expressions)

© var(x, real) seq var(y, int) seq assign(y, 1) seq assign(x, y) (type
promotion of variable values in expressions)



Typed Arithmetic

Semantics:

@ We think about the types as sets, however, in our semantics the
type names can just be viewed as tags attached to variable
declarations. Since we know that there is a subtype/supertype
relation between the types we can use the tags to infer type
promotions or narrowing conversions.

@ We attach type tag names to variable binding terms.

@ We do all our arithmetic in floating point, truncating the value if we
need to.



Typed Arithmetic

The semantic rule for a variable declaration,

(var(X,int) ,State) -->> _ :- % var %decl%
lookup(X,_,State,_),!,
fail.

(var(X,int) ,State) -->> OState :- % var Ydecly,

put(X,int,0,State,0State),!.

(var(X,real),State) -->> _ :- % var Ydecly,
lookup(X,_,State,_),!,
fail.

(var(X,real) ,State) -->> OState :- % var %decl’,

put(X,real,0.0,State,0State),!.



Arithmetic

The semantic rules for an assignment statement,

(assign(X,A),State) -->> OState :- % assignment to real var Y%decly
lookup(X,real,State,_),
(A,State) -->> ValA,
FValA xis float(Valh),
put (X,real,FValA,State,0State),!.

(assign(X,A),State) -->> OState :- % assignment to int var %decl),
lookup(X,int,State,_),
(A,State) -->> ValA,
IValA xis truncate(ValA),
put(X,int,IValA,State,0State),!.




Typed Arithmetic

The semantic rules for constants and variables,

(C,.) -->> Fval :- % int constants Y%decly,
int(C),
FVal xis float(C),!. % promote from int to real
(€, -=>> C :- % real constants Y%decl%
real(C),!.

(X,State) -->> FVal :-
atom(X),
lookup(X,int,State,IVal),
FVal xis float(IVal),!.

>

int variables Ydecl’

(X,State) -->> FVal :- % real variables Ydecl),
atom(X),
lookup(X,real,State,FVal),!.



Typed Arithmetic

?- [’sem-type.pl’].

% xis.pl compiled 0.01 sec, 7,792 bytes

% preamble.pl compiled 0.01 sec, 8,956 bytes
% xis.pl compiled 0.00 sec, 148 bytes

% sem-type.pl compiled 0.01 sec, 16,828 bytes
true.

?- ((var(x, real) seq assign(x, 3)),s0) -->> V.
V = state([bind(3.0, real, x), bind(0.0, real, x)], s0).

?- ((var(y, int) seq assign(y, 3.5)),s0) -—>> V.
V = state([bind(3, int, y), bind(0, int, y)], s0).

?- ((var(x, real) seq assign(x, add(3.5, 2))),s0) -->> V.
V = state([bind(5.5, real, x), bind(0.0, real, x)], s0).

?7- ((var(x, real) seq var(y, int) seq assign(y,1) seq assign(x, y)),s0) -->> V.
V = state([bind(1.0, real, x), bind(1, int, y), bind(0, int, y), bind(0.0, real, x)1, s0).



Typed Arithmetic

What kind of changes would we have to make to the semantic
specification if we wanted to keep integer arithmetic as integer arithmetic
and only promote the type when necessary?



Typed Arithmetic

Assume that the subtype/supertype relationship does not exist, i.e.,
int ¢ real . Further, assume that we have two new additional operators
as part of our programming language syntax:

A ::= promote(A) | narrow(A)

where the first operator promotes the type of an arithmetic expression
from int to real and the second operator narrows the type of an
arithmetic expression from real to int. Since there is not
subtype/supertype relationship between the types all mixed type
expression will fail unless we insert our explicit type conversion operators,

@ var(x, real) seq assign(x, promote(3))

@ var(y,int) seq assign(y, narrow(3.5))

© var(x, real) seq assign(x, add(3.5, promote(2)))

© var(x, real) seq var(y, int) seq assign(x, promote(y))

What kind of changes do you envision for our type system specification?



