Arithmetic Expression Summary

\[(n, \sigma) \mapsto \text{eval}(n)\]

\[(x, \sigma) \mapsto \sigma(x)\]

\[(a_0, \sigma) \mapsto k_0 \quad (a_1, \sigma) \mapsto k_1\]

\[(a_0 + a_1, \sigma) \mapsto k_0 + k_1\]

\[(a_0 - a_1, \sigma) \mapsto k_0 - k_1\]

\[(a_0 \times a_1, \sigma) \mapsto k_0 \times k_1\]

\[(a, \sigma) \mapsto k\]

\[((a), \sigma) \mapsto k\]

with \(k, k_0, k_1 \in \mathbb{I}, n, x, a, a_0, a_1 \in \mathbf{Aexp}, \) and \(\sigma \in \Sigma.\)
Our notion of semantic value for expressions leads to a natural equivalence relation between arithmetic expressions:

\[a_0 \sim a_1 \text{ iff } \forall \sigma \in \Sigma, \exists n \in \mathbb{I}. (a_0, \sigma) \mapsto n \land (a_1, \sigma) \mapsto n, \]

where \(a_0, a_1 \in \text{Aexp}. \)

Two expressions are equivalent if and only if they evaluate to the same semantic value in all possible states.

(You should convince yourself that this is indeed an equivalence relation, i.e., check that the relation \(\sim \) is reflexive, symmetric, and transitive.)
Problem: Let $a_0 = 2 \times 3$ and $a_1 = 3 + 3$, with $a_0, a_1 \in A_{exp}$. Show that $a_0 \sim a_1$.
Proof: We need to show that \((2 \times 3, \sigma) \mapsto k\) and \((3 + 3, \sigma) \mapsto k\) for all states \(\sigma \in \Sigma\) and some \(k \in \mathbb{I}\).

Let \(\sigma' \in \Sigma\) be any state, then

\[
\begin{align*}
(2, \sigma') & \mapsto 2 \\
(3, \sigma') & \mapsto 3 \\
(2 \times 3, \sigma') & \mapsto 6
\end{align*}
\]

and

\[
\begin{align*}
(3, \sigma') & \mapsto 3 \\
(3, \sigma') & \mapsto 3 \\
(3 + 3, \sigma') & \mapsto 6
\end{align*}
\]

which shows that regardless of the state, the two expressions will always produce the same semantics value, namely the integer 6. This concludes the proof. \(\square\)
Problem: Show that the $+$ operator is commutative.
Proof: We need to show that $a_0 + a_1 \sim a_1 + a_0$ for all $a_0, a_1 \in \mathbf{Aexp}$. We show this by demonstrating that

$$(a_0 + a_1, \sigma) \mapsto n \land (a_1 + a_0, \sigma) \mapsto n$$

for all $\sigma \in \Sigma$ and $n \in I$.

Assume that

$$(a_0, \sigma') \mapsto k_0$$

and

$$(a_1, \sigma') \mapsto k_1$$

for some $\sigma' \in \Sigma$ and $k_0, k_1 \in I$.

Then we can construct the derivations

\[
\frac{(a_0, \sigma') \mapsto k_0 \quad (a_1, \sigma') \mapsto k_1}{(a_0 + a_1, \sigma') \mapsto k_0 + k_1}
\]

and

\[
\frac{(a_1, \sigma') \mapsto k_1 \quad (a_0, \sigma') \mapsto k_0}{(a_1 + a_0, \sigma') \mapsto k_1 + k_0 = k_0 + k_1}
\]

This proves the commutativity of $\mathbf{+}$. \square

Observation: Commutativity of the syntactic $\mathbf{+}$ operator is provided by the commutativity of the $\mathbf{+}$ operator over the set of integers.
Boolean Expressions

Recall our production for boolean expressions:

\[B ::= \text{true} | \text{false} | A = A | A \leq A | \neg B | B \&\& B | B \| B | (B) \]

To compute the semantic value of boolean expressions we define an evaluation function ‘\(\mapsto \)’,

\[\mapsto : \text{Bexp} \times \Sigma \rightarrow \mathbb{B}, \]

and write

\[(be, \sigma) \mapsto t, \]

with \(be \in \text{Bexp} \), \(\sigma \in \Sigma \), and \(t \in \mathbb{B} \).

As in the case of the arithmetic expressions we introduce an \(\text{eval} \) function in order to map the syntactic representations of boolean constants in \(T \) into the semantic concepts of the constant in \(\mathbb{B} \),

\[\text{eval} : \ T \rightarrow \mathbb{B} \]

1 What does the inductive definition of \(\text{Bexp} \) look like?
Boolean Expressions

\[(true, \sigma) \mapsto eval(true)\]

\[(false, \sigma) \mapsto eval(false)\]

\[(a_0, \sigma) \mapsto n \quad (a_1, \sigma) \mapsto m\]
\[\quad (a_0 = a_1, \sigma) \mapsto true\]
if \(n\) and \(m\) are equal

\[(a_0, \sigma) \mapsto n \quad (a_1, \sigma) \mapsto m\]
\[\quad (a_0 = a_1, \sigma) \mapsto false\]
if \(n\) and \(m\) are not equal

\[(a_0, \sigma) \mapsto n \quad (a_1, \sigma) \mapsto m\]
\[\quad (a_0 \leq a_1, \sigma) \mapsto true\]
if \(n\) is less than or equal to \(m\)

\[(a_0, \sigma) \mapsto n \quad (a_1, \sigma) \mapsto m\]
\[\quad (a_0 \leq a_1, \sigma) \mapsto false\]
if \(n\) is not less than or equal to \(m\)

with \(true, false \in T\), \(a_0, a_1 \in A_{\text{exp}}\), \(\sigma \in \Sigma\), and \(m, n \in \mathbb{I}\).
Boolean Expressions

\[
\begin{align*}
(b, \sigma) & \mapsto \text{true} & (b, \sigma) & \mapsto \text{false} \\
(!b, \sigma) & \mapsto \text{false} & (!b, \sigma) & \mapsto \text{true}
\end{align*}
\]

\[
\begin{align*}
(b_0, \sigma) & \mapsto t_0 & (b_1, \sigma) & \mapsto t_1 \\
(b_0 \& \& b_1, \sigma) & \mapsto t
\end{align*}
\]

where \(t \) is \text{true} if \(t_0 = \text{true} \) and \(t_1 = \text{true} \), and \text{false} otherwise.

\[
\begin{align*}
(b_0, \sigma) & \mapsto t_0 & (b_1, \sigma) & \mapsto t_1 \\
(b_0 \| b_1, \sigma) & \mapsto t
\end{align*}
\]

where \(t \) is \text{true} if \(t_0 = \text{true} \) or \(t_1 = \text{true} \), and \text{false} otherwise.

Here \(b, b_0, b_1 \in \text{Bexp}, t_0, t_1, t \in \mathbb{B}, \) and \(\sigma \in \Sigma \).
As in the case of \textbf{Aexp}, our notion of semantic value for expressions leads to an equivalence relation between boolean expressions:

$$b_0 \sim b_1 \text{ iff } \forall \sigma \in \Sigma, \exists t \in \mathbb{B}. \ (b_0, \sigma) \mapsto t \land (b_1, \sigma) \mapsto t,$$

where $b_0, b_1 \in \textbf{Bexp}$.

One way to look at this is that boolean expressions behave analogous to arithmetic expression except that the base has changed.
Recall our grammar production for commands:\(^2\):

\[
C ::= \text{skip} \mid V ::= A \mid C \mid \text{if } B \text{ then } C \text{ else } C \text{ end} \mid \text{while } B \text{ do } C \text{ end}
\]

In order to design a semantics for commands we have to answer the following questions:

1. What is the semantic domain for commands?
2. What does the evaluation function look like?

\(^2\)Inductive definition of the syntactic domain \textbf{Com}?
In our simple imperative language commands modify the state of the computation, that is, **commands map one state into another**. Therefore we define our evaluation function ‘\mapsto’ as,

$$\mapsto : \mathbf{Com} \times \Sigma \rightarrow \Sigma$$

and we write, given a command $c \in \mathbf{Com}$ and some state $\sigma \in \Sigma$,

$$(c, \sigma) \mapsto \sigma'$$

where $\sigma' \in \Sigma$ is the state after command c has *fully executed*.
Before we can give the full natural semantics for commands we need some more machinery. Consider,

\[(x := 5, \sigma) \mapsto \sigma'\]

where $x \in \text{Loc}$, $5 \in I$, and $\sigma, \sigma' \in \Sigma$.

Here, σ' is the state σ updated to have the value 5 in location x. We write,

$\sigma' = \sigma[5/x]$.
More formally, let $\sigma \in \Sigma$, $m \in \mathbb{I}$, and $x, y \in \textbf{Loc}$. We write $\sigma[m/x]$ for the state obtained from σ by replacing the contents in x with m. We can define this functionally,

$$
\sigma[m/x](y) = \begin{cases}
m & \text{if } y = x \\
\sigma(y) & \text{if } y \neq x
\end{cases}
$$

\Rightarrow States are “lookup tables” for values associated with locations.

Note that $\sigma[m/x] : \textbf{Loc} \to \mathbb{I}$ is still considered a function from locations into the integers.
Exercises: Let $\sigma' = \sigma_0[3/q]$ with $3 \in \mathbb{I}$ and $q \in \text{Loc}$,

- Compute the value of $\sigma'(q)$.
- Compute the value of $\sigma'(k)$ with $k \in \text{Loc}$ and $k \neq q$.
Assume that all metavariables range over their appropriate domains and $\sigma, \sigma', \text{ and } \sigma'' \in \Sigma$.

\[
\begin{align*}
 (\text{skip}, \sigma) \mapsto & \quad \sigma \\
 (a, \sigma) \mapsto & \quad m \\
 (x := a, \sigma) \mapsto & \quad \sigma[m/x] \\
 (b, \sigma) \mapsto & \quad \text{true} \quad (c_0, \sigma) \mapsto \sigma' \\
 (\text{if } b \text{ then } c_0 \text{ else } c_1 \text{ end}, \sigma) \mapsto & \quad \sigma' \\
 (b, \sigma) \mapsto & \quad \text{false} \quad (c_1, \sigma) \mapsto \sigma' \\
 (\text{if } b \text{ then } c_0 \text{ else } c_1 \text{ end}, \sigma) \mapsto & \quad \sigma'
\end{align*}
\]
\[
\begin{align*}
(c_0, \sigma) & \implies \sigma'' \\
(c_1, \sigma'') & \implies \sigma' \\
(c_0; c_1, \sigma) & \implies \sigma' \\
(b, \sigma) & \implies \text{false} \\
(\text{while } b \text{ do } c \text{ end}, \sigma) & \implies \sigma \\
(b, \sigma) & \implies \text{true} \\
(c, \sigma) & \implies \sigma'' \\
(\text{while } b \text{ do } c \text{ end}, \sigma'') & \implies \sigma' \\
(\text{while } b \text{ do } c \text{ end}, \sigma) & \implies \sigma'
\end{align*}
\]