
Arithmetic Expression Summary

(n, σ) 7→ eval(n)

(x , σ) 7→ σ(x)

(a0, σ) 7→ k0 (a1, σ) 7→ k1

(a0 + a1, σ) 7→ k0 + k1

(a0, σ) 7→ k0 (a1, σ) 7→ k1

(a0 − a1, σ) 7→ k0 − k1

(a0, σ) 7→ k0 (a1, σ) 7→ k1

(a0 ∗ a1, σ) 7→ k0 × k1

(a, σ) 7→ k

((a), σ) 7→ k

with k, k0, k1 ∈ I, n,x ,a,a0, a1 ∈ Aexp, and σ ∈ Σ.



Expression Equivalence

Our notion of semantic value for expressions leads to a natural
equivalence relation between arithmetic expressions:

a0 ∼ a1 iff ∀σ ∈ Σ, ∃n ∈ I. (a0, σ) 7→ n ∧ (a1, σ) 7→ n,

where a0, a1 ∈ Aexp.
Two expressions are equivalent if and only if they evaluate to
the same semantic value in all possible states.

(You should convince yourself that this is indeed an equivalence
relation, i.e., check that the relation ∼ is reflexive, symmetric, and
transitive.)



Expression Equivalence

Problem: Let a0 = 2 ∗ 3 and a1 = 3 + 3, with a0, a1 ∈ Aexp.
Show that a0 ∼ a1.



Expression Equivalence

Proof: We need to show that (2 ∗ 3, σ) 7→ k and (3 + 3, σ) 7→ k for all
states σ ∈ Σ and some k ∈ I.
Let σ′ ∈ Σ be any state, then

(2, σ′) 7→ 2 (3, σ′) 7→ 3

(2 ∗ 3, σ′) 7→ 6

and

(3, σ′) 7→ 3 (3, σ′) 7→ 3

(3 + 3, σ′) 7→ 6

which shows that regardless of the state, the two expressions will always
produce the same semantics value, namely the integer 6. This concludes
the proof. 2



Expression Equivalence

Problem: Show that the + operator is commutative.



Expression Equivalence

Proof: We need to show that a0 + a1 ∼ a1 + a0 for all a0, a1 ∈ Aexp.
We show this by demonstrating that

(a0 + a1, σ) 7→ n ∧ (a1 + a0, σ) 7→ n

for all σ ∈ Σ and n ∈ I.
Assume that

(a0, σ
′) 7→ k0

and

(a1, σ
′) 7→ k1

for some σ′ ∈ Σ and k0, k1 ∈ I.



Expression Equivalence

Then we can construct the derivations

(a0, σ
′) 7→ k0 (a1, σ

′) 7→ k1

(a0 + a1, σ
′) 7→ k0 + k1

and

(a1, σ
′) 7→ k1 (a0, σ

′) 7→ k0

(a1 + a0, σ
′) 7→ k1 + k0 = k0 + k1

This proves the commutativity of +. 2

Observation: Commutativity of the syntactic + operator is
provided by the commutativity of the + operator over the set of
integers.



Boolean Expressions

Recall our production for boolean expressions:

B ::= true | false |A = A |A ≤ A | !B |B&&B |B||B | (B)

To compute the semantic value of boolean expressions we define an
evaluation function ‘7→’, 1

7→ : Bexp× Σ→ B,

and write
(be, σ) 7→ t,

with be ∈ Bexp, σ ∈ Σ, and t ∈ B.

As in the case of the arithmetic expressions we introduce an eval function
in order to map the syntactic representations of boolean constants in T
into the semantic concepts of the constant in B,

eval : T→ B

1
What does the inductive definition of Bexp look like?



Boolean Expressions

(true, σ) 7→ eval(true)

(false, σ) 7→ eval(false)

(a0, σ) 7→ n (a1, σ) 7→ m
if n and m are equal

(a0 = a1, σ) 7→ true

(a0, σ) 7→ n (a1, σ) 7→ m
if n and m are not equal

(a0 = a1, σ) 7→ false

(a0, σ) 7→ n (a1, σ) 7→ m
if n is less than or equal to m

(a0 ≤ a1, σ) 7→ true

(a0, σ) 7→ n (a1, σ) 7→ m
if n is not less than or equal to m

(a0 ≤ a1, σ) 7→ false

with true, false ∈ T, a0, a1 ∈ Aexp, σ ∈ Σ, and m, n ∈ I.



Boolean Expressions

(b, σ) 7→ true

(!b, σ) 7→ false

(b, σ) 7→ false

(!b, σ) 7→ true

(b0, σ) 7→ t0 (b1, σ) 7→ t1

(b0&&b1, σ) 7→ t

where t is true if t0 = true and t1 = true, and false otherwise.

(b0, σ) 7→ t0 (b1, σ) 7→ t1

(b0||b1, σ) 7→ t

where t is true if t0 = true or t1 = true, and false otherwise.

Here b, b0, b1 ∈ Bexp, t0, t1, t ∈ B, and σ ∈ Σ.



Expression Equivalence

As in the case of Aexp, our notion of semantic value for
expressions leads to an equivalence relation between boolean
expressions:

b0 ∼ b1 iff ∀σ ∈ Σ, ∃t ∈ B. (b0, σ) 7→ t ∧ (b1, σ) 7→ t,

where b0, b1 ∈ Bexp.

One way to look at this is that boolean expressions behave
analogous to arithmetic expression except that the base has
changed.



Command Evaluation

Recall our grammar production for commands2:

C ::= skip |V := A |C ; C | if B then C else C end |while B do C end

In order to design a semantics for commands we have to answer
the following questions:

1 What is the semantic domain for commands?

2 What does the evaluation function look like?

2
Inductive definition of the syntactic domain Com?



Command Evaluation

In our simple imperative language commands modify the state of
the computation, that is, commands map one state into
another. Therefore we define our evaluation function ‘7→’ as,

7→ : Com× Σ→ Σ

and we write, given a command c ∈ Com and some state σ ∈ Σ ,

(c , σ) 7→ σ′

where σ′ ∈ Σ is the state after command c has fully executed.



Command Evaluation

Before we can give the full natural semantics for commands we
need some more machinery. Consider,

(x := 5, σ) 7→ σ′

where x ∈ Loc, 5 ∈ I, and σ, σ′ ∈ Σ.

Here, σ′ is the state σ updated to have the value 5 in location x .
We write,

σ′ = σ[5/x ].



Command Evaluation

More formally, let σ ∈ Σ, m ∈ I, and x , y ∈ Loc. We write σ[m/x ]
for the state obtained from σ by replacing the contents in x with
m. We can define this functionally,

σ[m/x ](y) =

{
m if y = x
σ(y) if y 6= x

⇒ States are “lookup tables” for values associated with locations.

Note that σ[m/x ] : Loc→ I is still considered a function from
locations into the integers.



Command Evaluation

Exercises: Let σ′ = σ0[3/q] with 3 ∈ I and q ∈ Loc,

Compute the value of σ′(q).

Compute the value of σ′(k) with k ∈ Loc and k 6= q.



Command Evaluation

Assume that all metavariables range over their appropriate
domains and σ, σ′, and σ′′ ∈ Σ.

(skip, σ) 7→ σ

(a, σ) 7→ m

(x := a, σ) 7→ σ[m/x ]

(b, σ) 7→ true (c0, σ) 7→ σ′

(if b then c0 else c1 end, σ) 7→ σ′

(b, σ) 7→ false (c1, σ) 7→ σ′

(if b then c0 else c1 end, σ) 7→ σ′



Command Evaluation

(c0, σ) 7→ σ′′ (c1, σ
′′) 7→ σ′

(c0; c1, σ) 7→ σ′

(b, σ) 7→ false

(while b do c end, σ) 7→ σ

(b, σ) 7→ true (c , σ) 7→ σ′′ (while b do c end, σ′′) 7→ σ′

(while b do c end, σ) 7→ σ′


