Arithmetic Expression Summary

$$
\begin{aligned}
& \overline{(n, \sigma) \mapsto \operatorname{eval}(n)} \\
& \frac{(x, \sigma) \mapsto \sigma(x)}{\left(a_{0}, \sigma\right) \mapsto k_{0} \quad\left(a_{1}, \sigma\right) \mapsto k_{1}} \\
& \frac{\left(a_{0}+a_{1}, \sigma\right) \mapsto k_{0}+k_{1}}{\left(a_{0}, \sigma\right) \mapsto k_{0} \quad\left(a_{1}, \sigma\right) \mapsto k_{1}} \\
& \left(a_{0}-a_{1}, \sigma\right) \mapsto k_{0}-k_{1} \\
& \frac{\left(a_{0}, \sigma\right) \mapsto k_{0}}{\left(a_{0} * a_{1}, \sigma\right) \mapsto k_{0} \times k_{1}} \quad\left(a_{1}, \sigma\right) \mapsto k_{1} \\
& \frac{(a, \sigma) \mapsto k}{((a), \sigma) \mapsto k}
\end{aligned}
$$

with $k, k_{0}, k_{1} \in \mathbb{I}, n, x, a, a_{0}, a_{1} \in \operatorname{Aexp}$, and $\sigma \in \Sigma$.

Expression Equivalence

Our notion of semantic value for expressions leads to a natural equivalence relation between arithmetic expressions:

$$
a_{0} \sim a_{1} \text { iff } \forall \sigma \in \Sigma, \exists n \in \mathbb{I} .\left(a_{0}, \sigma\right) \mapsto n \wedge\left(a_{1}, \sigma\right) \mapsto n,
$$

where $a_{0}, a_{1} \in$ Aexp.
Two expressions are equivalent if and only if they evaluate to the same semantic value in all possible states.
(You should convince yourself that this is indeed an equivalence relation, i.e., check that the relation \sim is reflexive, symmetric, and transitive.)

Expression Equivalence

Problem: Let $a_{0}=2 * 3$ and $a_{1}=3+3$, with $a_{0}, a_{1} \in$ Aexp. Show that $a_{0} \sim a_{1}$.

Expression Equivalence

Proof: We need to show that $(2 * 3, \sigma) \mapsto k$ and $(3+3, \sigma) \mapsto k$ for all states $\sigma \in \Sigma$ and some $k \in \mathbb{I}$.

Let $\sigma^{\prime} \in \Sigma$ be any state, then

$$
\frac{\overline{\left(2, \sigma^{\prime}\right) \mapsto 2} \quad \overline{\left(3, \sigma^{\prime}\right) \mapsto 3}}{\left(2 * 3, \sigma^{\prime}\right) \mapsto 6}
$$

and

$$
\frac{\overline{\left(3, \sigma^{\prime}\right) \mapsto 3} \quad \overline{\left(3, \sigma^{\prime}\right) \mapsto 3}}{\left(3+3, \sigma^{\prime}\right) \mapsto 6}
$$

which shows that regardless of the state, the two expressions will always produce the same semantics value, namely the integer 6 . This concludes the proof. \square

Expression Equivalence

Problem: Show that the + operator is commutative.

Expression Equivalence

Proof: We need to show that $a_{0}+a_{1} \sim a_{1}+a_{0}$ for all $a_{0}, a_{1} \in$ Aexp. We show this by demonstrating that

$$
\left(a_{0}+a_{1}, \sigma\right) \mapsto n \wedge\left(a_{1}+a_{0}, \sigma\right) \mapsto n
$$

for all $\sigma \in \Sigma$ and $n \in \mathbb{I}$.
Assume that

$$
\overline{\left(a_{0}, \sigma^{\prime}\right) \mapsto k_{0}}
$$

and

$$
\left(a_{1}, \sigma^{\prime}\right) \mapsto k_{1}
$$

for some $\sigma^{\prime} \in \Sigma$ and $k_{0}, k_{1} \in \mathbb{I}$.

Expression Equivalence

Then we can construct the derivations

$$
\frac{\overline{\left(a_{0}, \sigma^{\prime}\right) \mapsto k_{0}} \quad \overline{\left(a_{1}, \sigma^{\prime}\right) \mapsto k_{1}}}{\left(a_{0}+a_{1}, \sigma^{\prime}\right) \mapsto k_{0}+k_{1}}
$$

and

$$
\begin{array}{ll}
\overline{\left(a_{1}, \sigma^{\prime}\right) \mapsto k_{1}} \quad \overline{\left(a_{0}, \sigma^{\prime}\right) \mapsto k_{0}} \\
\hline\left(a_{1}+a_{0}, \sigma^{\prime}\right) \mapsto k_{1}+k_{0}=k_{0}+k_{1}
\end{array}
$$

This proves the commutativity of $+\square$

Observation: Commutativity of the syntactic + operator is provided by the commutativity of the + operator over the set of integers.

Boolean Expressions

Recall our production for boolean expressions:

$$
\mathrm{B}::=\text { true } \mid \text { false }|\mathrm{A}=\mathrm{A}| \mathrm{A} \leq \mathrm{A}|!\mathrm{B}| \mathrm{B} \& \& \mathrm{~B}|\mathrm{~B}||\mathrm{B}|(\mathrm{B})
$$

To compute the semantic value of boolean expressions we define an evaluation function ' \mapsto ', ${ }^{1}$

$$
\mapsto: B \exp \times \Sigma \rightarrow \mathbb{B},
$$

and write

$$
(b e, \sigma) \mapsto \mathbf{t},
$$

with be $\in \operatorname{Bexp}, \sigma \in \Sigma$, and $\mathbf{t} \in \mathbb{B}$.
As in the case of the arithmetic expressions we introduce an eval function in order to map the syntactic representations of boolean constants in \mathbf{T} into the semantic concepts of the constant in \mathbb{B},

$$
\text { eval : } \mathbf{T} \rightarrow \mathbb{B}
$$

[^0]
Boolean Expressions

$$
(\text { true }, \sigma) \mapsto \text { eval(true) }
$$

$$
\overline{(\text { false }, \sigma) \mapsto \text { eval(false) }}
$$

$$
\frac{\left(a_{0}, \sigma\right) \mapsto n \quad\left(a_{1}, \sigma\right) \mapsto m}{\left(a_{0}=a_{1}, \sigma\right) \mapsto \text { true }} \quad \text { if } n \text { and } m \text { are equal }
$$

$$
\frac{\left(a_{0}, \sigma\right) \mapsto n \quad\left(a_{1}, \sigma\right) \mapsto m}{\left(a_{0}=a_{1}, \sigma\right) \mapsto \text { false }} \quad \text { if } n \text { and } m \text { are not equal }
$$

$\frac{\left(a_{0}, \sigma\right) \mapsto n \quad\left(a_{1}, \sigma\right) \mapsto m}{\left(a_{0} \leq a_{1}, \sigma\right) \mapsto \text { true }} \quad$ if n is less than or equal to m
$\frac{\left(a_{0}, \sigma\right) \mapsto n \quad\left(a_{1}, \sigma\right) \mapsto m}{\left(a_{0} \leq a_{1}, \sigma\right) \mapsto \text { false }} \quad$ if n is not less than or equal to m
with true, false $\in \mathbf{T}, a_{0}, a_{1} \in \operatorname{Aexp}, \sigma \in \Sigma$, and $m, n \in \mathbb{I}$.

Boolean Expressions

$$
\begin{aligned}
& \frac{(b, \sigma) \mapsto \text { true }}{(!b, \sigma) \mapsto \text { false }} \quad \frac{(b, \sigma) \mapsto \text { false }}{(!b, \sigma) \mapsto \text { true }} \\
& \frac{\left(b_{0}, \sigma\right) \mapsto t_{0} \quad\left(b_{1}, \sigma\right) \mapsto t_{1}}{\left(b_{0} \& \& b_{1}, \sigma\right) \mapsto t}
\end{aligned}
$$

where t is true if $t_{0}=$ true and $t_{1}=$ true, and false otherwise.

$$
\frac{\left(b_{0}, \sigma\right) \mapsto t_{0} \quad\left(b_{1}, \sigma\right) \mapsto t_{1}}{\left(b_{0} \| b_{1}, \sigma\right) \mapsto t}
$$

where t is true if $t_{0}=$ true or $t_{1}=$ true, and false otherwise.

Here $b, b_{0}, b_{1} \in \operatorname{Bexp}, t_{0}, t_{1}, t \in \mathbb{B}$, and $\sigma \in \Sigma$.

Expression Equivalence

As in the case of $\mathbf{A} \exp$, our notion of semantic value for expressions leads to an equivalence relation between boolean expressions:

$$
b_{0} \sim b_{1} \text { iff } \forall \sigma \in \Sigma, \exists t \in \mathbb{B} .\left(b_{0}, \sigma\right) \mapsto t \wedge\left(b_{1}, \sigma\right) \mapsto t
$$

where $b_{0}, b_{1} \in$ Bexp.
One way to look at this is that boolean expressions behave analogous to arithmetic expression except that the base has changed.

Command Evaluation

Recall our grammar production for commands ${ }^{2}$:
$C::=\boldsymbol{s k i p}|V:=A| C ; C \mid$ if B then C else C end \mid while B do C end
In order to design a semantics for commands we have to answer the following questions:
(1) What is the semantic domain for commands?
(2) What does the evaluation function look like?

[^1]
Command Evaluation

In our simple imperative language commands modify the state of the computation, that is, commands map one state into another. Therefore we define our evaluation function ' \mapsto ' as,

$$
\mapsto: \quad \operatorname{Com} \times \Sigma \rightarrow \Sigma
$$

and we write, given a command $c \in \mathbf{C o m}$ and some state $\sigma \in \Sigma$,

$$
(c, \sigma) \mapsto \sigma^{\prime}
$$

where $\sigma^{\prime} \in \Sigma$ is the state after command c has fully executed.

Command Evaluation

Before we can give the full natural semantics for commands we need some more machinery. Consider,

$$
(x:=5, \sigma) \mapsto \sigma^{\prime}
$$

where $x \in$ Loc, $5 \in \mathbf{I}$, and $\sigma, \sigma^{\prime} \in \Sigma$.
Here, σ^{\prime} is the state σ updated to have the value 5 in location x. We write,

$$
\sigma^{\prime}=\sigma[5 / x]
$$

Command Evaluation

More formally, let $\sigma \in \Sigma, m \in \mathbb{I}$, and $x, y \in$ Loc. We write $\sigma[m / x]$ for the state obtained from σ by replacing the contents in x with m. We can define this functionally,

$$
\sigma[m / x](y)= \begin{cases}m & \text { if } y=x \\ \sigma(y) & \text { if } y \neq x\end{cases}
$$

\Rightarrow States are "lookup tables" for values associated with locations.
Note that $\sigma[m / x]:$ Loc $\rightarrow \mathbb{I}$ is still considered a function from locations into the integers.

Command Evaluation

Exercises: Let $\sigma^{\prime}=\sigma_{0}[3 / q]$ with $3 \in \mathbb{I}$ and $q \in$ Loc,

- Compute the value of $\sigma^{\prime}(q)$.
- Compute the value of $\sigma^{\prime}(k)$ with $k \in$ Loc and $k \neq q$.

Command Evaluation

Assume that all metavariables range over their appropriate domains and σ, σ^{\prime}, and $\sigma^{\prime \prime} \in \Sigma$.

$$
\begin{gathered}
\overline{(\text { skip }, \sigma)} \mapsto \sigma \\
(a, \sigma) \mapsto m \\
(x:=a, \sigma) \mapsto \sigma[m / x]
\end{gathered}
$$

$\frac{(b, \sigma) \mapsto \text { true } \quad\left(c_{0}, \sigma\right) \mapsto \sigma^{\prime}}{\left(\text { if } b \text { then } c_{0} \text { else } c_{1} \text { end, } \sigma\right) \mapsto \sigma^{\prime}}$

$$
(b, \sigma) \mapsto \text { false } \quad\left(c_{1}, \sigma\right) \mapsto \sigma^{\prime}
$$

(if b then c_{0} else c_{1} end, σ) $\mapsto \sigma^{\prime}$

Command Evaluation

$$
\begin{gathered}
\frac{\left(c_{0}, \sigma\right) \mapsto \sigma^{\prime \prime} \quad\left(c_{1}, \sigma^{\prime \prime}\right) \mapsto \sigma^{\prime}}{\left(c_{0} ; c_{1}, \sigma\right) \mapsto \sigma^{\prime}} \\
\frac{(b, \sigma) \mapsto \text { false }}{\text { (while } b \text { do } c \text { end, } \sigma) \mapsto \sigma}
\end{gathered}
$$

$(b, \sigma) \mapsto$ true $\quad(c, \sigma) \mapsto \sigma^{\prime \prime} \quad$ (while b do c end, $\left.\sigma^{\prime \prime}\right) \mapsto \sigma^{\prime}$
(while b do c end, σ) $\mapsto \sigma^{\prime}$

[^0]: ${ }^{1}$ What does the inductive definition of Bexp look like?

[^1]: ${ }^{2}$ Inductive definition of the syntactic domain Com?

