Grammars

@ Grammars play a crucial role in programming languages
because they precisely capture the syntactic nature of
programming languages.

@ We start our discussion of grammars by looking at the nature
of sequences of symbols, where sequences of symbols form the
foundation of any language, both natural and artificial.

@ We will call sequences of symbols strings.

Def

inition: [Strings over an Alphabet]*

An alphabet is a finite, nonempty set — we refer to the elements of
an alphabet as symbols.

A finite sequence of symbols from a given alphabet is called a string
over the alphabet.

A string that consists of a sequence aj, ap, ..., a, of symbols is
denoted by the juxtaposition ajas... a,.

The length of some string s is denoted by |s| and assumed to equal
the number of symbols in the string.

Strings that have zero symbols, called empty strings, are denoted by
€ with |e| = 0.

1
Based on material from the book “An Introduction to the Theory of Computation,” Eitan Gurari, Ohio State

Univer

sity, Computer Science Press, 1989.

Example: Let I'; = {a,...,z} and T, = {0,...,9} is alphabets. abb is a
string over ', and 123 is a string over [,. bal2 is neither a string over
"1 nor a string over I, but it is a string over 'y U 5. The string 314...
is not a string over [5, because it is not a finite sequence.

Some other observations:
@ The empty string € is a string over any alphabet.
@ The empty set 0 is not an alphabet because it contains no element.

@ The set of natural numbers is not an alphabet, because it is not
finite.

Definition: [Kleene Closure] Given some alphabet I then the set
of all possible strings over I including the empty string € is
denoted by '™ and is called the Kleene Closure of I'. (Similar to
the power set construction with the exception that the constructed
set is always infinite.)

Example: Let [= {a}, then ' = {¢, a, aa, aaa, aaaa, . .. }.

Example: Let [= {a, b}, then

™ ={e, a, b, aa, bb, ab, ba, aaa, aab, . . .}.

Definition: [String Concatenation] Given some alphabet I" with
s1 € " and sp € '*, then the concatenation of the strings written
as s1sp also belongs to *, that is the string s;sp € [*.

Grammars

Definition: [Context-Free Grammar] A context-free grammar is a triple
(T, —,~) such that,

o =TUN with TNN = (), where T is a set of symbols called the
terminals and N is a set of symbols called the non-terminals,?

@ —-C N x I* is a set of rules of the form u — v with v € N and
vel®

@ 7 is called the start symbol and v € N.

2The fact that T and N are non-overlapping means that there will never be
confusion between terminals and non-terminals.

Grammars

Example: Grammar for arithmetic expressions. We define the grammar
(T, —,7) as follows:

@ =TUNwith T={a,b,c,+,%(,)} and N = {E},

@ — is is defined as,

E —» E+E
E — ExE
E — (E)
E — a

E — b

E — ¢

@ v = E (clearly this satisfies v € N).

Rewriting Relation

In order for a grammar (I, —,) to be useful we allow rules to be applied
to substrings of given strings; let s = xuy,t = xvy with x,y,v € ['*,
u € N, and a rule u — v, then we say that s rewrites to t and we write,

s = t.

More formally,

Definition: [one-step rewriting relation] Let (I, —,~) be a be
context-free grammar, then the one-step rewriting relation =C I'™* x I'*
is the set with (s, t) €= for strings s, t € I'* if and only if there exist
x,y,v €l* and u € N with s = xuy, t = xvy, and u — v.

In plain English: any two strings s, t belong to the relation = if and only
if they can be related by a rewrite rule.

Rewriting Relation

With grammars, derivations always start with the start symbol
g y Y
~ € I'*. Consider,

E = ExE = (E)+xE = (E+E)«E = (a+E)«E = (a+b)*E = (a+b)x*c.

Here, (a+ b) % ¢ is a normal form often also called a terminal- or
derived-string. Normal forms are characterized by the fact that no
additional rewriting can be applied to them.
We often write,

E="(a+b)xc

stating that the normal form is derivable from the start symbol in
zero or more steps.

Grammars

Exercise: ldentify the rule that was applied at each rewrite step in
the above derivation.

Exercise: Derive the string ((a)).

Exercise: Derive the string a+ b x c.

Grammars

We are now in the position to define exactly what we mean by a language.

Definition:[Language] Let G = (I', —,) be a context-free grammar,
then we define the language of grammar G as the set of all terminal
strings that can be derived from the start symbol v by rewriting using the
rules in —. Formally3,

L(G)={qly="qgNnqge T }.

Example: Let J = (', —,7) be the grammar of Java, then L(J) is the
set of all possible Java programs. The Java language is defined as the set
of all possible Java programs.

30bserve that T* is the set of all terminal strings.

Grammars

Observations:

@ With the concept of a language we can now ask interesting
questions. For example, given a grammar G and some sentence
p € T*, does p belong to L(G)?

@ If we let J be the grammar of Java, then asking whether some
string p € T* is in L(J) is equivalent to asking whether p is a
syntactically correct program.

Grammars

Example: A simple imperative language. We define grammar G = (I', —,~) as
follows:
@ =T UN where

T=40,...,9,a,...,z, true, false, skip, if, then, else, while, do, end+, —, x, =, <, 1, &&, ||,:=,;,(,)}

and
N={A,B,C,D,L,V}.

@ The rule set — is defined by,
DIVIA+A|A—A[AxA|(A)

true | false |[A = A|A < A|!B|B&&B|B||B|(B)
skip |V := A | C; C|if B then C else C end | while B do C end

<rOnw>»
Ll

L] —L
OL|...|9L|O|... |9
aV|...|zV]|a|...z

Grammars

Here are some elements in L(G),

X 1, y:
v:=1;if v <0 then v := (—1) % v else skip end
n 5 f:=1;while2<ndof:=nx*xf;n:=n—1end

Exercise: Prove that they belong to L(G).

Grammars

Reading: Denotational Semantics/Schmidt — pages 5 thru 8.
Assignment #1 — see BrightSpace

