- Grammars play a crucial role in programming languages because they precisely capture the syntactic nature of programming languages.
- We start our discussion of grammars by looking at the nature of sequences of symbols, where sequences of symbols form the foundation of any language, both natural and artificial.
- We will call sequences of symbols strings.

Strings

Definition: [Strings over an Alphabet]¹

- An *alphabet* is a finite, nonempty set we refer to the elements of an alphabet as *symbols*.
- A finite sequence of symbols from a given alphabet is called a *string* over the alphabet.
- A string that consists of a sequence a_1, a_2, \ldots, a_n of symbols is denoted by the juxtaposition $a_1a_2 \ldots a_n$.
- The length of some string s is denoted by |s| and assumed to equal the number of symbols in the string.
- Strings that have zero symbols, called *empty strings*, are denoted by ϵ with $|\epsilon| = 0$.

Strings

Example: Let $\Gamma_1 = \{a, \ldots, z\}$ and $\Gamma_2 = \{0, \ldots, 9\}$ is alphabets. *abb* is a string over Γ_1 , and 123 is a string over Γ_2 . *ba*12 is neither a string over Γ_1 nor a string over Γ_2 but it is a string over $\Gamma_1 \cup \Gamma_2$. The string 314... is not a string over Γ_2 , because it is not a finite sequence.

Some other observations:

- The empty string ϵ is a string over any alphabet.
- The empty set \emptyset is not an alphabet because it contains no element.
- The set of natural numbers is not an alphabet, because it is not finite.

Definition: [Kleene Closure] Given some alphabet Γ then the set of all possible strings over Γ including the empty string ϵ is denoted by Γ^* and is called the *Kleene Closure of* Γ . (Similar to the power set construction with the exception that the constructed set is always infinite.)

Example: Let $\Gamma = \{a\}$, then $\Gamma^* = \{\epsilon, a, aa, aaa, aaaa, \dots\}$.

Example: Let $\Gamma = \{a, b\}$, then

 $\Gamma^* = \{\epsilon, a, b, aa, bb, ab, ba, aaa, aab, \ldots\}.$

Definition: [String Concatenation] Given some alphabet Γ with $s_1 \in \Gamma^*$ and $s_2 \in \Gamma^*$, then the *concatenation of the strings* written as s_1s_2 also belongs to Γ^* , that is the string $s_1s_2 \in \Gamma^*$.

Definition: [Context-Free Grammar] A *context-free grammar* is a triple $(\Gamma, \rightarrow, \gamma)$ such that,

- $\Gamma = T \cup N$ with $T \cap N = \emptyset$, where T is a set of symbols called the *terminals* and N is a set of symbols called the *non-terminals*,²
- $\rightarrow \subseteq N \times \Gamma^*$ is a set of rules of the form $u \rightarrow v$ with $u \in N$ and $v \in \Gamma^*$,
- γ is called the *start symbol* and $\gamma \in N$.

²The fact that T and N are non-overlapping means that there will never be confusion between terminals and non-terminals.

Example: Grammar for arithmetic expressions. We define the grammar $(\Gamma, \rightarrow, \gamma)$ as follows:

•
$$\Gamma = T \cup N$$
 with $T = \{a, b, c, +, *, (,)\}$ and $N = \{E\}$,

 $\bullet \ \rightarrow \mbox{is is defined as,}$

$$\begin{array}{rcccc} E & \rightarrow & E + E \\ E & \rightarrow & E * E \\ E & \rightarrow & (E) \\ E & \rightarrow & a \\ E & \rightarrow & b \\ E & \rightarrow & c \end{array}$$

•
$$\gamma = E$$
 (clearly this satisfies $\gamma \in N$).

In order for a grammar $(\Gamma, \rightarrow, \gamma)$ to be useful we allow rules to be applied to *substrings* of given strings; let s = xuy, t = xvy with $x, y, v \in \Gamma^*$, $u \in N$, and a rule $u \rightarrow v$, then we say that *s rewrites to t* and we write,

$$s \Rightarrow t$$
.

More formally,

Definition: [one-step rewriting relation] Let $(\Gamma, \rightarrow, \gamma)$ be a be context-free grammar, then the *one-step rewriting relation* $\Rightarrow \subseteq \Gamma^* \times \Gamma^*$ is the set with $(s, t) \in \Rightarrow$ for strings $s, t \in \Gamma^*$ if and only if there exist $x, y, v \in \Gamma^*$ and $u \in N$ with s = xuy, t = xvy, and $u \rightarrow v$.

In plain English: any two strings s, t belong to the relation \Rightarrow if and only if they can be related by a rewrite rule.

With grammars, derivations always start with the start symbol $\gamma \in \Gamma^*$. Consider,

$$E \Rightarrow E * E \Rightarrow (E) * E \Rightarrow (E+E) * E \Rightarrow (a+E) * E \Rightarrow (a+b) * E \Rightarrow (a+b) * c.$$

Here, (a + b) * c is a *normal form* often also called a *terminal*- or *derived-string*. Normal forms are characterized by the fact that no additional rewriting can be applied to them. We often write.

$$E \Rightarrow^* (a+b) * c$$

stating that the normal form is derivable from the start symbol in zero or more steps.

Exercise: Identify the rule that was applied at each rewrite step in the above derivation.

Exercise: Derive the string ((a)).

Exercise: Derive the string a + b * c.

We are now in the position to define exactly what we mean by a language.

Definition: [Language] Let $G = (\Gamma, \rightarrow, \gamma)$ be a context-free grammar, then we define the *language of grammar* G as the set of all terminal strings that can be derived from the start symbol γ by rewriting using the rules in \rightarrow . Formally³,

$$L(G) = \{ q \mid \gamma \Rightarrow^* q \land q \in T^* \}.$$

Example: Let $J = (\Gamma, \rightarrow, \gamma)$ be the grammar of Java, then L(J) is the set of all possible Java programs. The Java language is defined as the set of all possible Java programs.

³Observe that T^* is the set of all terminal strings. $(\Box \rightarrow \langle \Box \rangle \land \langle \Xi \rightarrow \langle \Xi \rangle \land \exists) \land \langle \Xi \rangle \land \langle \Xi \rangle$

Observations:

- With the concept of a language we can now ask interesting questions. For example, given a grammar G and some sentence p ∈ T*, does p belong to L(G)?
- If we let J be the grammar of Java, then asking whether some string p ∈ T* is in L(J) is equivalent to asking whether p is a syntactically correct program.

Example: A simple imperative language. We define grammar $G = (\Gamma, \rightarrow, \gamma)$ as follows:

• $\Gamma = T \cup N$ where

 $T = \{0, \dots, 9, a, \dots, z, true, false, skip, if, then, else, while, do, end+, -, *, =, <math>\leq$, !, &&, ||, :=, ;, (,) }

and

$$N = \{A, B, C, D, L, V\}.$$

• The rule set \rightarrow is defined by,

 $\begin{array}{rcl} A & \rightarrow & D \mid V \mid A + A \mid A - A \mid A * A \mid (A) \\ B & \rightarrow & true \mid false \mid A = A \mid A \leq A \mid !B \mid B\&\&B \mid B \mid |B \mid (B) \\ C & \rightarrow & skip \mid V := A \mid C \;; C \mid if \; B \; then \; C \; else \; C \; end \mid while \; B \; do \; C \; end \\ D & \rightarrow & L \mid -L \\ L & \rightarrow & 0 \; L \mid ... \mid 9 \; L \mid 0 \mid \ldots \mid 9 \\ V & \rightarrow & a \; V \mid \ldots \mid z \; V \mid a \mid \ldots z \end{array}$

イロト (母) (ヨ) (ヨ) (ヨ) ののの

• $\gamma = C$.

Here are some elements in L(G),

$$x := 1; y := x$$

 $v := 1;$ if $v \le 0$ then $v := (-1) * v$ else skip end
 $n := 5; f := 1;$ while $2 \le n$ do $f := n * f; n := n - 1$ end

Exercise: Prove that they belong to L(G).

Reading: Denotational Semantics/Schmidt – pages 5 thru 8. Assignment #1 – see BrightSpace

▶ < ≣ ▶ <</p>