Grammars

- Grammars play a crucial role in programming languages because they precisely capture the syntactic nature of programming languages.
- We start our discussion of grammars by looking at the nature of sequences of symbols, where sequences of symbols form the foundation of any language, both natural and artificial.
- We will call sequences of symbols strings.

Strings

Definition: [Strings over an Alphabet] ${ }^{1}$

- An alphabet is a finite, nonempty set - we refer to the elements of an alphabet as symbols.
- A finite sequence of symbols from a given alphabet is called a string over the alphabet.
- A string that consists of a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of symbols is denoted by the juxtaposition $a_{1} a_{2} \ldots a_{n}$.
- The length of some string s is denoted by $|s|$ and assumed to equal the number of symbols in the string.
- Strings that have zero symbols, called empty strings, are denoted by ϵ with $|\epsilon|=0$.

[^0]Example: Let $\Gamma_{1}=\{a, \ldots, z\}$ and $\Gamma_{2}=\{0, \ldots, 9\}$ is alphabets. $a b b$ is a string over Γ_{1}, and 123 is a string over Γ_{2}. ba12 is neither a string over Γ_{1} nor a string over Γ_{2} but it is a string over $\Gamma_{1} \cup \Gamma_{2}$. The string $314 \ldots$ is not a string over Γ_{2}, because it is not a finite sequence.

Some other observations:

- The empty string ϵ is a string over any alphabet.
- The empty set \emptyset is not an alphabet because it contains no element.
- The set of natural numbers is not an alphabet, because it is not finite.

Definition: [Kleene Closure] Given some alphabet Γ then the set of all possible strings over Γ including the empty string ϵ is denoted by Γ^{*} and is called the Kleene Closure of Γ. (Similar to the power set construction with the exception that the constructed set is always infinite.)

Example: Let $\Gamma=\{a\}$, then $\Gamma^{*}=\{\epsilon, a, a a, a a a, a a a a, \ldots\}$.
Example: Let $\Gamma=\{a, b\}$, then

$$
\Gamma^{*}=\{\epsilon, a, b, a a, b b, a b, b a, a a a, a a b, \ldots\} .
$$

Strings

Definition: [String Concatenation] Given some alphabet 「 with $s_{1} \in \Gamma^{*}$ and $s_{2} \in \Gamma^{*}$, then the concatenation of the strings written as $s_{1} s_{2}$ also belongs to Γ^{*}, that is the string $s_{1} s_{2} \in \Gamma^{*}$.

Grammars

Definition: [Context-Free Grammar] A context-free grammar is a triple $(\Gamma, \rightarrow, \gamma)$ such that,

- $\Gamma=T \cup N$ with $T \cap N=\emptyset$, where T is a set of symbols called the terminals and N is a set of symbols called the non-terminals, ${ }^{2}$
- $\rightarrow \subseteq N \times \Gamma^{*}$ is a set of rules of the form $u \rightarrow v$ with $u \in N$ and $v \in \Gamma^{*}$,
- γ is called the start symbol and $\gamma \in N$.
${ }^{2}$ The fact that T and N are non-overlapping means that there will never be confusion between terminals and non-terminals.

Grammars

Example: Grammar for arithmetic expressions. We define the grammar $(\Gamma, \rightarrow, \gamma)$ as follows:

- 「 $=T \cup N$ with $T=\{a, b, c,+, *,()$,$\} and N=\{E\}$,
- \rightarrow is is defined as,

$$
\begin{array}{lll}
E & \rightarrow & E+E \\
E & \rightarrow & E * E \\
E & \rightarrow & (E) \\
E & \rightarrow & a \\
E & \rightarrow & b \\
E & \rightarrow & c
\end{array}
$$

- $\gamma=E$ (clearly this satisfies $\gamma \in N$).

Rewriting Relation

In order for a grammar $(\Gamma, \rightarrow, \gamma)$ to be useful we allow rules to be applied to substrings of given strings; let $s=x u y, t=x v y$ with $x, y, v \in \Gamma^{*}$, $u \in N$, and a rule $u \rightarrow v$, then we say that s rewrites to t and we write,

$$
s \Rightarrow t
$$

More formally,
Definition: [one-step rewriting relation] Let $(\Gamma, \rightarrow, \gamma)$ be a be context-free grammar, then the one-step rewriting relation $\Rightarrow \subseteq \Gamma^{*} \times \Gamma^{*}$ is the set with $(s, t) \in \Rightarrow$ for strings $s, t \in \Gamma^{*}$ if and only if there exist $x, y, v \in \Gamma^{*}$ and $u \in N$ with $s=x u y, t=x v y$, and $u \rightarrow v$.

In plain English: any two strings s, t belong to the relation \Rightarrow if and only if they can be related by a rewrite rule.

Rewriting Relation

With grammars, derivations always start with the start symbol $\gamma \in \Gamma^{*}$. Consider,
$E \Rightarrow E * E \Rightarrow(E) * E \Rightarrow(E+E) * E \Rightarrow(a+E) * E \Rightarrow(a+b) * E \Rightarrow(a+b) * c$.
Here, $(a+b) * c$ is a normal form often also called a terminal- or derived-string. Normal forms are characterized by the fact that no additional rewriting can be applied to them.
We often write,

$$
E \Rightarrow^{*}(a+b) * c
$$

stating that the normal form is derivable from the start symbol in zero or more steps.

Grammars

Exercise: Identify the rule that was applied at each rewrite step in the above derivation.
Exercise: Derive the string ((a)).
Exercise: Derive the string $a+b * c$.

Grammars

We are now in the position to define exactly what we mean by a language.
Definition:[Language] Let $G=(\Gamma, \rightarrow, \gamma)$ be a context-free grammar, then we define the language of grammar G as the set of all terminal strings that can be derived from the start symbol γ by rewriting using the rules in \rightarrow. Formally ${ }^{3}$,

$$
L(G)=\left\{q \mid \gamma \Rightarrow^{*} q \wedge q \in T^{*}\right\}
$$

Example: Let $J=(\Gamma, \rightarrow, \gamma)$ be the grammar of Java, then $L(J)$ is the set of all possible Java programs. The Java language is defined as the set of all possible Java programs.

[^1]
Grammars

Observations:

- With the concept of a language we can now ask interesting questions. For example, given a grammar G and some sentence $p \in T^{*}$, does p belong to $L(G)$?
- If we let J be the grammar of Java, then asking whether some string $p \in T^{*}$ is in $L(J)$ is equivalent to asking whether p is a syntactically correct program.

Grammars

Example: A simple imperative language. We define grammar $G=(\Gamma, \rightarrow, \gamma)$ as follows:

- 「 $=T \cup N$ where
$T=\{\mathbf{0}, \ldots, \mathbf{9}, \mathbf{a}, \ldots, \mathbf{z}$, true, false, skip, if, then, else, while, do, end $+,-, *,=, \leq,!, \& \&, \|,:=, ;,()$,
and

$$
N=\{A, B, C, D, L, V\} .
$$

- The rule set \rightarrow is defined by,

$$
\begin{aligned}
& \mathrm{A} \quad \rightarrow \quad \mathrm{D}|\mathrm{~V}| \mathrm{A}+\mathrm{A}|\mathrm{~A}-\mathrm{A}| \mathrm{A} * \mathrm{~A} \mid(\mathrm{A}) \\
& B \quad \rightarrow \quad \text { true } \mid \text { false }|A=A| A \leq A|!B| B \& \& B|B||B|(B) \\
& C \quad \rightarrow \quad \text { skip }|V:=A| C ; C \mid \text { if } \bar{B} \text { then } C \text { else } C \text { end } \mid \text { while } B \text { do } C \text { end } \\
& \text { D } \rightarrow \mathrm{L} \mid-\mathrm{L}
\end{aligned}
$$

- $\gamma=\mathrm{C}$.

Here are some elements in $L(G)$,

$$
\begin{aligned}
& x:=1 ; y:=x \\
& v:=1 ; \text { if } v \leq 0 \text { then } v:=(-1) * v \text { else skip end } \\
& n:=5 ; f:=1 ; \text { while } 2 \leq n \text { do } f:=n * f ; n:=n-1 \text { end }
\end{aligned}
$$

Exercise: Prove that they belong to $L(G)$.

Grammars

Reading: Denotational Semantics/Schmidt - pages 5 thru 8. Assignment \#1 - see BrightSpace

[^0]: ${ }^{1}$ Based on material from the book "An Introduction to the Theory of Computation," Eitan Gurari, Ohio State University, Computer Science Press, 1989.

[^1]: ${ }^{3}$ Observe that T^{*} is the set of all terminal strings.

