
Grammars

Grammars play a crucial role in programming languages
because they precisely capture the syntactic nature of
programming languages.

We start our discussion of grammars by looking at the nature
of sequences of symbols, where sequences of symbols form the
foundation of any language, both natural and artificial.

We will call sequences of symbols strings.

Strings

Definition: [Strings over an Alphabet]1

An alphabet is a finite, nonempty set – we refer to the elements of
an alphabet as symbols.

A finite sequence of symbols from a given alphabet is called a string
over the alphabet.

A string that consists of a sequence a1, a2, . . . , an of symbols is
denoted by the juxtaposition a1a2 . . . an.

The length of some string s is denoted by |s| and assumed to equal
the number of symbols in the string.

Strings that have zero symbols, called empty strings, are denoted by
ε with |ε| = 0.

1
Based on material from the book “An Introduction to the Theory of Computation,” Eitan Gurari, Ohio State

University,Computer Science Press, 1989.

Strings

Example: Let Γ1 = {a, . . . , z} and Γ2 = {0, . . . , 9} is alphabets. abb is a
string over Γ1, and 123 is a string over Γ2. ba12 is neither a string over
Γ1 nor a string over Γ2 but it is a string over Γ1 ∪ Γ2. The string 314 . . .
is not a string over Γ2, because it is not a finite sequence.

Some other observations:

The empty string ε is a string over any alphabet.

The empty set ∅ is not an alphabet because it contains no element.

The set of natural numbers is not an alphabet, because it is not
finite.

Strings

Definition: [Kleene Closure] Given some alphabet Γ then the set
of all possible strings over Γ including the empty string ε is
denoted by Γ∗ and is called the Kleene Closure of Γ. (Similar to
the power set construction with the exception that the constructed
set is always infinite.)

Example: Let Γ = {a}, then Γ∗ = {ε, a, aa, aaa, aaaa, . . . }.

Example: Let Γ = {a, b}, then

Γ∗ = {ε, a, b, aa, bb, ab, ba, aaa, aab, . . .}.

Strings

Definition: [String Concatenation] Given some alphabet Γ with
s1 ∈ Γ∗ and s2 ∈ Γ∗, then the concatenation of the strings written
as s1s2 also belongs to Γ∗, that is the string s1s2 ∈ Γ∗.

Grammars

Definition: [Context-Free Grammar] A context-free grammar is a triple
(Γ,→, γ) such that,

Γ = T ∪ N with T ∩ N = ∅, where T is a set of symbols called the
terminals and N is a set of symbols called the non-terminals,2

→⊆ N × Γ∗ is a set of rules of the form u → v with u ∈ N and
v ∈ Γ∗,

γ is called the start symbol and γ ∈ N.

2The fact that T and N are non-overlapping means that there will never be
confusion between terminals and non-terminals.

Grammars

Example: Grammar for arithmetic expressions. We define the grammar
(Γ,→, γ) as follows:

Γ = T ∪ N with T = {a, b, c ,+, ∗, (,)} and N = {E},
→ is is defined as,

E → E + E
E → E ∗ E
E → (E)
E → a
E → b
E → c

γ = E (clearly this satisfies γ ∈ N).

Rewriting Relation

In order for a grammar (Γ,→, γ) to be useful we allow rules to be applied
to substrings of given strings; let s = xuy ,t = xvy with x , y , v ∈ Γ∗,
u ∈ N, and a rule u → v , then we say that s rewrites to t and we write,

s ⇒ t.

More formally,

Definition: [one-step rewriting relation] Let (Γ,→, γ) be a be
context-free grammar, then the one-step rewriting relation ⇒⊆ Γ∗ × Γ∗

is the set with (s, t) ∈⇒ for strings s, t ∈ Γ∗ if and only if there exist
x , y , v ∈ Γ∗ and u ∈ N with s = xuy , t = xvy , and u → v .

In plain English: any two strings s, t belong to the relation ⇒ if and only

if they can be related by a rewrite rule.

Rewriting Relation

With grammars, derivations always start with the start symbol
γ ∈ Γ∗. Consider,

E ⇒ E∗E ⇒ (E)∗E ⇒ (E+E)∗E ⇒ (a+E)∗E ⇒ (a+b)∗E ⇒ (a+b)∗c .

Here, (a + b) ∗ c is a normal form often also called a terminal- or
derived-string. Normal forms are characterized by the fact that no
additional rewriting can be applied to them.
We often write,

E ⇒∗ (a + b) ∗ c

stating that the normal form is derivable from the start symbol in
zero or more steps.

Grammars

Exercise: Identify the rule that was applied at each rewrite step in
the above derivation.
Exercise: Derive the string ((a)).
Exercise: Derive the string a + b ∗ c .

Grammars

We are now in the position to define exactly what we mean by a language.

Definition:[Language] Let G = (Γ,→, γ) be a context-free grammar,
then we define the language of grammar G as the set of all terminal
strings that can be derived from the start symbol γ by rewriting using the
rules in →. Formally3,

L(G) = {q | γ ⇒∗ q ∧ q ∈ T ∗}.

Example: Let J = (Γ,→, γ) be the grammar of Java, then L(J) is the

set of all possible Java programs. The Java language is defined as the set

of all possible Java programs.

3Observe that T ∗ is the set of all terminal strings.

Grammars

Observations:

With the concept of a language we can now ask interesting
questions. For example, given a grammar G and some sentence
p ∈ T ∗, does p belong to L(G)?

If we let J be the grammar of Java, then asking whether some
string p ∈ T ∗ is in L(J) is equivalent to asking whether p is a
syntactically correct program.

Grammars

Example: A simple imperative language. We define grammar G = (Γ,→, γ) as
follows:

Γ = T ∪ N where

T = {0, . . . , 9, a, . . . , z, true, false, skip, if, then, else, while, do, end+,−, ∗, =,≤, !, &&, ||, :=, ; , (,)}

and
N = {A, B, C ,D, L, V}.

The rule set → is defined by,

A → D | V | A + A | A− A | A ∗ A | (A)
B → true | false | A = A | A ≤ A | !B | B&&B | B||B | (B)
C → skip | V := A | C ; C | if B then C else C end |while B do C end
D → L | − L
L → 0 L | . . . | 9 L | 0 | . . . | 9
V → a V | . . . | z V | a | . . . z

γ = C.

Grammars

Here are some elements in L(G),

x := 1; y := x
v := 1; if v ≤ 0 then v := (−1) ∗ v else skip end
n := 5; f := 1; while 2 ≤ n do f := n ∗ f ; n := n − 1 end

Exercise: Prove that they belong to L(G).

Grammars

Reading: Denotational Semantics/Schmidt – pages 5 thru 8.
Assignment #1 – see BrightSpace

