
CSC 501 – Semantics of Programming Languages

Subtitle: An Introduction to Formal Methods.

Instructor: Dr. Lutz Hamel

Email: lutzhamel@uri.edu

Office: Tyler, Rm 251



Books

There are no required books in this course; however, occasionally I
will assign readings based on material available on the web.



Course Objectives

The aim of this course is to

Familiarize you with the basic techniques of applying formal
methods to programming languages.

This includes constructing models for programming languages
and using these models to prove properties such as correctness
and equivalence of programs.

Look at all major programming language constructs including
assignments, loops, type systems, and procedure calls together
with their models.

Introduce mechanical theorem provers so that we can test and
prove properties of non-trivial programs.



Some Definitions

Definition: In programming language semantics we are
concerned with the rigorous mathematical study of the meaning of
programming languages. The meaning of a language is given by a
formal system that describes the possible computations expressible
within that language.



Some Definitions

Definition: In computer science and software engineering, formal
methods are techniques for the specification, development and
verification of software and hardware systems based on formal
systems.



Formal Systems

Definition: A formal system consists of a formal language and a
set of inference rules. The formal language is composed of
primitive symbols that make up well formed formulas and the
inference rules are used to derive expressions from other
expressions within the formal system. A formal system may be
formulated and studied for its intrinsic properties, or it may be
intended as a description (i.e. a model) of external phenomena.1

In order to be truly useful in computer science, we require our
formal systems to be machine executable.

1Wikipedia



Uses of Formal Methods

Implementation Issues Formally specified models can be
considered machine-independent specifications of
program behavior. They can act as “yard sticks” for
the correctness of program implementations,
transformations, and optimizations.

Verification Basis of methods for reasoning about program
properties (e.g. equivalence) and program
specifications (program correctness).

Language Design Can bring to light ambiguities and unforeseen
subtleties in programming language constructs.



Observations

When programming we can observe two mental activities:

We construct correct looking programs - syntactically correct
programs.

We construct models of the intended computation in our
minds. Consider,
x := 1

while (x <= 10) do

writeln(x)

x := x + 1

end whiledo

Any person with some familiarity of programming immediately
has a mental picture that this program will generate a list of
integers from 1 through 10.



Programming Language Definitions

Mirroring our intuition, language definitions consist of two parts:

Syntax The formal description of the structure of
well-formed expressions, phrases, programs, etc.

Semantics The formal description of the meaning of the
syntactic features of a programming language usually
understood in terms of the runtime behavior each
syntactic construct evokes. The formal description of
the behavior of all the syntactic features of a
language is considered a model of the language.



Evaluation/Interpretation

Syntax and semantics of a programming language are usually
related via an evaluation relation or interpretation, say h. Then we
say that the interpretation h takes each syntactic element and
maps it into the appropriate semantic construct.

We often represent this with the diagram

Semantics

Syntax

h

OO

Note: In order for the interpretation h to make any sense we will
have to define the syntax and semantics in terms of sets.



Formal Systems and Programs

The formal systems we will be using in this course are:

First-order logic extended with natural deduction – natural
semantics.

The first order predicate calculus (often also called first order
logic) to construct semantics of programming languages.



Readings

Read Chapter 0 in ”Denotational Semantics” by David
Schmidt (available from the course website).

Read Sections 2.1 and 2.2 in ”Denotational Semantics” by
David Schmidt.


