
Semester Review

¢ Imperative Programming
l Inspired by the explicit state 

manipulation of Von-Neuman 
hardware architecture

l CPU↔Memory



Semester Review

¢ Type Systems
l “A type is a set of values”
l Help identify programming errors

• A type mismatch usually indicates a programming 
error

• Type propagation
l Dynamic/static type systems
l Subtypes/Supertypes

• Type hierarchies
• Automatic type coercion (conversion, promotion)
• Widening/narrowing conversions



Semester Review

¢ Pattern matching
l Simple patterns are expressions that 

consist purely of constructors and 
variables

l Canonical representations!
l Destructuring

• let (x,y) = (1,2)
l Powerful declarative way of accessing

substructures of objects



Semester Review

¢ OOP
l “classic” vs “modern” OOP
l Modern OOP

• No classes, instead structures with behavior
• No (class) inheritance – traits/interfaces instead or 

object composition
• Limited if any member protection – facilitates

pattern matching on objects.
l Subtype polymorphism with dynamic 

dispatch for statically typed languages
l Duck typing for dynamically typed languages



Semester Review

¢ Functional Programming
l Based on the lambda calculus
l “Everything is a value”
l No explicit state
l First-class functions
l Declarative: 

• “The What rather than the How”



Semester Review

¢ First-Class Patterns
l Patterns themselves are considered 

values
• Store in variables
• Pass to/from functions

l Promoting features to first-class status 
increases expressiveness of 
programming languages

• Shorter programs that make intentions of 
programmer clearer.



Semester Review

¢ Putting it all together



Semester Review

¢ Putting it all together – multi-paradigm



Semester Review

¢ Putting it all together – higher-order



Semester Review

The End


