
Putting it All Together

¢ Multi-paradigm programming means 
picking and choosing from our various 
paradigms,
l Imperative
l Declarative with pattern matching
l Functional 
l OOP
l First-class patterns

¢ To create the most readable and 
maintainable programs.



Case Study: QuickSort

¢ We start with the imperative and the 
functional versions of the quicksort
l Examining both the strengths and 

weaknesses of each approach
¢ We then pick and choose from each of 

these implementations and create a 
multi-paradigm version of the quicksort.

¢ Finally, we’ll create some extensions 
such as a flexible sorting predicate 
based on higher-order programming.



Imperative Programming

ln017/qimp.ast



Functional Programming

ln017/qfun.ast



Multi-Paradigm 
Programming

ln017/qmulti.ast



Multi-Paradigm 
Programming - Python

ln017/qmulti.py

ln017/qimp.py



Constraint Patterns

ln017/qconstr.ast



Higher-Order Programming
ln017/qhigh.ast



Higher-Order Programming -
Python

ln017/qhigh.py



Higher-Order Programming

¢ The version quicksort that uses a 
passed in order predicate is 
interesting because it is now generic 
over the objects it can sort…



Higher-Order Programming



Higher-Order Programming -
Python



Case Study: SpaceObjects

¢ This program is inspired by the programs 
from the Wikipedia page:
https://en.wikipedia.org/wiki/Multiple_dispatch

¢ The idea is that we are given pairs of 
space objects and we have to write a 
function that determines what kind of 
collision we are looking at and print out 
messages accordingly.

¢ We’ll start with an imperative solution to 
this

https://en.wikipedia.org/wiki/Multiple_dispatch


Imperative Solution

¢ Everything is 
accomplished 
computationally.

¢ Developer’s 
intentions are not 
immediately 
visible.

ln017/spaceimp.ast



Multi-Paradigm Solution

Employs:
¢ Multi-dispatch
¢ Pattern 

matching
¢ First-Class 

Patterns
A more 
declarative 
approach due to 
pattern matching 
☞ makes 
developer 
intentions much 
more visible!

ln017/spacemulti.ast


