
First-Class Patterns as
Types
¢ We already have seen that patterns

behave like data types, consider,
l let x:%integer = v.

¢ Here the pattern %integer that
matches all integer values limits what
kind of values can be assigned to the
variable x.

¢ That is precisely what type
declarations do!

Subtypes

¢ First-class patterns can be used to
define subtypes of existing types

¢ Consider for example,

¢ Here we can treat the pattern Pos_Int as
a subtype of the integers, in effect we
have
l Pos_Int < integer

Supertypes

¢ We can use first class patterns to also define
supertypes, consider

¢ Here the second let statement is only successful if
it fulfills the requirements of the pattern Scalar.

¢ In effect, Scalar acts like a supertype of real and
integer

¢ or more precisely it acts like an abstract base
class since you since you cannot instantiate a
value of type Scalar.

Sub- and Supertypes

¢ We use first-class patterns to
instantiate both subtypes and
supertypes – how do they differ?

Sub- and Supertypes
¢ Subtypes: the pattern definition adds

conditions that contract a given data type

integers

positive
integers

Sub- and Supertypes
¢ Supertypes: the pattern definition expands given data

types so that the supertype pattern covers more
objects than any given data type within the pattern
definition.

scalar

integers

reals

Programming with Patterns
as Data Types
¢ We an impose a certain amount of

type safety with patterns as data types
l Specification of function domains
l Type safety for objects using patterns

as types in constructors
l Subtype polymorphism

Function Domains

ln016/fact.ast

Objects

Subtype Polymorphism

¢ In statically typed languages such as
Java and Rust subtype polymorphism
allows us to have type safe
polymorphic containers

¢ Recall our Rust Shape container
ln008 slide pack slide 5

https://lutzhamel.github.io/CSC493/notes/csc493-ln008.pdf

Subtype Polymorphism

¢ Dynamic dispatch realizes when calling
the draw function of the trait that an
implementation of that trait function
exists in the structure and calls it.

let mut v: Vec<Box<dyn Shape>> =

Shape

draw()

Circle
“Circle1”
draw()

Shape

draw()

Square
“Square1”
draw()

Shape

draw()

Circle
“Circle2”
draw()

Subtype Polymorphism

¢ Dynamically typed languages like
Python and Asteroid achieve
polymorphic containers via Duck
Typing.

¢ However, these containers are not as
type safe as subtype polymorphic
containers since any object that
supports the required behavior will fit
into the container.

Subtype Polymorphism

¢ In Asteroid we can recover a certain
amount of type safety using first-class
patterns

¢ We use first-class patterns as types
that allow us to define subtype-
supertype relation ships
l☞ subtype polymorphism

Subtype Polymorphism

ln014/subtypes.ast

Note: if we were to try
to add anything but circles
and squares to the list the
‘Shape_List’ pattern would
fail!

Subtype Polymorphism
¢ Alternatively, we can construct the list in

one go and then check for type safety.

Another Look at Multi-
Dispatch
¢ If we interpret certain patterns as

types, then multi-dispatch can take on
two particular forms:
l Case analysis over a single type in

the functional programming sense
• E.g. case analysis on a list in recursive
programs

l Case analysis over multiple types
giving rise to overloaded functions

Functional Programming

¢ In the example below we use multi-
dispatch to do a case analysis on the
%Int_List type

ln016/len.ast

Overloaded Functions

¢ In this example
we use multi-
dispatch to define
an overloaded
function accepting
types %Rectangle
and %Circle.

ln016/overload.ast

