First-Class Patterns as
Types

o We already have seen that patterns
behave like data types, consider,

let x:%integer = v.

o Here the pattern %integer that
matches all integer values limits what
kind of values can be assigned to the
variable x.

o That is precisely what type
declarations do!

Subtypes

o First-class patterns can be used to
define subtypes of existing types

o Consider for example,

let Pos_Int = pattern %[k if (k is %integer) and (k>0)]%.

let x:*%Pos_Int = v.

o Here we can treat the pattern Pos Int as
a subtype of the integers, in effect we
have

Pos_Int < integer

Supertypes

o We can use first class patterns to also define
supertypes, consider

let Scalar = pattern %[x if (x is %integer) or (x is %real)]%.

let i:xScalar = v.

o Here the second let statement is only successful if
it fulfills the requirements of the pattern Scalar.

o In effect, Scalar acts like a supertype of real and
integer
o or more precisely it acts like an abstract base

class since you since you cannot instantiate a
value of type Scalar.

Sub- and Supertypes

o We use first-class patterns to
instantiate both subtypes and
supertypes — how do they differ?

Sub- and Supertypes

o Subtypes: the pattern definition adds
conditions that contract a given data type

let Pos_Int = pattern %[k if (k is %integer) and (k>0)]1%.

integers

k if (k is %integer) and (k>0)

\é) Sub- and Supertypes

o Supertypes: the pattern definition expands given data
types so that the supertype pattern covers more
obJ;cects than any given data type within the pattern
definition.

let Scalar = pattern %[x if (x is %integer) or (x is %real)l]%.

x if (x is %integer) or (x is %real)

Programming with Patterns
as Data Types

o We an impose a certain amount of
type safety with patterns as data types

Specification of function domains

Type safety for objects using patterns
as types in constructors

Subtype polymorphism

Function Domains

let Pos_Int = pattern %[(x:%integer) if x>0]%.

function fact

with 0 do
1 1
with n:%Pos_Int do

nxfact(n-1)
end

assert (fact 3 == 6).

In016/fact.ast

Objects

structure Address with
data street.
data city. 1
data zip.
function __init_ with (street:%string,city:%string,zip:%string) do
let this@street = street.
let this@city = city.
let this@zip = zip.
end
end

structure Person with

data name.
data profession. 1
data address.

function __init_ with (name:%string,profession:%string,address:%Address) do
let this@name = name.
let this@profession = profession.
let this@address = address.
end
end

let joe = Person("Joe","Carpenter",Address("532 Main Street","Newport",'"02840")).

@ Subtype Polymorphism

o In statically typed languages such as
Java and Rust subtype polymorphism
allows us to have type safe
polymorphic containers

o Recall our Rust Shape container
IN008 slide pack slide 5

https://lutzhamel.github.io/CSC493/notes/csc493-ln008.pdf

let mut v: Vec<Box<dyn Shape>> = Vec::new();

v.push(Box::new(Circle::new("Circlel")));

v.push(Box::new(Square::new("Squarel")));

v.push(Box::new(Circle::new("Circle2")));
u ype O yI I lor for shape in &v {

shape.draw();
}

let mut v: Vec<Box<dyn Shape>> =

Shape Shape Shape
draw() draw() draw()
T T [-

Circle Square Circle
“Circle1” “Square1” “Circle2”
draw() draw() draw()

o Dynamic dispatch realizes when calling
the draw function of the trait that an
implementation of that trait function
exists in the structure and calls it.

~

@ Subtype Polymorphism

o Dynamically typed languages like
Python and Asteroid achieve
polymorphic containers via Duck
Typing.

o However, these containers are not as
type safe as subtype polymorphic
containers since any object that
supports the required behavior will fit
into the container.

Subtype Polymorphism

o In Asteroid we can recover a certain
amount of type safety using first-class
patterns

o We use first-class patterns as types
that allow us to define subtype-
supertype relation ships

= subtype polymorphism

Note: if we were to try

to add anything but circles
and squares to the list the
‘Shape_List’ pattern would
fail!

Subty

=

load system io.

str

end

str

end

let
let

let
let
let
let

for

end

ucture Circle with
data name.
—— draw interface
function draw with () do
io @rintln ("Drawing a circle "+this@name).
end

ucture Square with
data name.
—— draw interface
function draw with () do
io @rintln ("Drawing a square "+this@name).
end

Shape = pattern %[x if (x is %Circle) or (x is %Square)]%
Shape_List = pattern %[(x:%list)
if x @reduce(lambda with (acc,e) do acc and (e is *Shape),true)]1%

v :*xShape_List = [].

v :xShape_List = v + [Circle("Circlel")].
v :xShape_List = v + [Square("Squarel™)].
v :xShape_List = v + [Circle("Circle2")].
i in range (len v) do

v@i @draw ().

n014/subtypes.ast

assert(v is xShape_List).

Subtype Polymorphism

o Alternatively, we can construct the list in
one go and then check for type safety.

load system io.

> structure Circle with=
end

> structure Square with:
end

let Shape = pattern %[x if (x is %Circle) or (x is %Square)]%
let Shape_List = pattern %[(x:%list)
if x @reduce(lambda with (acc,e) do acc and (e is *Shape),true)]%

let v = [].

let v @append(Circle("Circlel")).
let v @append(Square("Squarel")).
let v @append(Circle("Circle2")).

for i in range (len v) do
v@i @draw ().
end

Another Look at Multi-
Dispatch

o If we interpret certain patterns as
types, then multi-dispatch can take on
two particular forms:

Case analysis over a single type in

the functional programming sense
E.g. case analysis on a list in recursive
programs

Case analysis over multiple types

giving rise to overloaded functions

@ Functional Programming

o In the example below we use multi-
dispatch to do a case analysis on the
%Int_List type

let Int_List = pattern %[(x:%list)
if x @reduce(lambda with (acc,v) do acc and (v is %integer), true)]%.

function len

with []:xInt_list do -
)

with [e|rest]:*Int_List do -
1 + len rest
end

assert (len [1,2,3] == 3).

In016/len.ast

load system math.

structure Rectangle with
data length.
data width.

end

structure Circle with
data radius.
end

function circumference —— overloaded function
with a:%Rectangle do _
2x(a@length+a@width)
with a:%Circle do
2*)math@pixa@radius
end

assert (circumference(Rectangle(2,4)) == 12).
assert (math @ceil(circumference(Circle(3)))

19).

Overloaded Functions

o In this example
we use multi-
dispatch to define
an overloaded
function accepting
types %Rectangle
and %Circle.

In016/overload.ast

