
Advanced Features &
Applications
¢ Having promoted patterns to first-

class status means that we have 
effectively separated the point of 
definition of patterns from the point 
where patterns are applied

¢ This allows for novel applications of
patterns.



Pattern Reuse

¢ The ability of reusing patterns frees a developer 
from having to retype the same pattern repeatedly 
in their code.

¢ The ability of reusing patterns makes code much 
more robust from a software engineering 
perspective
l In software engineering it is frowned upon to 

explicitly repeat the same code in your program
l A maintenance nightmare: if anything ever 

changes in the repeated code you will have to go 
through all the repeated instances manually and 
update them



Pattern Reuse

ln015/reuse1.ast
ln015/reuse2.ast



Pattern Factoring

¢ Patterns can become quite complex 
given that we can add 
l Conditionals with multiple terms
l Nested structures such as lists of lists, 

tuples of lists, lists of tuples, etc.

¢ First-class patterns allow us to factor 
patterns into smaller manageable 
pieces.



Pattern Factoring

¢ What exactly is the input structure to 
the function ‘fold’ – difficult to see…

ln015/factor1.ast



Pattern Factoring

¢ …it is a pair where the first 
component is a positive scalar
l Using first-class patterns let’s us bring

that to the forefront

ln015/factor2.ast



Patterns as Constraints

¢ The use of patterns as constraints is 
nothing new

¢ We have seen this before with 
statements such as,
l let x : %integer = value.

¢ where we are not interested in the exact 
value the pattern %integer matches but 
just the fact that it matches an integer 
value rather than anything else.



Patterns as Constraints

¢ The following pattern matches any scalar 
value between 1 and 9
l let p = pattern k if k > 0 and k < 10.

¢ We can use this pattern as a constraint,
l let x : *p = value.

¢ It works, BUT the pattern instantiates the
variable k every time it matches

¢ …this can lead to difficult to trace bugs



Patterns as Constraints

ln015/constraint1a.ast



Patterns as Constraints

ln015/constraint2a.ast



Patterns as Constraints

¢ We saw in each of the previous 
examples that the first-class pattern 
introduced an undesirable variable 
instantiation into the current scope of the 
program

¢ We can prevent that with the scope 
operator %[…]% in a first-class pattern
l Any variable instantiated within the scope

operator is not visible outside of the 
pattern



Patterns as Constraints

ln015/constraint1b.ast



Patterns as Constraints

ln015/constraint2b.ast



Managing Pattern Variable 
Bindings
¢ As we have seen: repeated first-class 

patterns lead to non-linearities
l The scope operator allows us to manage 

this hiding the variables
¢ BUT, what if we want the variables of 

repeated first-class patterns to be bound 
into our current scope in some shape or 
form?
l The scope operator allows us to 

selectively bind variables into our current 
scope



Managing Pattern Variable 
Bindings
¢ Consider that we want to compute the 

dot product of two 2D vectors,
l (x1,y1) • (x2,y2)

¢ Writing this as a function
l dot ((x1,y1),(x2,y2))

¢ The function takes a pair of pairs, the 
inner pairs must be pairs of scalars in 
order for the dot operation to make 
sense



Managing Pattern Variable 
Bindings
¢ First attempt without first-class patterns
¢ It’s a mess…the function definition becomes 

almost unreadable

☞We can solve this by pattern factoring with first-
class patterns

ln015/dot1.ast



Managing Pattern Variable 
Bindings

ln015/dot2.ast

Binding lists applied to constraint patterns allow us to selectively 
bind variables into the current scope.


