Advanced Features &
Applications

o Having promoted patterns to first-
class status means that we have
effectively separated the point of
definition of patterns from the point
where patterns are applied

o This allows for novel applications of
patterns.



Pattern Reuse

o The ability of reusing patterns frees a developer
from having to retype the same pattern repeatedly
In their code.

o The ability of reusing patterns makes code much
more robust from a software engineering
perspective

In software engineering it is frowned upon to
explicitly repeat the same code in your program

A maintenance nightmare: if anything ever
changes in the repeated code you will have to go
through all the repeated instances manually and
update them



Pattern Reuse

function fact
with @ do
1
with (n:%integer) if n > 0 do
n x fact (n-1).
with (n:%integer) if n < 0 do

throw Error("negative value").

end

function sign
with @ do
1
with (n:%integer) if n > 0 do
1
with (n:%integer) if n < @ do
-1
end

In015/reuse1.ast

let Pos_Int
let Neg_Int =

function fact
with @ do
) |

pattern (x:%integer) if x > 0.
pattern (x:%integer) if x < 0.

with n:xPos_Int do
n x fact (n-1).
with *Neg_Int do
throw Error("negative value").

end

function sign
with @ do
1

with *Pos_Int do

1

with *Neg_Int do

-1
end

In015/reuse2.ast




Pattern Factoring

o Patterns can become quite complex
given that we can add

Conditionals with multiple terms

Nested structures such as lists of lists,
tuples of lists, lists of tuples, etc.

o First-class patterns allow us to factor
patterns into smaller manageable
pieces.



@ Pattern Factoring

o What exactly is the input structure to
the function ‘fold’ — difficult to see...

function fold with (x if (x is %integer) or (x is %real) and (x > @), y) do
XYy
end

In015/factor1.ast



@ Pattern Factoring

o ...it is a pair where the first
component is a positive scalar

Using first-class patterns let’s us bring
that to the forefront

let pos_scalar = pattern k if (k is %integer) or (k is %real) and (k > 0).

function fold with (x:*pos_scalar, y) do

XKy
end

In015/factor2.ast



Patterns as Constraints

o The use of patterns as constraints is
nothing new

o We have seen this before with
statements such as,

let x : %integer = value.

o where we are not interested in the exact
value the pattern %integer matches but
just the fact that it matches an integer
value rather than anything else.



Patterns as Constraints

o The following pattern matches any scalar
value between 1 and 9

let p = pattern k if k > 0 and k < 10.
o We can use this pattern as a constraint,
let x : *p = value.

o It works, BUT the pattern instantiates the
variable k every time it matches

o ...this can lead to difficult to trace bugs



Patterns as Constraints

—— our constraint pattern
let p = pattern k if k in range 10.

—— a simple loop that creates a list of values
let out = [].
let k = 2.
for 1 in range 10 do

if 1 is *p do

out @append (k).

end
end
—— should be out == [2,2,2,2,2,2,2,2,2,2]
—— but
assert {(not (out == [2,2,2,2,2,2,2,2,2,2])}).
-— and
assert (out == [0,1,2,3,4,5,6,7,8,9]).

In015/constraint1a.ast



Patterns as Constraints

— constraint
let scalar = pattern k if (k is %integer) or (k is %real).

— fold is a applied to a pair of scalar values

function fold with (x:xscalar, y:xscalar) do —— error: introduces a non-linearity in k
X+y

end

assert (fold (1,2) == 3).

In015/constraint2a.ast




Patterns as Constraints

o We saw in each of the previous
examples that the first-class pattern
iIntroduced an undesirable variable

iInstantiation into the current scope of the
program

o We can prevent that with the scope
operator %l...]1% in a first-class pattern
Any variable instantiated within the scope

operator is not visible outside of the
pattern



Patterns as Constraints

—— our constraint pattern [
let p = pattern %[k if k in range 10]%.

—— a simple loop that creates a list of values
let out = [].
let k = 2.
for 1 in range 10 do

if i is *p do

out @append (k).

end

end

assert (out == [2,2,2,2,2,2,2,2,2,2]). —— succeeds!

In015/constraint1b.ast




Patterns as Constraints

—— constraint [

let scalar = pattern %[k if (k is %integer) or (k is %real)]%.

—— fold is a applied to a pair of scalar values

function fold with (x:%scalar, y:xscalar) do
X+y

end

assert (fold (1,2) == 3).

In015/constraint2b.ast




Managing Pattern Variable
Bindings

o As we have seen: repeated first-class
patterns lead to non-linearities

The scope operator allows us to manage
this hiding the variables

o BUT, what if we want the variables of
repeated first-class patterns to be bound
Into our current scope in some shape or
form??

The scope operator allows us to
selectively bind variables into our current
scope



Managing Pattern Variable
Bindings

o Consider that we want to compute the
dot product of two 2D vectors,

(x1,y1) * (x2,y2)
o Writing this as a function
dot ((x1,y1),(x2,y2))

o The function takes a pair of pairs, the
iInner pairs must be pairs of scalars in
order for the dot operation to make
sense



@ Managing Pattern Variable
Bindings
o First attempt without first-class patterns

o It's a mess...the function definition becomes
almost unreadable

== \We can solve this by pattern factoring with first-
class patterns

function dot with ((al if (al is %real) or (al is %integer), bl if (bl is %real) or (bl is %integer)),
(a2 if (a2 is %real) or (a2 is %integer), b2 if (b2 is %real) or (b2 is %integer))) do

alxa2+b1xb2
end

assert (dot((1,0),(0,1)) == 0).

In015/dot1.ast



Managing Pattern Variable
Bindings

In015/dot2.ast

—— declare a pattern that matches scalar values
let Scalar = pattern %[p if (p is %integer) or (p is %real)]%.

—— declare a pattern that matches pairs of scalars
let Pair = pattern %[(x:xScalar,y:*Scalar)]%.

—— compute the dot product tho pairs of scalars l

function dot with (xPair bind [x as al, y as a2], xPair bind [x as bl, y as b2]) do
alxbl + a2xb2

end

—— define basis vectors of 2D space

let i1 = (1,0).

let i2 = (0,1).

—— the dot product of basis vector is always 0
assert (dot(il,i2) == 0).

Binding lists applied to constraint patterns allow us to selectively
bind variables into the current scope.




