Patterns

o In most modern programming
languages patterns are “baked into” the
syntax of pattern match statement such
as ‘match’ statements/expressions

That is, patterns are not standalone
structures/values in those languages

o This is true for Asteroid as well
But...



Patterns

Rust

Python

def fix, y):

match (x, y):
case (x, y) if x > y:
return "GT"

o Fix: 332, yu 132) — String {

match (x, y) {
(x,.y) AF x> y = "G .to string(],
(x;: vl 3T X €'y == "7 fo stringl);
_ => panic!("not a valid tuple"),

case (x, y) if x < y: }
FetURh. " LT
case _

raise ValueError("not a valid tuple")

In014/match.rs

In014/match.py Asteroid

function f

IIGTII

IILTII
with _ do

end

with (x,y) if x > y do

with (x,y) if x <y do

throw Error("not a valid tuple")

In014/match.ast




\@ First-Class Patterns

o But, Asteroid allows the user to store
patterns in variables which can then
be dereferenced when needed

1 let pos_int = pattern (x:%integer) if x>0. : :

) An llnterestmg consequence
of first-class patterns is that

3 function fact programs become much more

4 with © dol readable.

] 1

6 with nikpos_int do

7 nxfact(n-1)

8 end

9

10 assert (fact 3 == 6).

In014/int_match2.ast



First-Class Patterns

o Promoting a language feature to first-
class status does not increase the
computational power of a language
(they all are Turing-Complete) but it
does Iincrease its expressiveness
usually perceived as more readable
programs!



First-Class Features

o We have observed this with functions,

Promoting functions to first-class status enables higher-
order programming

Higher-order programming enables features such as the
‘map’ function

Programs taking advantage of higher-order programming
tend to be easier to read and understand.

Higher-order programming does not change the
computational power of the language,

anything one can do with higher order programming one can do
without it

function mymap with (a:%list, f:%function) do
let output = [].

for e in a do

output @append (f a).

end
return output.
end

function mymap with (a:%list, f:%function) do
a @map f.
end

In014/map1.ast

In014/map2.ast



\@ First-Class Patterns

o We can observe the same phenomenon
with first-class patterns

Programs written with first-class patterns
tend to be easier to read and understand

function fact

Wlt: @ do ‘! let pos_int = pattern (x:%integer) if x>0.

with (n:%integer) if n>@ do

function fact
nxfact(n-1)

with @ do
end "
1
In014/int_match1.ast with n:xpos_int do
nxfact(n-1)
end

Observation: first-class patterns tend
to behave like types — more on that later In014/int_match2.ast



First-Class Patterns

o Just like in higher-order programming
where any function can be stored in a
variable or passed/returned to/from a
function...

o ...we can do the same with first-class
patterns
Any pattern can be stored in a variable

Any pattern can be passed/returned
to/from a function



First-Class Patterns

o Any pattern can be stored in
a variable.

let gt = pattern (x,y) if x > vy.
let 1t = pattern (x,y) if x < y.

function f
with *gt do
nGT™
with *1t do
T
with _ do
throw Error("not a valid tuple")
end

In014/matchhp.ast



First-Class Patterns

o We can pass patterns to functions.

—— return true if value v matches pattern p
-— false otherwise
function mymatch with (p:%pattern,v) do
v is xp
end

assert (mymatch (pattern (x,y)), (1,2)).
assert (not mymatch (pattern (x,y), (1,2,3))).

In014/mymatch.ast



First-Class Patterns

o Returning patterns from functions.

function match with v do
let pos_int = pattern (x:%integer) if x > 0.
let neg_int = pattern (y:%integer) if x < 0.

if v is *pos_int do
return pos_int

elif v is *neg_int do
return neg_int

else
none

end

end

assert (match 1 is %pattern).
assert (match @ is none).

In014/return.ast



Reading


https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html

