
Currying – Computing with
Partially Evaluated Functions

¢ The idea of higher-order programming
and lambda functions gives rise to the
idea of partially evaluated functions.

¢ Again, we can look at the lambda
calculus for foundations

Currying

¢ Consider a lambda expression that takes
a pair of values and adds them together.

¢ Now assume that both arguments are
not immediately available…only one at a
time is available
l I know, it’s a stretch but bear with me…

¢ We can rewrite the lambda expression to
deal with that situation by computing
partially evaluated lambda
expressions.

Currying

¢ Here is the original lambda expression
expecting a pair of values,

𝜆 𝑥, 𝑦 . 𝑥 + 𝑦 1,2

¢ Here is a lambda expression that takes one
value at a time,

𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦 1 2

¢ Note that after taking in the first argument it
computes a partially evaluated function that
expects the second argument.

Single Value

Multiple Values

Currying

¢ Let’s take a look how the computation
of the two lambda expressions differ,

𝜆 𝑥, 𝑦 . 𝑥 + 𝑦 1,2 ⟹ 𝑥 + 𝑦 𝑥, 𝑦 ⟵ 1,2
⟹ 𝑥 + 𝑦 𝑥 ← 1, 𝑦 ← 2 ⟹ 1 + 2 ⟹ 3

𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦 1 2 ⟹ 𝜆𝑦. 𝑥 + 𝑦 𝑥 ← 1 2
⟹ 𝜆𝑦. 1 + 𝑦 2 ⟹ 1 + y 𝑦 ← 2 ⟹ 1 + 2 ⟹ 3

Partially evaluated function

Currying

¢ This technique also applies to
functions that take more than two
values,

𝜆 𝑥, 𝑦, 𝑧 . 𝑥 + 𝑦 + 𝑧 1,2,3

𝜆𝑥. 𝜆𝑦. 𝜆𝑧. 𝑥 + 𝑦 + 𝑧 1 2 3

Currying

¢ This technique of turning a function
expecting a tuple of values to a cascade
of lambda functions is called currying.

¢ It was invented by the mathematician
and logician Haskell Curry.

¢ He developed this technique while
working on combinatory logic.

Dr Haskell Curry, mathematician
and logician, 1900-1982

Functional Programming

¢ Curried functions are important in the
functional programming field because
they make libraries for functional
languages much more flexible.

¢ We can use partially evaluated library
functions to define our own functions

SML
¢ Here is an example in SML taking advantage of the

curried sort function.
> sml
Standard ML of New Jersey (64-bit) v110.95 [built: Sun Nov 06 00:04:31 2022]
- val sort = ListMergeSort.sort;
val sort = fn : ('a * 'a -> bool) -> 'a list -> 'a list

- (op >);
val it = fn : int * int -> bool

- (op <);
val it = fn : int * int -> bool
-

- sort (op <) [5, 2, 8, 3, 9, 1, 6, 7, 4];
val it = [9,8,7,6,5,4,3,2,1] : int list

- sort (op >) [5, 2, 8, 3, 9, 1, 6, 7, 4];
val it = [1,2,3,4,5,6,7,8,9] : int list
-

- val asc_sort = sort (op >);
val asc_sort = fn : int list -> int list

- val desc_sort = sort (op <);
val desc_sort = fn : int list -> int list

- asc_sort [5, 2, 8, 3, 9, 1, 6, 7, 4];
val it = [1,2,3,4,5,6,7,8,9] : int list

- desc_sort [5, 2, 8, 3, 9, 1, 6, 7, 4];
val it = [9,8,7,6,5,4,3,2,1] : int list
-

Partially evaluated
functions

Asteroid
¢ Even though the modules and APIs are written in a

more traditional, non-curried style in most modern
programming languages, currying is still a powerful
programming tool

¢ Here is a simple example written in Asteroid,

ln013/price.ast

Python
¢ Here is the same program written in

Python

ln013/price.py

Currying of more than Two
Arguments
¢ The return value is a cascade of

lambda functions

ln013/add3.ast

ln013/add3curr.ast

Currying Function in other
Languages
¢ Any language that supports lambda

functions and static scoping supports
function currying

¢ This includes pretty much all
languages designed over the last
decade or two,
l Python, Rust, Swift, Go, Asteroid,…

