Currying — Computing with
Partially Evaluated Functions

o The idea of higher-order programming
and lambda functions gives rise to the
idea of partially evaluated functions.

o Again, we can look at the lambda
calculus for foundations

Currying

o Consider a lambda expression that takes
a pair of values and adds them together.

o Now assume that both arguments are
not immediately available...only one at a
time is available

| know, it's a stretch but bear with me...

o We can rewrite the lambda expression to
deal with that situation by computing
partially evaluated lambda
expressions.

Currying

o Here is the original lambda expression
expecting a pair of values,

(A(X, y)x + y)(]_,Z) 4mmm Single Value

o Here is a lambda expression that takes one
value at a time,

(Ax (Ay X + y))]_) <= \|ultiple Values

o Note that after taking in the first argument it
computes a partially evaluated function that
expects the second argument.

Currying

o Let's take a look how the computation
of the two lambda expressions differ,

Ax,y).x +y)(1,2) = x + y[(x,y) «— (1,2)]
= x+ylx<l,y<2]=>14+2=3

(Ax. (Ay.x +y))1 2= (Ay.x+y)[x < 1]2
= Ay.1+y)2=1+yly<2]=1+2=3

‘ Partially evaluated function

Currying

o This technique also applies to
functions that take more than two
values,

Alx,v,z).x+y+2)(1,2,3)

!

(Ax. (ly.(Az.x+y + Z))) 123

Currying

Dr Haskell Curry, mathematician
and logician, 1900-1982

o This technique of turning a function
expecting a tuple of values to a cascade
of lambda functions is called currying.

o It was invented by the mathematician
and logician Haskell Curry.

o He developed this technique while
working on combinatory logic.

Functional Programming

o Curried functions are important in the
functional programming field because
they make libraries for functional
languages much more flexible.

o We can use partially evaluated library
functions to define our own functions

SML

o Here is an example in SML taking advantage of the
curried sort function.

> sml
Standard ML of New Jersey (64-bit) v110.95 [built: Sun Nov 06 00:04:31 2022]

- val sort = ListMergeSort.sort;
val sort =fn : ('a * 'a -> bool) -> 'a list -> 'a list

_ Partially evaluated
-(op>); functions
val it =fn : int * int -> bool

- val asc_sort = sort (op >);
- (op <); val asc_sort = fn : int list -> int list
val it = fn : int * int -> bool
- - val desc_sort = sort (op <);

val desc_sort = fn : int list -> int list

-asc sort[5,2,8,3,9,1,6, 7, 4];
val it =[1,2,3,4,5,6,7,8,9] : int list

-sort (op<) [5,2,8,3,9,1,6,7,4];

val it =[9,8,7,6,5,4,3,2,1] : int list -desc sort[5,2,8,3,9,1,6,7, 4];
val it =[9,8,7,6,5,4,3,2,1] : int list

-sort (op>) [5,2,8,3,9,1,6,7,4]; -

val it=[1,2,3,4,5,6,7,8,9] : int list

Asteroid

o Even though the modules and APls are written in a
more traditional, non-curried style in most modern
programming languages, currying is still a powerful
programming tool

o Here is a simple example written in Asteroid,

1 —— curried function

2 function cost with tax do

3 lambda with price do price+(pricextax/100.0)
4 end

3 In013/price.ast
6 —-— partially evaluate function with tax rate

7 let macost = cost 6.25.

8 let ricost = cost 7.0.

9

10 —— show that the results are functions

11 load system type.

12 assert (type @gettype macost == "function").

13 assert (type @gettype ricost == "function").

14

15 —— use the functions

16 assert (macost 100.0 == 106.25).
17 assert (ricost 100.0 == 107.0).

Python

o Here is the same program written in

Python

O 00O O UL B WN =

N R =
U s WNR S

curried function
def cost(tax):
return lambda price : price+(pricextax/100.0)

partially evaluate function with tax rate
macost = cost(6.25)
ricost = cost(7.0)

show that the results are functions
assert callable(macost)
assert callable(ricost)

use the functions
assert (macost(100.0) == 106.25)
assert (ricost(100.0) == 107.0)

In013/price.py

Currying of more than Two
Arguments

o The return value is a cascade of
lambda functions

U1 B W N =

function add3 with (al,a2,a3) do

al+a2+a3
end ..flL

assert (add3 (1,2,3) == 6).

function add3curr with al do
In013/add3.ast (lambda with .a2 do
(lambda with a3 do al+a2+a3))

end

O Ul B WIN =

assert (add3curr 1 2 3 == 6).

In013/add3curr.ast

Currying Function in other
Languages

o Any language that supports lambda
functions and static scoping supports
function currying

o This includes pretty much all
languages designed over the last
decade or two,

Python, Rust, Swift, Go, Asteroid,...

