
Higher-Order Programming: 
The Essence of Functional 
Programming
¢ Higher-Order programming is defined 

as 
l Programming with functions as 

arguments to other functions or 
functions as return values from 
functions.



Higher-Order Programming: A 
Cornerstone of Functional 
Programming
¢ It is a natural outgrowth from the lambda 

calculus where
a) lambda expressions can be passed to 

other lambda expressions, and
b) new lambda expressions can be 

computed by lambda expressions
o E.g.

a) 𝜆𝑦. 𝑦 1 𝜆𝑥. 𝑥 + 1 ⇒ 2

b) 𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦 1 1 ⇒ 2



Modifying Behavior of a 
Function
¢ We can use this to write generic 

functions which we can then make 
specific by passing in desired behavior 
via a function.

¢ Note: this is NOT programming with
generics
l Generics are generic with respect to

types
l Higher-order functions are generic with

respect to behavior!



Modifying Behavior of a 
Function

¢ The ‘filter’ function is generic with 
regards to the ordering predicate

If e is kept or discarded
depends on the passed
in function – the filter 
function has a generic
filtering capability which
is made specific by the
passed in predicate.



Modifying Behavior of a 
Function - QuickSort



Modifying Behavior of a 
Function
¢ The Asteroid sort module is another 

example,
sort @sort (p:%function, l:%list)



Dispatch Tables

¢ We can also associate behavior with 
appropriate keys in a dispatch table.

¢ We can then dispatch (lookup)
desired behavior given specific keys.

¢ Example: A generic ‘calculate’
function that takes two values and a
key symbol and then performs the 
appropriate computation.



Dispatch Tables

ln012/dispatch2.ast



Map & Reduce

¢ The ‘map’ and ‘reduce’ functions are 
functions that take a function and 
apply the given function to ALL the 
elements of a list.

¢ Both functions are higher-order 
functions that come straight out of the 
functional programming tradition.



Map

¢ Below is Asteroid code that explains the behavior 
of the map function.

¢ Beware that map is not required to apply the 
function f in the sequential manner shown here
l For example, it is free to exploit threads to apply 

the function f in parallel to the elements of the 
list.

The function argument to f must be of 
the same type as the list elements



Map

¢ One interesting application of map is the 
transformation of a simple list 
constructor into any kind of list
l Here we compute a list of alternating 1’s 

and -1’s.

ln012/map.ast



Map
¢ Most modern languages support some form of ‘map’ 

since it is such a powerful programming tool.

Rust

Python

ln012/map.rs

ln012/map.py



Reduce

¢ Whereas ‘map’ applies a function to a 
list producing another list, the ‘reduce’ 
function applies a function to a list so 
that the list gets reduced to a single 
value.
l In functional languages this is often

called ‘fold’ – folding the list into a 
single value



Reduce

¢ For example, the reduce function lets 
us sum the elements of a list without a 
loop

The argument of the reduce function must be a pair where each
component of the pair is of the element type of the list.

ln012/reduce.ast



Reduce

¢ The reduce function gives us an 
interesting way to implement the 
factorial of an integer

ln012/fact.ast



Reduce

¢ The Asteroid code below illustrates the behavior of the 
‘reduce’ function
l Notice the function application to a pair of values!
l The first value of the pair acts like an accumulator 

containing the partially reduced value at each function 
application

• In the default setting it is initialized to the first element of 
the list.



Reduce

Rust

Python

ln012/reduce.py

ln012/reduce.rs


