Higher-Order Programming:
The Essence of Functional
Programming

o Higher-Order programming is defined
as
Programming with functions as

arguments to other functions or
functions as return values from

functions.

Higher-Order Programming: A

@ Cornerstone of Functional

Programming

o Itis a natural outgrowth from the lambda
calculus where

lambda expressions can be passed to
other lambda expressions, and

new lambda expressions can be
computed by lambda expressions

e Eg

a) ly.y1D(Ux.x+1) > 2

b) (Ax.(Ay.x+y))11=2

Modifying Behavior of a
Function

o We can use this to write generic
functions which we can then make
specific by passing in desired behavior

via a function.
o Note: this is NOT programming with
generics
Generics are generic with respect to

types
Higher-order functions are generic with
respect to behavior!

Modifying Behavior of a

Function

o The filter’ function is generic with
regards to the ordering predicate

function filter
with ([],_,_) do
[]
with ([e|rest],pivot,fcmp) do
[e] + filter (rest,pivot,fcmp)
if fcmp (e,pivot) <
else filter (rest,pivot,fcmp)
end

If e is kept or discarded
depends on the passed
in function — the filter
function has a generic
filtering capability which
is made specific by the
passed in predicate.

Modifying Behavior of a
Function - QuickSort

function filter
with (e, [],fcmp) do
[]
with (e, [a]rest],fcmp) do
[a]+filter(e,rest, fcmp)
if fcmp(a,e)
else filter(e,rest,fcmp)

end

function qsort
with [] do —— empty list

[]
with [pivot|rest] do -- head-tail operator l
let less=filter(pivot,rest,lambda with (x,y) do x < vy).
let more=filter(pivot, rest,lambda with (x,y) do x >=vy).
qsort less + [pivot] + gsort more.
end

@ Modifying Behavior of a
Function

o The Asteroid sort module is another
example,
sort @sort (p:%function, |:%list)

1 load system sort.
2 !
3 let sl = sort @sort(
4 (lambda with (x,y) do true if x<y else false),
5 [10,5,110,50]).
6
7 assert (sl == [5,10,50,110]).
load system sort.

let sl = sort @sort(1
(lambda with (x,y) do true if x>y else false),
[10,5,110,50]).

N o oA WN R

assert (sl == [110,50,10,5]).

Dispatch Tables

o We can also associate behavior with
appropriate keys in a dispatch table.

o We can then dispatch (lookup)
desired behavior given specific keys.

o Example: A generic ‘calculate’
function that takes two values and a
key symbol and then performs the
appropriate computation.

Dispatch Tables

1 load system hash.

2

3 let dispatch_table = hash @hash ().

4

5 dispatch_table @insert [

6 ("+",lambda with (a,b) do a + b),
7 ("-",lambda with (a,b) do a - b),
8 ("x",lambda with (a,b) do a * b),
9 ('/" lambda with (a b) do a/b)
10]

11

12 function calculate with (operator,a,b) do
13 dispatch_table @get operator (a,b)
14 end

15

16 —— Example usage

17 assert (calculate("+", 3, 5) == 8)

18 assert (calculate("-",) == 5)

19 assert (calculate("x", 2, 4) == 8)

20 assert (calculate("/", 10, 2) == 5)

In012/dispatch2.ast

Map & Reduce

o The ‘map’ and ‘reduce’ functions are
functions that take a function and
apply the given function to ALL the
elements of a list.

o Both functions are higher-order
functions that come straight out of the
functional programming tradition.

Map

o Below is Asteroid code that explains the behavior
of the map function.

o Beware that map is not required to apply the
function f in the sequential manner shown here

For example, it is free to exploit threads to apply
the function f in parallel to the elements of the
list.

list @map f

The function argument to f must be of

-— 1s equivalent to —- the same type as the list elements

let = [].
for e in list do
r @ppend(f e).
end
et List =

Map

o One interesting application of map is the
transformation of a simple list
constructor into any kind of list

Here we compute a list of alternating 1's
and -1's.

load system math.

let a = [1 to 10] @map(lambda with x do math @mod (x,2))
@map(lambda with x do 1 if x else -1).

OO Ul A WN =

assert (@ == [1,-1,1,-1,1,-1,1,-1,1,-1]).

In012/map.ast

Ul A W IN =

Map

o Most modern languages support some form of ‘map
since it is such a powerful programming tool.

)

Python

1 = [x for x in range(1,10+1)]

it = map(lambda x : x % 2, 1)

a = list(map(lambda x : 1 if x else -1, it))

In012/map.py

assert(a == [1,-1,1,-1,1,-1,1,-1,1,-11])

Rust

use std::vec::Vec;

ik

2

3 fn main() {

4 let a : Vec<i32> = vec!I[1,2,3,4,5,6,7,8,9,10]

5 .iter()

6 .map(|x|] x % 2)

T map(|x] if x =0 { -1 } else {1 })

8 Jcollecel):

In012/map.rs 9
10 assert_eq!(a, vec'[1, -1, 1, -1, 1, -1, 1, -1, 1, -11);
11 ¥

Reduce

o Whereas ‘map’ applies a function to a
list producing another list, the ‘reduce’
function applies a function to a list so
that the list gets reduced to a single
value.

In functional languages this is often
called ‘fold’ — folding the list into a
single value

@ Reduce

o For example, the reduce function lets
us sum the elements of a list without a
loop

/

1 let value = [1,2,3] @reduce (lambda with (x,y) do x+y).
2
3 assert(value == 6).

In012/reduce.ast

The argument of the reduce function must be a pair where each
component of the pair is of the element type of the list.

@ Reduce

o The reduce function gives us an
interesting way to implement the
factorial of an integer

—— factorial with reduce
function fact with x do

[1 to x] @reduce (lambda with (i,j) do ixj)
end

In012/fact.ast

OO Ul & W N =

assert (fact 3 = B).

Reduce

o The Asteroid code below illustrates the behavior of the
‘reduce’ function

Notice the function application to a pair of values!

The first value of the pair acts like an accumulator
containing the partially reduced value at each function
application

In the default setting it is initialized to the first element of
the list.

list @ reduce f
-—- 1s equivalent to —-

let value = 1list@@.
for i in range(len(list)) do
let value = f (value, l@i). _
end
—— value has now the reduced value of the list

© 00 NO UL B WIN =

Reduce

Python
1 from functools import reduce
2
3 value = [1, 2, 3] In012/reduce.py
4 result = reduce(lambda x, y: x + y, value)
5
6 assert result == 6
Rust
1 fn main() {
2 let value: i32 = (1..10).reduce(|acc, e| acc + e).unwrap();
In012/reduce.rs B assert_eq!(value, 45);
4 ;

