Functional Programming In
Asteroid

o Asteroid supports a functional
sublanguage largely inspired by ML.

o You can turn the Asteroid interpreter
into a functional language interpreter
with the *-F’ flag

In this mode imperative statements
will be rejected with some exceptions

Most notable exception is the let
statement — we’ll discuss this later

Functional Programming In
Asteroid

(3 lenl.ast v x —+

(3] csca93 > (] programs > [J 1010 > (3 lenl.ast

1 -- imperative solution

2 function len with list do

3 let remaining_list = list.

4 let cnt = 0.

5 repeat

6 let [_|remaining_list] = remaining_list.

7 let cnt = cnt + 1.

8 until remaining_list is [].

9 end

Line1:Col1 History <9

>_ Console x @ Shellv x +

~/csc493-asteroid/CSC493$ cd programs
~/.../CSC493/programs$ cd 1Ln010
~/.../programs/1n010$ 1s

lenl.ast 1len2.ast

~/.../programs/Lln010$ asteroid -F lenl.ast
traceback (most recent call last):
lenl.ast: 1: calling <toplevel>

error: lenl.ast: 5: repeat loop is not supported in functional mode
~/.../programs/1n010$ |

Functional Programming In
Asteroid

(5 lenl.ast X [Ylen2.astv x +

(3] csc493 > (] programs > [J1n010 > (Y len2.ast

1 -- declarative solution

2 function len

3 with [] do

4 0

5 with [_|remaining_1list] do

6 1 + len remaining_list

7 end

8

9 1let q =1[1 to 10].

Line1:Col1 History <O

>_ Console x @ Shell v x +

~/.../programs/1n010$ asteroid -F len2.ast
~/.../programs/ln010$ [J

\® Lambda Functions

o The most recognizable feature of the functional
programming paradigm is the lambda function

Virtually every programming language designed in the
last decade or two supports lambda functions — by
extension, they support the functional programming
paradigm (even if limited)

Swift

Asteroid

function main with () do
let y = lambda with x do x+1.
end

Lambda Functions

o The implication of the support of
lambda functions is that functions are
considered first-class citizens,

== They are Values!
o Consider,

Asteroid Version 1.1.4

(c) University of Rhode Island

Type "asteroid -h" for help

Press CTRL-D to exit

ast> function inc with x do x+1 end
ast> let f = inc. —

ast> f 1.

2

ast> |

We can copy function
values like any other value!

Other Characteristics of
Functional Programming

o No iteration — only recursion.
o No if statements — only if expressions.

o "Single valued variables”

Variables are shorthand notations for
expression values

@ No lteration

o lteration is not supported

o Data s_tructures must be traversed with
recursion

Recursive functions with multi-dispatch!

—— imperative solution

function len with list do o dec.larative solution
let remaining_list = list. function len
let cnt = 0. with []1 do
repeat 0
let [_|remaining_list] = remaining_list. with [_|remaining_list] do
let cnt = cnt + 1. VS 1 + len remaining_list
until remaining_list is []. sl
end
let q = [1 to 10]. let g = [1 to 10].

assert (len q == 10). assert (len q == 10).

No If Statements

o If statements are designed to inherently modify machine
state and therefore are not allowed in functional
programming

o We use if expressions instead

Also fits better into the notion of “everything is a value”

—— imperative programming
function sign with x do

if x >= 0 do : .
—— declarative programming
let res = 1. . . :
function sign with x do
BEE 1 if X >= 0 else -1
let res = -1. siid
end VS
retuSi assert (sign(-11) == -1).
end

assert (sign(-11) == -1).

Single Valued Variables

o In imperative programming variables
maintain the machine state,

—— imperative programming

function sumlist with x:%list do The variable sum is updated
let sum = 0. iteratively and at each iteration
for i in range(len(x)) do contains the partial solution
let sum = sum + x@i. computed so far.
end
e Note that the evolution of the

values stored in sum depends

end on the length of the input list!

assert (sumlist [1,2,3] == 6).

Single Valued Variables

o In functional programming variables
act like a shorthand notation for a

single value (per function call)

—— declarative programming
function sumlist
with [] do
()
with [e|rest] do
e + sumlist rest
end

assert (sumlist [1,2,3] == 6).

Here e and rest contain a single
value (per function call) that does

not change throughout that
function call.

Single Valued Variables

o Even if we assign multiple values to the
same variable, it still has the flavor of a

value shorthand notation

We don’t have iteration to evolve the value
further than the given assignments

function scale with v do
let v = v+1.
let v = 2x%v.
return v.

end

assert (scale 2 == 6).

Here we use the multiple assignments
to v to break the expression
computation,

return 2*(v+l)

Into simpler computational steps.

Functional Programming In
Asteroid

o Let's see how the programs that we
developed in the lambda calculus
translate into Asteroid

Should be straight forward since

Asteroid supports the functional
programming paradigm.

Original Lambda Examples

Ax.x+1)1 =2

Asteroid Version 1.1.4

(c) University of Rhode Island
Type "asteroid -h" for help
Press CTRL-D to exit

ast> (lambda with x do x+1) 1.
2
ast> [

Ay.yDAx.x+1) = 2

ast> (lambda with y do y 1) (lambda with x do x+1).
2

ast> [

(Ax. Ay.x+y))11=2

ast> (lambda with x do (lambda with y do x+y)) 1 1.
2

ast> [

@ Classic Functional
Programming

o Let's look at some classic functional
programming examples

o The most noticeable issue of course is
that data structures like lists are
accessed in a sequential manner with
the head-tail pattern using recursion.

Sum/Mult

o Sum/multiply all the elements of a list.

function sum
with [] do
® -—- identity of the addition operator
with [e|rest] do
e + sum rest
end

function mult
with [] do
1 —- identity of the multiplication operator
with [e]|rest] do
e x mult rest
end

Sum/Mult

o ldentity means it is a value that if
added/multiplied to another value
returns the original value, e.g

2+0 = 2
2*1 =2
o In functional algorithm design identity

values are often important as part of
the recursion base cases.

Sum/Mult

function sum
with [] do
® —— identity of the addition operator
with [e]rest] do
e + sum rest
end

o Consider sum [1,2,3]
+ sum [2,3]

+ 2 + sum [3]
+2+ 3+ sum]
+2+3+0

\

\

\

\

String Concatenation

o If we consider the + operator to work
as a string concatenation operator,

“abc” + "edf” = "abcdef”

o What is the identity of string
concatenation?

Reverse

o Given a list of values the reverse
function reverses that list, e.qg.

reverse [1,2,3] = [3,2,1]

o Assume that the + operator functions
as a list concatenation operator, what
is the identity of + as a list
concatenation operator?

Reverse

1 function reverse

2 with [] do

3 [] —— identity of list concatenation
4 with [e|rest] do

5 reverse rest + [e]

6 end

o Note the empty list as the identity of
list concatenation.

Filter

o Another classic functional
programming algorithm is “filter’,
Given a list of values, return a list of

values that are smaller/larger than a
given pivot value.

o For example,
filter It ([1,2,3,4,5],4) =[1,2,3]

Filter

o Again we can observe that the base case is
the identity of the fundamental operation in
the recursive case: list concatenation

o Also, in keeping with with declarative
programming we see that we “declare” what
we want to do with each input configuration.

function filter_1t
with ([],_) do
[]
with ([e|rest],pivot) do
[e] + filter_1t (rest,pivot)
if e < pivot
else filter_1t (rest,pivot)
end

QuickSort

o Sort a list according to the quicksort
algorithm - recursive partitioning
according to a pivot value,

gsort [3,1,2] = [1,2,3]

o In the declarative setting this
algorithm is straight forward.

QuickSort

function qgsort
with [] do
[]
with [pivot|rest] do

let less = filter_1t (rest,pivot).
let more = filter_ge (rest,pivot).
gsort less + [pivot] + gsort more.

end

function filter_1t
with ([],_) do
[]
with ([e|rest],pivot) do
[e] + filter_1t (rest,pivot)
if e < pivot
else filter_1t (rest,pivot)
end

function filter_ge
with ([],_) do
[]
with ([e|rest],pivot) do
[e] + filter_ge (rest,pivot)
if e >= pivot
else filter_ge (rest,pivot)
end

