
Functional Programming in
Asteroid
¢ Asteroid supports a functional

sublanguage largely inspired by ML.
¢ You can turn the Asteroid interpreter

into a functional language interpreter
with the ‘-F’ flag
l In this mode imperative statements

will be rejected with some exceptions
l Most notable exception is the let

statement – we’ll discuss this later

Functional Programming in
Asteroid

Functional Programming in
Asteroid

Lambda Functions
¢ The most recognizable feature of the functional

programming paradigm is the lambda function
l Virtually every programming language designed in the

last decade or two supports lambda functions – by
extension, they support the functional programming
paradigm (even if limited)

Go

Rust
Swift

Python

Asteroid

Lambda Functions
¢ The implication of the support of

lambda functions is that functions are
considered first-class citizens,
l☞ They are Values!

¢ Consider,

We can copy function
values like any other value!

Other Characteristics of
Functional Programming
¢ No iteration – only recursion.
¢ No if statements – only if expressions.
¢ ”Single valued variables”

l Variables are shorthand notations for
expression values

No Iteration

¢ Iteration is not supported
¢ Data structures must be traversed with

recursion
l Recursive functions with multi-dispatch!

vs

No If Statements
¢ If statements are designed to inherently modify machine

state and therefore are not allowed in functional
programming

¢ We use if expressions instead
l Also fits better into the notion of “everything is a value”

vs

Single Valued Variables

¢ In imperative programming variables
maintain the machine state,

The variable sum is updated
iteratively and at each iteration
contains the partial solution
computed so far.

Note that the evolution of the
values stored in sum depends
on the length of the input list!

Single Valued Variables

¢ In functional programming variables
act like a shorthand notation for a
single value (per function call)

Here e and rest contain a single
value (per function call) that does
not change throughout that
function call.

Single Valued Variables

¢ Even if we assign multiple values to the
same variable, it still has the flavor of a
value shorthand notation
l We don’t have iteration to evolve the value

further than the given assignments

Here we use the multiple assignments
to v to break the expression
computation,

return 2*(v+1)

Into simpler computational steps.

Functional Programming in
Asteroid
¢ Let’s see how the programs that we

developed in the lambda calculus
translate into Asteroid
l Should be straight forward since

Asteroid supports the functional
programming paradigm.

Original Lambda Examples
𝜆𝑥. 𝑥 + 1 1 ⇒ 2

𝜆𝑦. 𝑦 1 𝜆𝑥. 𝑥 + 1 ⇒ 2

𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦 1 1 ⇒ 2

Classic Functional
Programming
¢ Let’s look at some classic functional

programming examples
¢ The most noticeable issue of course is

that data structures like lists are
accessed in a sequential manner with
the head-tail pattern using recursion.

Sum/Mult

¢ Sum/multiply all the elements of a list.

Sum/Mult

¢ Identity means it is a value that if
added/multiplied to another value
returns the original value, e.g
l 2+0 = 2
l 2*1 = 2

¢ In functional algorithm design identity
values are often important as part of
the recursion base cases.

Sum/Mult

¢ Consider sum [1,2,3]
l 1 + sum [2,3]
l 1 + 2 + sum [3]
l 1 + 2 + 3 + sum []
l 1 + 2 + 3 + 0

String Concatenation

¢ If we consider the + operator to work
as a string concatenation operator,
l “abc” + “edf” = “abcdef”

¢ What is the identity of string
concatenation?

Reverse

¢ Given a list of values the reverse
function reverses that list, e.g.
l reverse [1,2,3] = [3,2,1]

¢ Assume that the + operator functions
as a list concatenation operator, what
is the identity of + as a list
concatenation operator?

Reverse

¢ Note the empty list as the identity of
list concatenation.

Filter

¢ Another classic functional
programming algorithm is ‘filter’,
l Given a list of values, return a list of

values that are smaller/larger than a
given pivot value.

¢ For example,
l filter_lt ([1,2,3,4,5],4) = [1,2,3]

Filter

¢ Again we can observe that the base case is
the identity of the fundamental operation in
the recursive case: list concatenation

¢ Also, in keeping with with declarative
programming we see that we “declare” what
we want to do with each input configuration.

QuickSort

¢ Sort a list according to the quicksort
algorithm - recursive partitioning
according to a pivot value,
l qsort [3,1,2] = [1,2,3]

¢ In the declarative setting this
algorithm is straight forward.

QuickSort

