
Functional Programming

¢ Functional programming is a 
declarative programming paradigm 
where programs are constructed by 
applying and composing functions. 

¢ Function definitions are expressions 
that map values to other values, 
rather than a sequence of imperative 
statements which update the running 
state of a program.



Functional Programming

¢ …including functions!
¢ This sets functional programming apart from 

imperative programming where statements like 
loops and conditionals do not represent values 
but change of an explicit machine state

Everything is a Value!



Lambda Calculus

¢ Let’s explore this using the lambda 
calculus before we commit to any 
particular language.

¢ Recall that in the lambda calculus we 
construct functions as lambda 
expressions and these functions can be 
applied to values, e.g.

𝜆𝑥. 𝑥 + 1 1 ⇒ 𝑥 + 1 𝑥 ← 1 ⇒ 1 + 1 ⇒ 2

Function application Substitution



Lambda Calculus

¢ Functions can be input values to other 
functions!

𝜆𝑦. 𝑦 1 𝜆𝑥. 𝑥 + 1 ⇒ 𝑦 1 𝑦 ← 𝜆𝑥. 𝑥 + 1
⇒ 𝜆𝑥. 𝑥 + 1 1 ⇒ 2

Function as value



Lambda Calculus

¢ Functions as return values from 
functions
l That is, functions computing new 

functions!

𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦 1 1 ⇒ 𝜆𝑦. 𝑥 + 𝑦 1 𝑥 ← 1
⇒ 𝜆𝑦. 1 + 𝑦 1 ⇒ 1 + 𝑦 𝑦 ← 1 ⇒ 1 + 1 ⇒ 2

Function as return value



Functional Programming
¢ Functional programming is declarative in that the 

programs deal more with the what rather than the 
how.

¢ One way to think about this is: in declarative
programming we “declare” what to do for each input 
configuration.

¢ This is in stark contrast to imperative programming 
where we describe how to solve the whole problem
in one go without subdivision.

“The How” “The What”



Lisp

¢ Lisp was developed by John McCarthy in the late 
1950’s early 60’s to solve problems in AI.

¢ It is the oldest functional programming language.
¢ Its syntax has been inspired by the lambda 

calculus.
¢ It introduced novel features such as recursion and 

garbage collection.
¢ It is still in use today as Common Lisp (ANSI 

compliant).
¢ Modern descendants: Scheme, Racket, Clojure

https://en.wikipedia.org/wiki/Lisp_%28programming_language%29

Dr John McCarthy, computer scientist,
1927 – 2011.

https://en.wikipedia.org/wiki/Lisp_%28programming_language%29


Lisp

𝜆𝑦. 𝑦 1 𝜆𝑥. 𝑥 + 1 ⇒ 2

𝜆𝑥. 𝑥 + 1 1 ⇒ 2

𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦 1 1 ⇒ 2



ML

¢ Robin Milner designed ML as the implementation language
for his proof assistant LCF (Logic for Computable Functions) 
in the 1970’s.

¢ It can be considered the first modern functional 
programming language,
l Statically type checked
l A syntax that is easily recognized by today’s developers
l Very influential, virtually every modern functional 

programming language can trace its ancestry back to ML
¢ It is also one of the few high-level programming languages 

with a full mathematical specification.
¢ Dialects of ML in wide use today: SMLNJ, Ocaml, F#

https://smlnj.org/ and https://en.wikipedia.org/wiki/ML_(programming_language)

Robin Milner, computer scientist
1934 – 2010.

https://smlnj.org/
https://en.wikipedia.org/wiki/ML_(programming_language)


ML
𝜆𝑥. 𝑥 + 1 1 ⇒ 2

𝜆𝑦. 𝑦 1 𝜆𝑥. 𝑥 + 1 ⇒ 2

𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦 1 1 ⇒ 2



Function as Values: Another 
Look

¢ If we view functions as values, then 
they have to belong to a type.

¢ We can use ML’s type system to 
compute the function types,

A Type is a Set of Values.



Function as Values: Another 
Look
¢ In the previous slide we saw that we 

have at least two different types

𝑖𝑛𝑡 → 𝑖𝑛𝑡 𝑖𝑛𝑡 ∗ 𝑖𝑛𝑡 → 𝑖𝑛𝑡
Function
Types

“All functions that map
integers to integers”

“All functions that map pairs
of integers to integers”



Function as Values: Another 
Look
¢ Since we now have function types we 

can declare variables of that type,
ML

Rust



Function as Values: Another 
Look
¢ Every function belongs to a particular function type.
¢ We can view a function as a value in the set of all 

values of a particular type.
¢ This particularly visible in statically typed languages

like ML and Rust.
l But it is also supported in dynamically typed 

languages like Python and Asteroid.
l In Asteroid, all functions are members of the type 

‘function’.



Reading

¢ Please read Chapter I in the following 
paper,

lutzhamel.github.io/CSC493/docs/intro-fp-barendregt.pdf

https://lutzhamel.github.io/CSC493/docs/intro-fp-barendregt.pdf

