Functional Programming

o Functional programming is a
declarative programming paradigm
where programs are constructed by
applying and composing functions.

o Function definitions are expressions
that map values to other values,
rather than a sequence of imperative
statements which update the running
state of a program.

Functional Programming

Everything is a Value!

o ...including functions!

o This sets functional programming apart from
Imperative programming where statements like
loops and conditionals do not represent values
but change of an explicit machine state

Lambda Calculus

o Let's explore this using the lambda
calculus before we commit to any
particular language.

o Recall that in the lambda calculus we
construct functions as lambda
expressions and these functions can be
applied to values, e.q.

Function application Substitution
A

A

Ax.x+1)1 =2x+1x<1]=21+1=2

Lambda Calculus

o Functions can be input values to other
functions!

Function as value
|

Ay.y1DUx.x+1)=>y1lly « Ax.x +1)]
= Ax.x+1)1=2

Lambda Calculus

o Functions as return values from
functions

That is, functions computing new
functions!

Function as return value
|

(Ax.Ay.x+y))11= (Ay.x +y) 1[x « 1]
> AWy.1+y)1=>1+yly<1]l=21+1=2

Functional Programming

o Functional programming is declarative in that the

programs deal more with the what rather than the

how.

o One way to think about this is: in declarative
programming we “declare” what to do for each input

configuration.

o This is in stark contrast to imperative programming
where we describe how to solve the whole problem

in one go without subdivision.

—— imperative solution
function len with 1list do
let remaining_list = list.
let cnt = 0.
repeat
let [_|remaining_list] =
let cnt = cnt + 1.
until remaining_list is [].
end

let q=1[1 to 10].
assert (len q == 10).

remaining_list.

—— declarative solution
function len
with [] do
0
with [_|remaining_1list] do
1 + len remaining_list
end

let gq=[1 to 10].
assert (len g == 10).

“The How”

“The What"

Lisp

Dr John McCarthy, computer scientist,
1927 — 2011.

o Lisp was developed by John McCarthy in the late
1950’s early 60’s to solve problems in Al.

It is the oldest functional programming language.

Its syntax has been inspired by the lambda
calculus.

o It introduced no_vel features such as recursion and
garbage collection.

o ltis still in use today as Common Lisp (ANSI
compliant).
o Modern descendants: Scheme, Racket, Clojure

O O

https://en.wikipedia.org/wiki/Lisp_%28programming_language%29

https://en.wikipedia.org/wiki/Lisp_%28programming_language%29

Lisp

Ax.x+1)1 =2

Welcome to GNU CLISP 2.49 (2010-07-07) <http://clisp.cons.org/>

Copyright (c) Bruno Haible, Michael Stoll 1992, 1993

Copyright (c) Bruno Haible, Marcus Daniels 1994-1997

Copyright (c) Bruno Haible, Pierpaolo Bernardi, Sam Steingold 1998
Copyright (c) Bruno Haible, Sam Steingold 1999-2000

Copyright (c) Sam Steingold, Bruno Haible 2001-2010

Type :h and hit Enter for context help.

[1]> ((lambda (x) (+ x 1)) 1)
2

[2]> (defun inc (x) (+ x 1))
INC

[3]> (inc 1)

2

(41> 1

Ay.yD(Ax.x+1) =2

[1]> ((lambda (y) (apply y '(1))) (lambda (x) (+ x 1)))
2

21> i

(Ax.y.x+y))11=>2

[1]> (apply (apply (lambda (x) (lambda (y) (+ x y))) '(1)) '(1))
2

[21> i

i

ML

Robin Milner, computer scientist
1934 — 2010.

Robin Milner designed ML as the implementation language
forrr]wis1p9r08f assistant LCF (Logic for Computable Functions)
in the 1970’s.

It can be considered the first modern functional
programming language,
Statically type checked
A syntax that is easily recognized by today’s developers
Very influential, virtually every modern functional
programming language can trace its ancestry back to ML
It is also one of the few high-level programming languages
with a full mathematical specification.

Dialects of ML in wide use today: SMLNJ, Ocaml, F#

https://sminj.org/ and https://en.wikipedia.org/wiki/ML (programming lanquage)

https://smlnj.org/
https://en.wikipedia.org/wiki/ML_(programming_language)

ML

Ax.x+1)1 =2

Standard ML of New Jersey (64-bit) v110.95 [built: Sun Nov 06 00:04:31 2022]
-(fnx=x+1) 1
20

(Ax.(Ay.x+y))11=2

= (fn X => (fn y = x+y)) 1 1;
28

Standard ML of New Jersey (64-bit) v110.95 [built: Sun Nov 06 00:04:31 2022]
- fun inc X = x+1;
= fn : int -> int

@ Function as Values: Another
Look

A Type is a Set of Values.

o If we view functions as values, then
they have to belong to a type.

o We can use ML's type system to
compute the function types,

- (fn x => 2*x);
val it = fn : int -> int

- fun inc x = x+1;
val inc = fn : int -> int - I

- fun fold (x,y) = x+y;
val fold = fn : int * int -> int

Function as Values: Another
Look

o In the previous slide we saw that we
have at least two different types

Function

int — int«—— WPeS T intxint — int

- (fn x => 2*x);
val it = fn : int -> int

“All functions that map pairs
“All functions that map

integers to integers”

of integers to integers”

@ Function as Values: Another
Look

o Since we now have function types we
can declare variables of that type,

- val x:int->int = (fn x => x+1);
valox ==fnesint—=rint

Function as Values: Another
Look

o Every function belongs to a particular function type.
o We can view a function as a value in the set of all
values of a particular type.

o This particularly visible in statically typed languages
like ML and Rust.
But it is also supported in dynamically typed
languages like Python and Asteroid.

In Asteroid, all functions are members of the type
‘function’.

Asteroid Version 1.1.4

(c) University of Rhode Island

Type "asteroid -h" for help

Press CTRL-D to exit

ast> load system type.

ast> type @Pgettype (lambda with x do x+1).

function

ast> let x:%function = (lambda with x do x+1).
ast> x

(function ==)

ast>

Reading

o Please read Chapter | in the following
paper,

lutzhamel.qgithub.io/CSC493/docs/intro-fp-barendreqt.pdf

https://lutzhamel.github.io/CSC493/docs/intro-fp-barendregt.pdf

