Object-Oriented
Programming with Asteroid

o Structures with behavior
No inheritance
No member protection, everything is public

o Member function specification

Uses standard function syntax within
structures

Internal object identity is given via the ‘this’
keyword.
Special member functions:

__init__

__str

\@ Object Identity

o Internal and

structure A with .
function identity with none do eXternaI ObJeCt
return this. . agn
i identities are the
end
same
let o = A().
—— getid maps an object to a unique identifier
assert (getid(o) == getid(o @identity ())).

In009/0objid.ast

structure Rectangle with
data xdim.
data ydim.
function area with () do
return this@xdim *x this@ydim.
end
end

load system type.
let r = Rectangle(3,2).
assert (r @area () == 6).

assert (type @tostring r == "Rectangle(3,2)").

INn009/rect1.ast

Basic Objects with Behavior

Data and function members

Member functions are functions
defined in the context of a
structure.

Notice the use of ‘this’

We are using the default
constructor that fills out the data
members according to the order
they appear.

Taking advantage of default
behavior when mapping object to
a string.

String Mapping

structure Rectangle with
data xdim.
data ydim.
function __init__ with (xdim:%real,ydim:%real) do
let this@xdim = xdim.
let this@ydim = ydim.
end
function area with () do
return this@xdim x this@ydim.
end
function _ str__ with () do
return "Rectangle with dimension "+this@xdim+"x"+this@ydim.
end
end

load system type.

let r = Rectangle(3.0,2.0).

assert (r @area () == 6.0).

assert (type @tostring r == "Rectangle with dimension 3.0x2.0").

INn009/rect2.ast

Custom Constructors and

Taking advantage
of the special
functions __init__
and __ str

We use the
constructor __init__
to enforce that we
only want real
values for
dimensions

The _str
functions allows us
to create a custom
string
representation for
Rectangle objects

Pattern Matching on Objects

o During pattern matching on objects member

functions are ignored

It doesn’t matter where the functions appear.
You cannot pattern-match on functions!
You can only pattern-match on data members.

load system io.

structure Person with
data name.
data age.
function hello with none do
io @rintln ("Hello, my name is "+this@name).
end
end

—— functions are ignored during pattern matching

let Person(name,age) = Person('"Scarlett",28).
assert(name == "Scarlett").
assert(age == 28).

-~

load system io.

structure Person with
data name.
function hello with none do
io @println ("Hello, my name is "+this@name).
end
data age.
end

—— functions are ignored during pattern matching
let Person(name,age) = Person("Scarlett",28).
assert(name == "Scarlett").

assert(age == 28).

Pattern Matching on Objects

o It is not a surprise that object patterns
can be used as constraints.

o All patterns we have looked at so far
also apply to objects.

load system io.

structure Person with
data name.
data age.
function hello with none do
io @rintln ("Hello, my name is "+this@name).
end
end

—— pattern match only successful for objects with

—— names that contain two lower case t's

let scarlett:Person(".xt.xt.x",) = Person("Scarlett",28).
scarlett @hello ().

Object Composition

o We already looked at object composition as a way

of modeling compound objects.

o Note: in Asteroid we can have nested objects but

not nested structures.

structure Address with
data street.
data city.
data state.
data zip.
end

structure Person with
data name.
data age.

data address. ¢

end

let address = Address("123 Main St", "Anytown", "CA", "12345").
let person = Person("John Doe", 30, address). _

—— complete destructuring ofle person object
—-— => pattern matching on sted objects
let Person(name,age,Address(stree,city,state,zip)) = person.

In008/objcomp.ast

Duck Typing

load system io.

structure Circle with
data name.
—— draw interface
function draw with () do
io @rintln ("Drawing a circle "+this@name).
end
end

structure Square with
data name.
—— draw interface
function draw with () do
io @rintln ("Drawing a square "+this@name).
end
end

let v = [].
v @append (Circle("Circlel")).
v @append (Square("Squarel")).
v @append (Circle("Circle2")).
for i in range (len v) do

v@i @draw ().
end

o As long as object have
common interfaces
they act as
polymorphic structures
— duck typing

o The do not need be

related via a common
supertype.

IN009/subpoly.ast

String & List Objects

o In Asteroid, similar to Python, strings
and lists are considered objects and
have member functions.

—— calling membs’lfunction 'flip' on a string
let s = "abc" @flip ().
assert (s == "cba").

—— member function ' ex'
assert ([1,2,3,4] @index 2 == 1).

—— check where 2 is lthe list using the

In009/objnstring.ast

Reading

o https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#structures-object-oriented-
programming-and-pattern-matching

o https://asteroid-lang.readthedocs.io/en/latest/Reference%20Guide.html#list-and-string-objects

https://asteroid-lang.readthedocs.io/en/latest/Reference%20Guide.html
https://asteroid-lang.readthedocs.io/en/latest/Reference%20Guide.html

