
A New Approach to OOP

¢ No classes – structures with behavior 
instead

¢ No (class) inheritance –traits/interfaces 
instead 

¢ Limited, if any, member protection to 
facilitate structural pattern matching on 
objects



Structures with Behavior
Asteroid

Go

Rust



Python

¢ Python takes a hybrid 
approach
l Class inheritance 

structure but no 
member protection

l Notice that 
because of duck 
typing we don’t 
need dynamic 
dispatching

ln008/rect.py



Rust

¢ Problem: with the loss of inheritance 
how is subtype polymorphism supported 
in statically typed languages like Rust?

¢ Answer: Traits (sometimes called 
interfaces) allow the developer to attach 
additional behavior to a class where that 
behavior can be shared among many 
classes effectively allowing polymorphic 
behavior with dynamic dispatching.



Rust

ln008/subpoly.rs

Abstract function



Subtype Polymorphism

¢ Dynamic dispatch realizes when calling 
the draw function of the trait that an 
implementation of that trait function 
exists in the structure and calls it.

let mut v: Vec<Box<dyn Shape>> =

Shape

draw()

Circle
“Circle1”
draw()

Shape

draw()

Square
“Square1”
draw()

Shape

draw()

Circle
“Circle2”
draw()

Here Shape is 
a trait not a
superclass!



Object Composition vs 
Inheritance
¢ Many modern programming languages advocate for object

composition rather than inheritance, e.g. Go, Rust, Asteroid
¢ In OOP inheritance as a subtype construction is often abused 

contributing to the issues mentioned earlier, consider
l ‘is-a’ relation
l Often abused for the implementation of a ‘has-a’ relation

Person is a subtype
of Address!?!

ln008/inheritance.py



Object Composition vs 
Inheritance
¢ Object composition solves this much cleaner and 

still enables pattern matching on objects

True ‘has-a’
relation. 

ln008/objcomp.ast


