A New Approach to OOP

o No classes — structures with behavior
Instead

o No (class) inheritance —traits/interfaces
instead

o Limited, if any, member protection to
facilitate structural pattern matching on
objects

Asteroid

structure Rectangle with
data xdim.
data ydim.
function area with () do

return this@xdim * this@ydim.

end
end

Rust
struct Rectangle {
width: u32,

height: u32,
}

impl Rectangle {

fn area(&self) -> u32 {
self.width * self.height

}

Structures with Behavior

Go

type rect struct {
width int
height int

}

func (r xrect) area() int {
return r.width * r.height

}

@ Python

o Python takes a hybrid

class Shape: approach
def __init_ (self): . .
print("instantiating a shape o CIaSS InherltanCe
class Rectangle(Shape): StrUCture bUt no
R ai i 4 member protection
i .yt < Notice that
def area(self): | because of duck
return self.xdimkself.ydim . y
typing we don't
In008/rect.py need dynamIC

dispatching

Rust

o Problem: with the loss of inheritance
how is subtype polymorphism supported
in statically typed languages like Rust?

o Answer: Traits (sometimes called
interfaces) allow the developer to attach
additional behavior to a class where that
behavior can be shared among many
classes effectively allowing polymorphic
behavior with dynamic dispatching.

R u St Abstract function

use std::vec::Vec;
mm) trait Shape { fn draw(&self); }

struct Circle { name: String }
impl Circle { fn new(name: &str) —> Circle { Circle { name: name.to_string() } } }
—) impl Shape for Circle { fn draw(&self) {println!("Drawing a circle {}", self.name);} }

struct Square { name: String }
impl Square { fn new(name: &str) —> Square { Square { name: name.to_string() } } }
mmp impl Shape for Square { fn draw(&self) { println!("Drawing a square {}", self.name); } }

fn main() { l

let mut v: Vec<Box<dyn Shape>> = Vec::new();
v.push(Box::new(Circle::new("Circlel")));
v.push(Box: :new(Square::new("Squarel")));
v.push(Box::new(Circle::new("Circle2")));
for shape in &v {

shape.draw();

}

In008/subpoly.rs

O

let mut v: Vec<Box<dyn Shape>> = Vec::new();
v.push(Box::new(Circle::new("Circlel")));
v.push(Box::new(Square::new("Squarel")));

v.push(Box::new(Circle::new("Circle2")));
u yp‘ } O yI I lor for shape in &v {

shape.draw();
}
let mut v: Vec<Box<dyn Shape>> =
\ .
Shape Shape Shape Here Shape is
a trait not a
|
draw() draw() draw() superclass!
T T [-
Circle Square Circle
“Circle1” “Square1” “Circle2”
draw() draw() draw()

o Dynamic dispatch realizes when calling
the draw function of the trait that an
implementation of that trait function
exists in the structure and calls it.

Object Composition vs
Inheritance

o Many modern programming languages advocate for object
composition rather than inheritance, e.g. Go, Rust, Asteroid

o In OOP inheritance as a subtype construction is often abused
contributing to the issues mentioned earlier, consider

‘is-a’ relation
Often abused for the implementation of a ‘has-a’ relation

class Address:
def __init__(self, street, city, state, zip): Person is a subtype
self.street = street / of Address!?!
self.city = city
self.state = state
self.zip = zip

class Person(Address):
def __init__ (self, name, age, street, city, state, zip):
super().__init_ (street, city, state, zip)
self.name = name
self.age = age

person = Person("John Doe", 30, "123 Main St", "Anytown", "CA", "12345")

In008/inheritance.py

Object Composition vs
Inheritance

o Object composition solves this much cleaner and

still enables pattern matching on objects

structure Address with
data street.
data city.
data state.
data zip.
end

structure Person with
data name.
data age.

data address. (==

end

let address = Address("123 Main St", "Anytown", "CA", "12345").
let person = Person("John Doe", 30, address). _

—— complete destructuring of the person object
-— => pattern matching on nested objects
let Person(name,age,Address(stree,city,state,zip)) = person.

N

In008/objcomp.ast

True ‘has-a’
relation.

