
Object-Oriented
Programming
¢ Object-oriented programming (OOP)

is a programming paradigm based on
the concept of "objects", which can
contain data and code. The data is in
the form of fields (often known as
attributes or properties), and the code
is in the form of procedures (often
known as methods).

Source: https://en.wikipedia.org/wiki/Object-oriented_programming

https://en.wikipedia.org/wiki/Object-oriented_programming

Reading

¢ Read section II and III of the paper
“Has the Object-Oriented Paradigm
Kept Its Promise?”
l lutzhamel.github.io/CSC493/docs/OOPP.pdf

¢ If you are interested, take a peek at
Bertrand Meyer’s classic “Object-
Oriented Software Construction”. Of
particular interest is Section D
l lutzhamel.github.io/CSC493/docs/OOSC.pdf

https://lutzhamel.github.io/CSC493/docs/OOPP.pdf
https://lutzhamel.github.io/CSC493/docs/OOSC.pdf

Origins of
OOP

¢ Simula is a language designed to solve
problems in simulations
l Introduced objects, classes, inheritance and

subclasses, and featured garbage collection.
• Inspired by the observation that simulations

become more robust when object state and
behavior are bundled

l Considered to be the first truly object-
oriented programming language.

l Developed in the 1960’s

Ole-Johan Dahl, Professor
Computer Science, 1931-2002

Kristen Nygaard, Computer
Scientist, 1926-2002

Origins of OOP

¢ Smalltalk
l Influenced by the ideas in Simula and Lisp
l Pure OO, “Everything is an object” – even

primitive entities like integers
l Highly influential because of the pure OO aspect

• Other languages make tradeoffs due to performance
issues

l Developed in the 1970’s
l Open-source modern implementation

• https://squeak.org/

Dr Alan Kay, computer scientist,
1940-

https://squeak.org/

Origins of OOP

¢ Some classics from
the “classic” OOP
period
l Bertrand Meyer,

designer of Eiffel,
design by contract

l Grady Booch,
inventor of UML

l “Gang of Four”,
design patterns were
hugely influential on
OO architectures and
OOP

Object-Oriented
Programming
¢ Object-oriented programming (OOP) is a programming paradigm

that uses objects and their interactions to design applications and
frameworks (e.g. GUI, webservers).

¢ It is based on the concept of "objects", which can contain data
and code that manipulates that data and an object identity.

¢ “Classic” OOP languages, such as Java and C++ provide features
such as encapsulation, inheritance, and polymorphism to help
organize and reuse code.
l Encapsulation refers to the practice of keeping an object's

internal state and behavior hidden from the outside world, while
exposing a public interface.

l Inheritance allows one class to inherit properties and methods
from a parent class.

l Polymorphism allows objects of different classes to be treated as
objects of a common superclass.

Object Identity
¢ In non-OOP setting

objects only have
external identity
(reference)
l Consider the C code on

the left –
objects/members are
only accessed via
external identity

¢ This changes in the OOP
setting where member
functions can refer to the
object they belong to via
an “internal” identity

ln007/rect.c

Object Identity – OOP

¢ In Python ”self” refers to the internal
object identity

¢ Here we see that the area function
access members “internally”.

ln007/rect.py

Object Identity – OOP

¢ External object identity and internal
object identity are the same!

ln007/id.py

Encapsulation
¢ Data members are

“private”
¢ Setter/getter functions
¢ Pros: precise modeling of

the notion of “object”
¢ Cons:

l Cluttering of public
interface with trivial
setter/getter functions

l Private members are not
available to derived
classes, which is strange
because derived objects
own this attribute

l To solve this yet another
access attribute:
protected

ln007/person.java

Inheritance
¢ Inheritance is one of the core concepts of object-oriented

programming (OOP) languages.
¢ It is a mechanism where you can derive a class from

another class for a hierarchy of classes that share a set of
attributes and methods.

¢ In statically typed languages like C++/Java it allows for
precise modeling of the perceived inheritance relation (is-a)
of objects

Image source: https://commons.wikimedia.org/wiki/File:MFC_hierarchy.png

Partial hierarchy
of the Microsoft
Foundation Classes
(MFC)

Subtype Polymorphism

¢ Subtype polymorphism is a feature in object-oriented
programming (OOP) in which a subclass or derived
class can be used in place of its superclass or base
class.

¢ This means that an object of a subclass can be treated
as an object of its superclass, and it will respond to
the same methods and properties as an object of the
superclass.

¢ This allows for more flexibility and reusability in code,
as objects can be treated generically and
interchangeably based on their common base
class(es), rather than having to be treated as specific
instances of a class.

Subtype Polymorphism

Generic Shape Container

Adding specific Shapes

Dynamic dispatching
to call the correct draw()
method

ln007/subpoly.java

Circle < Shape
Square < Shape

OOP – Foundations

¢ A class defines a type
¢ A type is a set of values
¢ The values of a type defined by a class are the objects

that can be instantiated from that class, e.g.
l new Circle()

Shape

Circle

Square

Objects of type
Shape

Objects of type
Circle Objects of type

Square

OOP – Foundations

¢ From our class hierarchy we have
l Circle < Shape
l Square < Shape

¢ From our interpretation of subtypes as subsets we have
l Every Circle is a Shape, and every Square is a Shape; green

arrows, widening conversion
l But not every Shape is either a Circle or a Square; red arrows,

narrowing conversion

Shape

Circle

Square

OOP – Foundations
Shape

Circle

Square

OOP – Subtype
Polymorphism
¢ Now that we have looked at the set

theoretic foundations of OOP let’s
take another look at subtype
polymorphism

¢ In particular, the idea of dynamic
dispatch which makes this so
extremely useful

OOP – Subtype
Polymorphism
¢ We will use the example from before: create a list of

circles and squares and then have each object on the
list draw itself.

¢ Caveat: in statically types languages lists/vectors can
only have homogeneously type elements

¢ Solution: Use a list/vector where the elements are
elements of the base type of our Shape hierarchy BUT
we insert our actual Circle and Square objects.

We say that v is a subtype polymorphic list/vector because the
objects on the list/vector consist of different subtypes of Shape.

OOP – Subtype
Polymorphism
¢ Finally, dynamic dispatch makes this all work.
¢ In the code below we call the draw function on the

base class Shape
¢ But what is actually called are the draw functions

of the subtypes – dynamic dispatch

OOP – Subtype
Polymorphism

¢ Dynamic dispatch realizes when calling the draw
function of the base class that a more specific
draw function exists and calls that instead of the
draw function of the base class.

Vector<Shape> v =
Shape

draw()

Circle
“Circle1”
draw()

Shape

draw()

Square
“Square1”

draw()

Shape

draw()

Circle
“Circle2”
draw()

Dynamically Typed
Languages
¢ In dynamically typed languages like

Asteroid and Python lists are untyped
containers, i.e.
l [1,”two”,3.0] is legal

¢ That means, lists in dynamically typed
languages are by default polymorphic!

¢ Here, subtype polymorphism with
dynamic dispatch is replaced by duck
typing,
l "If it walks like a duck and it quacks like a

duck, then it must be a duck” – the duck test.

Source: https://en.wikipedia.org/wiki/Duck_typing

https://en.wikipedia.org/wiki/Duck_typing

Dynamically Typed
Languages

¢ In duck typing the objects
on a list have to support
the behavior required by
the list
l However, that behavior

does not have to come
from a base class!

¢ Consider the shape
example written in Python
– no base class required
– list is polymorphicln007/subpoly.py

OOP – Duck
Typing

¢ Duck typing simply assumes that the
required functions are present at
runtime.

v =
Circle

“Circle1”
draw()

Square
“Square1”

draw()

Circle
“Circle2”
draw()

OOP -- Criticisms

¢ “Classic” OOP is increasingly coming
under scrutiny

¢ More modern approaches try to
address this

Inheritance
¢ Cons:

l Static structure: difficult to evolve with
changing software requirements

l Aggregation: classes at the leaves inherit
ALL of the data members and functions of
the preceding classes

Image source: https://commons.wikimedia.org/wiki/File:MFC_hierarchy.png

Partial hierarchy
of the Microsoft
Foundation Classes
(MFC)

Multiple-Inheritance – The
Diamond Problem

¢ Briefly:
l An ambiguity that arises when

two classes B and C inherit
from A, and class D inherits
from both B and C.

l If there is a method in A that B
and C have overridden, and D
does not override it, then
which version of the method
does D inherit: that of B, or
that of C?

l That is: D.foo() – which foo()
should be called?

¢ This gets really problematic in
deep inheritance structures.

foo()

foo() foo()

The Diamond Problem

¢ Different languages deal with the diamond
problem in different ways
l C++ uses a fully qualified syntax
l Python uses a class hierarchy linearization

algorithm (C3 linearization or MRO) to resolve
ambiguities

l Java does not support multiple inheritance.

MRO: Method Resolution Order

The Diamond Problem
¢ In Python, the method that is called depends on

the order of your inheritance specification !?!

Other Criticisms
Luca Cardelli claims that OOP code is
"intrinsically less efficient" than procedural code,
that OOP can take longer to compile, and that
OOP languages have "extremely poor modularity
properties with respect to class extension and
modification” and tend to be extremely complex.

Joe Armstrong, the principal inventor of Erlang, is
quoted as saying: The problem with object-oriented
languages is they've got all this implicit environment
that they carry around with them. You wanted a banana
but what you got was a gorilla holding the banana and
the entire jungle.

Alexander Stepanov (main author of the C++ STL) compares object orientation unfavorably to generic
programming: I find OOP philosophically unsound. It claims that everything is an object. Even if it is
true, it is not very interesting — saying that everything is an object is saying nothing at all.

Eric S. Raymond, a Unix programmer
and open-source software advocate, has been
critical of claims that present object-oriented
programming as the "One True Solution", and
has written that object-oriented programming
languages tend to encourage thickly layered
programs that destroy transparency.

Rob Pike, a programmer involved in the creation
of UTF-8 and Go, has called object-oriented
programming "the Roman numerals of computing” and
cites an instance of a Java professor whose "idiomatic"
solution to a problem was to create six new classes,
rather than to simply use a lookup table.

https://en.wikipedia.org/wiki/Luca_Cardelli
https://en.wikipedia.org/wiki/Joe_Armstrong_(programming)
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Alexander_Stepanov
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Eric_S._Raymond
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Rob_Pike
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Roman_numerals
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Lookup_table

On the other Hand…

¢ OO approaches work extremely well
for GUI and related frameworks.

¢ Like everything else, OOP is just a
tool to be used in situations where it
makes sense,
l Bundling behavior with state is in itself

not a bad idea,
l Trying to see every programming

problem through this lens is…

