
Asteroid Functions

Function call via juxtaposition

ln006/inc1.ast

Asteroid Functions

¢ In the functional programming tradition, Asteroid’s function calls are
constructed by juxtaposing a function with a value, e.g.

<fname> <arg value>

¢ The implication is that all functions have only a single argument.
If you want to pass more than one value to a function you have to
construct a tuple of values, e.g.

foo (1,2).

¢ Syntactically this looks the same as a function call to foo in Python
but semantically it is very different – call foo with the value (1,2) in
Asteroid as apposed to call foo with the list of values (1,2) in
Python.

¢ As we will see, this slight change of perspective enables effective
pattern matching within function definitions in Asteroid.

Lambda Calculus

¢ The mathematical idea of function application to values was
used by the logician Alonzo Church to create the lambda
calculus as a computational foundation of mathematics in
the 1930’s.

¢ It can be considered as an alternative to the Turing machine
¢ It is Turing-complete

l Anything a TM can compute can also be computed with the
lambda calculus

¢ It is considered the semantic foundation of our modern
functional languages such as Haskell, Ocaml, Clojure, etc

¢ We have more to say about the lambda calculus when we
look at the functional paradigm.

https://en.wikipedia.org/wiki/Lambda_calculus

Alonzo Church (1903–1995),
mathematician, logician.

https://en.wikipedia.org/wiki/Lambda_calculus

Lambda Calculus

¢ Here is an example of an increment
function as a lambda expression applied
to a value,

𝜆𝑥. 𝑥 + 1 1 ⟹ 𝑥 + 1[𝑥 ← 1] ⟹ 1+1 ⟹ 2

Function parameter

body

Function application

Value

Function evaluation

Substitution

Asteroid Functions

inc applied to the value 1

ln006/inc1.ast

Lambda Calculus

¢ Another example that scales a point in
2D space (a pair of values),

𝜆(𝑥, 𝑦). (2𝑥, 3𝑦) 1,2 ⟹ 2𝑥, 3𝑦 𝑥 ← 1, 𝑦 ← 2 ⟹ (2,6)

Single parameter!

Asteroid Functions

¢ Due to its foundation in Lambda calculus, Asteroid
functions have only a single formal parameter,

ln006/scale1.ast

Single, formal parameter

Asteroid Functions

¢ We can pattern match on the single
formal parameter,

ln006/scale2.ast

Single, formal parameter pattern matched

Function Calls & the None
Type
¢ What if we have a function f that does not require any input

parameters?
¢ The problem is that in our function model we need to apply

our functions to some sort of value in order to execute the
function, e.g.

f <value>
¢ But our function does not need an input value…
¢ Solution: make that value the none value,

f none
or written in the 0-tuple notation

f ()
¢ Note: here the () does NOT mean the empty parameter list

but represents the value none.
¢ Since this is a value, we can pattern match it in the function

body.

Function Calls & the None
Type
¢ For example, a function that asks the

user for input and returns that input as
an integer value.

ln006/input1.ast

ln006/input2.ast

Pattern matching
none type constant

none = ()

Pattern Matching in
Functions
¢ As we have seen, we can pattern match on the

function argument
¢ That means we can use all the patterns we have

learned so far ln006/scale3.ast

ln006/string1.ast

Function Calls in Python
¢ The interpretation of function arguments as a list

of values has unexpected implications in Python
l foo (1,2) ≠ foo ((1,2)), but
l (1,2) = ((1,2))

¢ Inconsistent handling of parenthesized tuples!

but…

Function Calls
¢ But it works fine in Asteroid,

Functions are Multi-Dispatch

¢ In Asteroid functions are multi-dispatch:
l a single function can have multiple bodies

each attached to a different pattern
matching the actual argument.

¢ This is along the line of declarative
programming
l Highlight programmer’s intention instead

of computational logic

Functions are Multi-Dispatch

𝑠𝑖𝑔𝑛 𝑥 = '
1 𝑖𝑓 𝑥 = 0
1 𝑖𝑓 𝑥 > 0
−1 𝑖𝑓 𝑥 < 0

only de4ined for 𝑥 ∈ 𝐼𝑛𝑡

Multi-Dispatch

ln006/sign1a.ast ln006/sign1b.ast

Multi-Dispatch and
Recursion
¢ Multi-dispatch works exceptionally well with

recursive functions
l Separate ‘with’ clauses for base- and

recursive cases

Recursion is a technique in programming where a
function calls itself in order to solve a problem.
The function defines a base case, which is the
point at which the recursion stops, and a set of
rules for reducing the problem to a simpler
version of itself. Each time the function calls itself,
it applies these rules to the problem in order to
make progress towards the base case. Eventually,
the problem is simplified enough that the base
case is reached and the function stops calling
itself, returning a final result.

Multi-Dispatch and
Recursion
¢ Example: Recursive function that sums the

elements of an integer list.
l Observation: multi-dispatch preserves the

declarative nature of pattern matching

ln006/sumlist1a.ast ln006/sumlist1b.ast

Multi-dispatch

Multi-Dispatch and
Recursion

ln006/fact1.ast

x! = ; 1 if 𝑥 = 0
𝑥 𝑥 − 1 ! otherwise

for 𝑥 ∈ 𝐼𝑛𝑡 and 𝑥 ≥ 0

Multi-Dispatch and
Recursion

¢ The QuickSort
¢ Recursion with

multiple base
cases

Reading

¢ asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#functions
¢ asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#pattern-matching

https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html
https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html

