Flow of Control

o Control structure implementation in
Asteroid is along the lines of any of the
modern programming languages such as
Python, Swift, or Rust. For example,

The for loop allows you to iterate over
lists without having to explicitly define a
loop index counter.

The if-elif-else statement expresses
familiar condition handling




In005/loop1.ast

Flow of Control osiiee

load system io.

for i in @ to 10 step 2 do
io @rintln i.
end

In005/loop3.ast

load system io.
load system util

let indexes = ["first","second","third"].
let birds = ["turkey","duck","chicken"].

for (ix,bird) in util @zip (indexes,birds) do
io @rintln ("the "+ix+" bird is a "+bird).

end

load system io

load system type.

let x = type @tointeger (io @input "Please enter an integer: ").

if x < 0 do
let x = 0.
io @println
elif x == 0 do
io @println
elif x == 1 do
io @println
else do
io @println
end

"Negative, changed to zero".
“"Zerao"™.
Ilonell 5

"Something else".

In005/loop2.ast

load system io.

let 1 = ["bmw", "volkswagen", "mercedes"].

repeat
let [element|l] = 1.
io @println element.
petil L ods [1.




Pattern Matching in Control
Structures

o Pattern matching lies at the heart of
Asteroid

Imperative programming and pattern
matching cannot really be separated in
Asteroid even though they belong to
different programming paradigms

o We saw some of Asteroid’s pattern
matching ability when we discussed

the let statement.

o Some of the true power of pattern matching
Is revealed when using it within control
structures



Pattern Matching in If
Statements

o In if statements we can use the is predicate to do
pattern matching.

o Example: write a function that accepts a single value.
If the value is a triple, print out its component values.
| If the value is a pair, print out its component values.
nbosipmifta.ast — Qtherwise, print out an error message.

load system io.
load system type.

function print_components with value do

if type @gettype value == "tuple" and len value == 3 do
io @rintln ("Components of triple: "+value@d+","+value@l+",'"+value@2).
elif type @gettype value == "tuple" and len value == 2 do
io @println ("Components of pair: "+value@d+","+value@l).
else do
io @println "Error: Not a triple or pair".
end
end

print_components (1,2).




Pattern Matching in If
Statements

o This has a much nicer solution with pattern matching
using the is predicate within the if clauses.

load system io.

function print_components with value do
if value is (x,y,z) do
io @rintln ("Components of triple: "+x+","+y+","+z).
elif value is (x,y) do
io @rintln ("Components of pair: "+x+","+y).
else do
io @println "Error: Not a triple or pair".
end
end

print_components (1,2).

In005/pmif1b.ast



Pattern Matching in If
Statements (Python)

def print_components(value):
if type(value) == tuple and len(value) ==
print("Components of triple: "+str(value[0])+","+str(valuel[l])+","+str(value[2]))
elif type(value) == tuple and len(value) == 2:
print("Components of pair: "+str(valuel[@])+","+str(value[1]))
else:
print("Error: Not a triple or pair")

print_components((1,2))

In005/pmifia.py

def print_components(value):
match value:
paEE X V. Z)E

print("Components of triple: " + str(x) + "," + str(y) + "," + str(z))
case (x, y):

print("Components of pair: " + str(x) + "," + str(y))
case _

print("Error: Not a triple or pair")

print_components((1, 2))

IN005/pmif1b.py



Pattern Matching in For
Loops

o Example: Write a program that
constructs a list of Person objects
where each object has a name and an
age field. Then iterate over this list
and write out the name of the persons
whose names contain a lowercase p’.



Pattern Matchina in For

LOc

load system io.

structure Person with
data name.
data age.

end

—— define a list of persons

let people = [
Person("George", 32),
Person("Sophie", 46),
Person("Oliver", 21)

—— print names that contain
for person in people do
if "p" in person @name @explode () do
io @rintln (person @name).
end
end

P

In005/pmloop1a.ast



@ Pattern Matching in For

Loops

load system io.

structure Person with
data name.
data age.

end

-— define a list of persons

let people = [
Person("George", 32),
Person("Sophie", 46),
Person("Oliver", 21)

i
—— print names contain 'p'

for Person(name if name is ".xp.x*", _) in people do
io @println name.
end

Pattern matching

In005/pmloop1b.ast

o Here we pattern

match
the Person object
in the for loop,

then use a regular
expression to see
if the name of
that person
matches our
requirement that
It contains a
lower case p’.

o The output

Is Sophie.



Declarative Programming

o The differences between the non-pattern-match
approach and the pattern-match approach are very
subtle

o In general, pattern matching makes the code more
readable because the developer’s intentions and the
structure of the data are directly visible

We often talk about declarative programming

Declarative programming is a programming
paradigm in which the programmer describes
what the program should accomplish, rather than
how to accomplish it. In a declarative program,
the focus is on the logic of the computation,
rather than the control flow.

“The what” rather than the “The How”



Declarative Programming

o Pattern matching is considered a declarative programming
technique.

o In pattern matching, the programmer specifies patterns
that data can match against, rather than explicitly
specifying how to manipulate the data.

This allows the programmer to express the logic of the
computation in a more direct and readable way,

by describing what the expected inputs look like and what
should be done with them,

rather than describing how to manipulate the data step-
by-step.

—— print names that contain 'p'
for person in people do Vs.
if "p" in person @name @explode () do

io @println (person @name).
end —— print names that contain 'p’

end for Person(name if name is ".xp.x", _) in people do

io @rintln name.
end




@ Declarative Programming

o If we look carefully at our if-else
example, we can see the declarative
characteristics also

Patterns vs. data access/manipulation
logic

if type @gettype value ==

"tuple" and len value == 3 do
io @println ("Components

of triple: "+value@d+","+value@l+","+value@2).
elif type @gettype value ==

"tuple" and len value == 2 do
io @println ("Components of pair: "+value@?d+","+value@l).

Vs.

if value is (x,y,z) do

io @rintln ("Components of triple: "

+x+ll'll+y+ll,ll+z) .
elif value is (x,y) do

io @rintln ("Components of pair: "+x+","+y).




Pattern Matching in Try-
Catch Statements

o Exception handling in Asteroid is very
similar to exception handling in many
of the other modern programming
languages available today with one
major difference:

Exception objects can be any kind of
object

In catch statements the exception
objects are pattern matched



Pattern Matching in Try-
Catch Statements

o ldea: write a program that generates a
random value between O and 1. If the
value is greater or equal to 0.5 then
throw a Head object otherwise throw
a Tail object.



Pattern Matching in Try-
Catch Statements

load system io.
load system random.
load system type.

structure Head with
data val.
end

structure Tail with
data val.
end

try
let i = random @random ().
if i >= 0.5 do
throw Head(1i).
else do
throw Tail(i).
end
catch Head(v) do
io @println ("you win with "+type @tostring (v,type @stringformat (4,2))).
catch Tail(v) do
io @println ("you loose with "+type @tostring (v,type @stringformat (4,2))).
end




Pattern Matching in Try-
Catch Statements

o Asteroid also provides built-in Exception
objects

o All Asteroid and system errors are
mapped into these object

o See the Asteroid user guide section
“More on Exceptions”

asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#more-on-exceptions



https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html

@ Reading

o Asteroid user guide section “Flow of Control”

asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#flow-of-control

o Asteroid reference guide

https://asteroid-lang.readthedocs.io/en/latest/Reference%20Guide.html



https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html
https://asteroid-lang.readthedocs.io/en/latest/Reference%20Guide.html

