
Flow of Control

¢ Control structure implementation in
Asteroid is along the lines of any of the
modern programming languages such as
Python, Swift, or Rust. For example,
l The for loop allows you to iterate over

lists without having to explicitly define a
loop index counter.

l The if-elif-else statement expresses
familiar condition handling

Flow of Control
ln005/loop1.ast

ln005/loop3.ast

ln005/loop2.ast

ln005/if1.ast

Pattern Matching in Control
Structures
¢ Pattern matching lies at the heart of

Asteroid
l Imperative programming and pattern

matching cannot really be separated in
Asteroid even though they belong to
different programming paradigms

¢ We saw some of Asteroid’s pattern
matching ability when we discussed
the let statement.

¢ Some of the true power of pattern matching
is revealed when using it within control
structures

Pattern Matching in If
Statements
¢ In if statements we can use the is predicate to do

pattern matching.
¢ Example: write a function that accepts a single value.

If the value is a triple, print out its component values.
If the value is a pair, print out its component values.
Otherwise, print out an error message.ln005/pmif1a.ast

Pattern Matching in If
Statements
¢ This has a much nicer solution with pattern matching

using the is predicate within the if clauses.

ln005/pmif1b.ast

Pattern Matching in If
Statements (Python)

ln005/pmif1b.py

ln005/pmif1a.py

Pattern Matching in For
Loops
¢ Example: Write a program that

constructs a list of Person objects
where each object has a name and an
age field. Then iterate over this list
and write out the name of the persons
whose names contain a lowercase ‘p’.

Pattern Matching in For
Loops

ln005/pmloop1a.ast

Pattern Matching in For
Loops ¢ Here we pattern

match
the Person object
in the for loop,

¢ then use a regular
expression to see
if the name of
that person
matches our
requirement that
it contains a
lower case ‘p’.

¢ The output
is Sophie.

Pattern matching

ln005/pmloop1b.ast

Declarative Programming

¢ The differences between the non-pattern-match
approach and the pattern-match approach are very
subtle

¢ In general, pattern matching makes the code more
readable because the developer’s intentions and the
structure of the data are directly visible
l We often talk about declarative programming

Declarative programming is a programming
paradigm in which the programmer describes
what the program should accomplish, rather than
how to accomplish it. In a declarative program,
the focus is on the logic of the computation,
rather than the control flow.

“The what” rather than the “The How”

Declarative Programming
¢ Pattern matching is considered a declarative programming

technique.
¢ In pattern matching, the programmer specifies patterns

that data can match against, rather than explicitly
specifying how to manipulate the data.
l This allows the programmer to express the logic of the

computation in a more direct and readable way,
l by describing what the expected inputs look like and what

should be done with them,
l rather than describing how to manipulate the data step-

by-step.

Vs.

Declarative Programming

¢ If we look carefully at our if-else
example, we can see the declarative
characteristics also
l Patterns vs. data access/manipulation

logic

Vs.

Pattern Matching in Try-
Catch Statements
¢ Exception handling in Asteroid is very

similar to exception handling in many
of the other modern programming
languages available today with one
major difference:
l Exception objects can be any kind of

object
l In catch statements the exception

objects are pattern matched

Pattern Matching in Try-
Catch Statements
¢ Idea: write a program that generates a

random value between 0 and 1. If the
value is greater or equal to 0.5 then
throw a Head object otherwise throw
a Tail object.

Pattern Matching in Try-
Catch Statements

Pattern Matching in Try-
Catch Statements
¢ Asteroid also provides built-in Exception

objects
¢ All Asteroid and system errors are

mapped into these object
¢ See the Asteroid user guide section

“More on Exceptions”
l asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#more-on-exceptions

https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html

Reading

¢ Asteroid user guide section “Flow of Control”
l asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#flow-of-control

¢ Asteroid reference guide
l https://asteroid-lang.readthedocs.io/en/latest/Reference%20Guide.html

https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html
https://asteroid-lang.readthedocs.io/en/latest/Reference%20Guide.html

