
The Let Statement & Basic
Pattern Matching
¢ Up till now we have used the let statement

basically as an assignment statement into a
single variable in the imperative fashion

let <var> = <value>.

The Let Statement & Basic
Pattern Matching
¢ However, the let statement is a pattern-

match statement in Asteroid,

let <pattern> = <value>.

¢ where the pattern on the left side of the
equal sign is matched against the value of
the right side of the equal sign.

¢ Simple patterns are expressions that
consist purely of constructors and
variables

Pattern Matching –
Foundations
¢ In programs values are represented by constructors,

l 1
l “Hello, World!”
l [1,2,3]
l (“Harry”, 32)

¢ Any structure that cannot be reduced any further consists
purely of constructors and is the minimal/canonical
representation of a value.

¢ The following are all representations of the value two:
l 1+1; 3-1; 2*1; 2+0; 2
l Only the last one is the canonical representation of the

value two.
l We say that 2 is a constructor for the value two.
l In this case the constructor happens to be a constant.

Pattern Matching –
Foundations
¢ Here is another example using lists
¢ The following are all representations

of a list with the values one, two, and
three
l [1]+[2]+[3]; [1,2]+[3]; [1,2,3]+[]; [1,2,3]

¢ Again, only the last one is the
canonical representation of the list
l It represents the value of a list with

integer values one, two, and three.

Pattern Matching –
Foundations
¢ Constructors are interesting,

l When they are part of an expression being evaluated,
they represent values

l Otherwise, they represent structure.
¢ We see this with the let statement,

let <pattern> = <value>.
l On the right of the = sign constructors represent

values
l On the left of the = sign constructors represent

structure
¢ In a let statement, when the structure of the value on

the right matches the structure of the pattern on the
left, we say that we have a successful pattern
match.

Pattern Matching –
Foundations
¢ For example,

The last example is interesting, the right is not in the canonical
representation for the value 2, so it is first reduced (evaluated) to
its canonical form and then successfully pattern matched.

Pattern Matching –
Foundations
¢ You can think of variables in a pattern as

a “I don’t care” structure
¢ During a pattern match the variable will

receive the structure that was actually
matched during the pattern match

Pattern Matching –
Foundations
¢ When the pattern is just a single variable then the

let statement looks like an assignment statement,

¢ However, statements like,

¢ are completely legal,
l the 1 on the left is a constructor viewed as

pattern, the 1 on the right is a constructor
viewed as a value.

l highlighting the fact that the let statement is not
equivalent to an assignment statement.

Pattern Value

Pattern Matching –
Foundations
¢ Patterns are all about structure
¢ For example,

l a wildlife biologist might use pattern matching to identify
a specific species of bird based on its size, coloration, and
distinctive markings on its feathers – structure.

l They would compare these characteristics to a known set
of patterns for different bird species from a field guide
and use this information to make an accurate
identification.

¢ Observe, the structure of a value (unknown bird) is pattern-
matched against a set of known patterns. If one of the
patterns matches the value (bird) then we have a match
(identification).

Pattern Matching –
Foundations

¢ We can code that
biologist example
using pattern
matching

¢ Assume we have a
field guide with the
following patterns

Pattern Matching –
Foundations
¢ We can solve this problem nicely with

pattern matching in Asteroid,
l We will encode the patterns as 3-tuples
l We write a let statement for each pattern
l When let statements fail they throw an

exception, we will embed the let
statements in a try-catch block so we can
detect the pattern match failure

Pattern Matching –
Foundations

ln004/bird1a.ast

Pattern Matching –
Foundations
¢ It is nicer to represent the patterns as bird objects
¢ This way we stay closer to the original problem

setting. E.g.,

Pattern Matching –
Foundations

ln004/bird1b.ast

Pattern Matching –
Foundations

¢ Here is a much
more elegant
solution using
pattern matching in
functions

ln004/bird2.ast

Pattern Matching –
Foundations

¢ Here is a solution using pattern matching in Python

ln004/bird2.py

Pattern Matching –
Foundations
¢ Variables allow for partial matches
¢ Variables in patterns are instantiated in the

current environment

ln004/bird3.ast

Basic Patterns

¢ Something a bit more CS related

Basic Patterns
¢ The idea of constructors

on the right representing
values and, on the left,
representing
structure/patterns also
works for objects!

¢ The expression A(1,2) on
the left side is a
constructor for the object
considered as a pattern

¢ We can insert variables
into the constructor,
A(x,y), for easy access to
the components of the
object o
l destructuring

Destructuring

¢ The idea of destructuring is fundamental to
pattern matching

¢ It makes access to substructures much
more readable (and efficient).

Without structural pattern matching

With structural pattern matching

ln004/destruct1.ast

ln004/destruct2.ast

Destructuring

¢ Here is another example using
structures and objects

ln004/destruct3.ast

Basic Pattern Matching
Summary
¢ The let statement

let <pattern> = value .
¢ On the right side of equal sign constructors represent

values
l Operators/functions are allowed

¢ On the left side constructors represent structure
l Operators/functions are not allowed
l Constructors must minimally represent structure

¢ Variables are allowed in patterns for partial
matches/destructuring

¢ Pattern matching is part of a programming paradigm
called declarative programming
l We will look at this more carefully when we examine

control structures in Asteroid.

Pattern Matching in Python

¢ Limited pattern matching available
with the assignment statement
l Called destructuring assignment

Pattern Matching in Python
¢ The match statement as of 3.10 provides

a bit more functionality

https://peps.python.org/pep-0636/

ln004/destruct3.py

Pattern Matching in Rust

¢ Rust also supports pattern matching
ln004/destruct3.rsln004/destruct2.prs

Conditional Pattern
Matching

¢ Only assign a
pair if the two
component
values are the
same

¢ Only assign
positive values
to x

The is Predicate

¢ The is predicate is of the form
<value> is <pattern>

and returns true if the value matches
the pattern otherwise it will return
false

¢ The is predicate allows us to do
pattern matching is expressions

Note: a predicate is a
function/operator that
always returns true or
false. No other return
value is permitted.

Type Patterns

¢ Type patterns are patterns of the form
%<type name>

and match all instances of the <type name>
¢ All built-in types have associated type patterns such as

%integer, %real, %string etc.
¢ User defined types are also supported,

%<user defined type name>

Advanced Pattern Match
Expressions
¢ We can combine conditional pattern

matching with type patterns and the is
predicate to express sophisticated
patterns

¢ E.g., only assign a value to x if it is an
integer value

Advanced Pattern Match
Expressions
¢ Here are some additional examples,

Note: ‘mod’ is the modulus function

Named Patterns

¢ The simple conditional pattern
x if x is <pattern>

appears a lot in Asteroid programs
¢ Named patterns of the form

x:<pattern>
represent a shorthand for the simple
conditional pattern above

¢ E.g.

Named Patterns

¢ This shorthand notation is especially
useful when combined with type
patterns,

Named Patterns

¢ Beware: even though named patterns with type
patterns look like a declarations they are not!

¢ They are pattern match statements; consequently,
implicit type conversions we are used to from
other programming languages do not work!

Head-Tail Pattern

¢ The head-tail pattern
[<head var> | <tail var>]

is a useful pattern that allows us to destructure a
list into into its first element and the rest of the list;
the list with its first element removed.

¢ As we will see later, this pattern will prove
extremely useful when dealing with recursion or
iteration over lists.

Pattern Matching with
Regular Expressions
¢ Regular expressions are patterns that can be

applied to strings
¢ e.g., the regex

“a(b)*”
matches any string that starts with an a followed
by zero or more b’s.

¢ In Asteroid regular expressions are considered
patterns and therefore we can write expressions
like

“abbbb” is “a(b)*”
¢ Asteroid’s regex syntax follows Python’s regex

syntax
l https://docs.python.org/3/library/re.html

https://docs.python.org/3/library/re.html

Pattern Matching with
Regular Expressions
¢ Regular expressions is a formal

language that defines lexical patterns of
character strings

¢ As shown before, the regular expression
“a(b)*”

describes a pattern that matches any
string that starts with an ‘a’ character
followed by zero or more ‘b’ characters.

¢ Possible matches are
“a”, “ab”, “abb”, “abbb”, etc

Pattern Matching with
Regular Expressions
¢ Any single, printable character is a RE, e.g., “A” or “1”
¢ The concatenation “<RE1><RE2>” is also an RE, e.g.

“ab”
¢ The “<RE>*” operator means match the RE zero or

more times, e.g. “a*” and “(ab)*”
¢ The “<RE>+” operator means match the RE one or

more times, e.g. “a+” and “(ab)+”
¢ The “<RE>?” operator means match the RE if it exists,

e.g. “a(b)?c”
¢ The “<RE1>|<RE2>” operator means match either

RE1 or RE2.
¢ The ”.” operator matches any character

“a+” = “a(a)*”

Note: REs are a very rich language, see more at
https://docs.python.org/3/library/re.html

https://docs.python.org/3/library/re.html

Pattern Matching with
Regular Expressions

ln004/list1.ast

Pattern matching with regex

Reading

¢ The Let Statement
l asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#the-let-statement

https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html

