
Data Structures

¢ We saw that Asteroid has built-in data
structures such as lists and tuples

¢ Let’s look at these a bit closer

The General Access
Operator
¢ The @ operator is Asteroid’s general

access operator:
l individual elements, slices, or member

functions of lists.
l members and functions of tuples and

objects.
¢ The println function:

l the io module is an object and println is a
member function, therefore
io @println <string>

l In Asteroid all system modules are objects

Lists

ln003/reverse1.ast

ln003/reverse2.ast

A slice is a list of indexes that can be used to access elements of a list.

ln003/reverse3.ast

In Asteroid lists are considered objects with member functions.

List Comprehensions

¢ In Asteroid a list comprehension consist of a range specifier
together with an optional step specifier allowing you to
generate a list of integer values within that range,

[<start> to <end>]
or

[<start> to <end> step <value>]
¢ If a comprehension is invalid Asteroid returns an empty list,

e.g.
[0 to 4 step -1]

ln003/comprehension.ast

Tuples

ln003/tuples1.ast

ln003/tuples2.ast

Tuples are immutable objects!

Data Structures

¢ Asteroid also support custom data
structures via the ‘structure’ keyword

¢ Structures allow us to instantiate
objects with a particular internal
structure

Structures & Objects

¢ Structures in Asteroid
are similar to classes
in Python and almost
identical to structures
in Rust.

¢ A structure introduces
a data structure as a
new type

¢ For each structure
Asteroid creates a
default constructor

ln003/struct1.ast

Reading

¢ Data Structures
l asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#data-structures

https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html

