Imperative Programming —
Foundations

o The origins of imperative
programming
o Types

The von Newman
Architecture

John von Newman, Hungarian
mathematician, 1903-1957.

State ,
o John von Newman’s
computing model gave rise to

4 Von Neumann the nOtlon Of |mperat|Ve
Basic Structure p rog ra m m | n g

o Assembly/machine
instructions directly
manipulate processor
memory

Imperative in the sense that
,,,,,, i each instruction states
Q what memory will look like

| after it executes

o The contents of the memory

defines the state of the
computation at any particular
point in time

Image source: https://www.geeksforgeeks.org/computer-organization-von-neumann-architecture

O

Architecture

section .data
X dw 1
y dw 2

section .bss
zZ resw 1

section .text
global _start

_istarkt:
mov ax, [x]
add ax, [y]
mov [z], ax

; fetch x
; fetch and add y
; store result in z

; exit the program
mov eax, 1

xor ebx, ebx

int 0x80

The von Newman

o Memory state is
defined by three three
memory locations

X,Y,Z

o The program changes
the state by storing the
sum of locations x and
y into location z

o Here [<location hame>]
means reading/writing
the value stored at that
location

Imperative Programming —
Foundations

o In higher-level languages memory locations are
abstracted into variables
This includes arrayl/list variables
o Assembly/machine instructions are abstracted
iInto programming language syntax
BUT, the assignment statement is still
imperative, it tells us exactly what memory looks

like after it executes.

let x = 1.
let vy = 2.
let z=x +vy.

Program Flow

Write Variable

Read & ModinyanabIe

Read Variable &
Control Flow

Modlfy Variable

Control Flow

Wme Variable

Program State

\

><,

S

S
4

Variable

Variable

Variable

—

Imperative Programming —
Foundations

Imperative programming —

Explicit statements that
change the program
state

The program state is
defined by the values
assigned to the
variables in a program

The most common way
to change the state in
imperative programming
is through an explicit
assignment of a new
value to an existing
variable

Image source: https://practical.li/clojure/concepts/what-is-functional-programming.htmi

Imperative Programming —
Foundations

o Another example of an imperative
program

—— sum the elements of a list
load system io.

—— initialize state
let 1st = [1,2,3].
let sum = 0.

—— modify state each time around the loop by
e (1) assigning a new value to x from the 1list
—— (2) incrementing sum by x
for x in 1st do
let sum = sum + X.
end

io @rintln sum.

IN002/sum1.ast

@ Imperative Programming —
Foundations

o Let's review basic type theory for
programming languages
o This is important in order to
understand
Type hierarchies
Type checking
Type promotion

Reading

o Section 1 of the paper “Type
Systems” by Luca Cardelli, Microsoft

Research
lutzhamel.qithub.io/CSC493/docs/typesystems.pdf

https://lutzhamel.github.io/CSC493/docs/typesystems.pdf

Types

A Type is a Set of Values

Consider the Rust statement:
letn:i32 = 3;

Here we constrain n to take on any value from the set of all 32bit integer values.

Types

Def: A type is a set of values.

Def: A primitive type is a type that is built into the language, e.g., integer, string.

Def: A constructed type is a user defined type, e.g., any type introduced by the user.
In Asteroid this is done through the ‘structure’ statement.

Example: Asteroid, primitive type
q is of type real, only
q:%real = 1.1; } a value that is a member
N of the set of all real

values can be assigned to q.
type real = set of all

possible real values

Types

Example: Rust, constructed type

struct Rectangle {
xdim: 132,
ydim: 132,

}

fn main() {
let r:Rectangle = Rectangle { xdim: 3, ydim: 4 };

} -

Now the variable r only accepts values that are members of type Rectangle;
& object instantiations of struct Rectangle.

Types

Example: Asteroid, constructed type

structure Rectangle with
data xdim.
data ydim.

end

let r:%Rectangle = Rectangle(4,2).

N J
Y

an element of
type Rectangle.

Subtypes

Def: a subtype is a subset of the elements of a type.

Example: C The notation A < B means
Ais a subtype of B.

Short is a subtype of int: short < int

Observations:

(1) converting a value of a subtype to a values of the super-type is
called widening type conversion. (safe)

(2) converting a value of a supertype to a value of a subtype is
called narrowing type conversion. (not safe)

Subtypes give rise to type hierarchies and
Example: C, partial type hierarchy type hierarchies allow for automatic type
coercion — widening conversions!

char < short < int < float < double

Subtypes

o A convenient way to
visualize subtypes is using
Venn diagrams

o Consider,
short < int

o ltis easy to see that the
shorts are a subset of the
integer values

o The green arrow represents
a widening type conversion
is always safe

o The red arrow represents a
narrowing type conversion
and is never safe

e.g. In Rust we have i16 <i32

\@ Why do we use types?

o Types allow the language system to assist the
developer write better programs. Type
mismatches in a program usually indicate
some sort of programming error.

Static type checking — check the types of all
statements and expressions at compile time.
Rust

Dynamic type checking — check the types at
runtime.

Asteroid

Python

Type Equivalence

o Fundamental to type checking is the
notion of type equivalence:

Figuring out whether two type
description are equivalent or not
This is trivial for primitive types

But not so straight forward for
constructed types like class/struct
objects.

Type Equivalence

|. Name (nominal) Equivalence — two objects are of the same type if and only
if they share the same type name.

Example: Rust — constructed type

1 struct Typel {x:164, y:164}
2 struct Type2 {x:164, y:164}

4 fn main () {

5 let x: Typel = Typel{x:1l,y:2};
6 let y: Type2 = Xx;
7 println! ("{:?2}",y); Error; even though the types look
} the same, their names are different,

therefore, Rust will not compile.

& Rust uses name equivalence

Type Equivalence

ll. Structural Equivalence — two objects are of the same type if and only if
they share the same type structure.

Example: Haskell

1 type Typel = (Integer, Integer)

2 type Type2 = (Integer, Integer)
4 x :1: Typel
> Y i Type2 Even though the type names are different,

Haskell correctly recognizes this

s “;i// statement.
O y =X

& Haskell uses structural equivalence.

Type checking

o Type checking refers to the process of
making sure that all expressions and
statements are properly typed.

@ Type Checking

o Here is the Python type checker in action

int and str are not part of a common type
hierarchy.

Python 3.8.10 (default, Nov 14 2022, 12:59:47)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> "my string" + 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str
>>> |

Type Checking

o Here is the type checker of the Rust
compiler in action

116 <132

main () {
X132 = 3;
yiidlb = 2%x;
pPELREL (*LF™, v) ;

ubuntu$ rustc assign.rs
error[E0308]: mismatched types

—-> assign.rs:3:16

3 | let y:il6 = 2%x;

| —_— AAA expected “116°, found 132

I lxpected due to this

I : you can convert an "i32° to "ilé’ and panic if the converted value wouldn't fit
3 I let y:i16 = (2%x).try_into().unwrap();

error: aborting due to previous error

For more information about this error, try ‘rustc —-explain E@308°.
ubuntu$ [

@ Type Checking in Asteroid

o The Asteroid type checker in action
Integer < real

Asteroid Version 1.1.4

(c) University of Rhode Island
Type "asteroid -h" for help
Press CTRL-D to exit

ast> let x:%real = 3.1.

ast> let y:%integer = x.

error: pattern match failed: expected type 'integer' got a term of type 'real'
ast>

Type Promotion

o Convert a subtype to a supertype
(automatically)

Widening conversion

o This usually happens at the operator
level

Type Promotion - Python

o The addition operation is only defined for
operands of the same type

o In order to apply the operator in a mixed-type
situation one of the operands needs to be
promoted

If promotion is not possible then flag a type error

Python 3.8.10 (default, Nov 14 2022, 12:59:47)
[GCC 9.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> isinstance(3.5 + 1, float)

True
>>> |

\

Promotion int — float

Type Promotion - Asteroid

Asteroid Version 1.1.4

(c) University of Rhode Island
Type "asteroid -h" for help
Press CTRL-D to exit

ast> load system type.

ast> type @gettype (3.5 + 1).

real
ast> [\\

\

Promotion integer — real

Type Promotion — Rust

o Rust does not perform any automatic type
promotion!

Explicit conversion

main () { main () {
X = 3.5 + 1; X =3.5+1 f64;
println! ("{}",x); - printind (“$¥,x);
}

ubuntu$ rustc promote.rs
error[E0277]: cannot add an integer to a float
—-=> promote.rs:2:16

I
let x = 3.5 + 1;

2
A no implementation for ‘{float} + {integer}"

help: the trait “std::ops::Add<{integer}>" is not implemented for ‘{float}"

error: aborting due to previous error

For more information about this error, try ‘rustc --explain E@277°.
ubuntu$ |

Imperative Programming —
Asteroid

o Let’s take a closer look at the
imperative aspects of Asteroid

o We start with the type system

Primitive Types & Constants
iIn Asteroid

o Constants are available for all the
primitive data types,

integer, e.g. 1024
real,e.g. 1.75

string, e.g. "Hello, World!"
boolean, e.g. true

Type Hierarchies

o Asteroid arranges primitive data types
in a type hierarchy,

boolean < integer < real < string

o As we have seen, type hierarchies
facilitate automatic type promotion

let x:%string = "value: " P In002/let2.ast

/

Type promotion: plus as string concatenate op

Structured Data Types

o Asteroid also supports the built-in data
types:
list
tuple
o These are structured data types in that they

can contain entities that belong to other
data types.

o Lists are mutable objects whereas tuples are
immutable.

o Some examples, Note: (1,) # (1)

let 1 = [1,2,3]. — this is a list
let t = (1,2,3). —— this is a tuple In002/let1.ast
let one_tuple = (1,). —— this is a 1-tuple

Structured Data Types

o Lists and tuples themselves are also
embedded in type hierarchies, although very
simple ones:

list < string
tuple < string
o That is, any list or tuple can be viewed as a

string. This is very convenient for printing
lists and tuples,

Asteroid Version 1.1.4

(c) University of Rhode Island

Type "asteroid -h" for help

Press CTRL-D to exit

ast> load system io.

ast> io @println ("this is my list: " + [1,2,3]).
this dis my Jist: [1,2,3]

ast> I

The None Type

o Asteroid supports the none type.

o The none type has only one member
A constant named none.

The empty set of parentheses () can be
used as a shorthand for the none
constant.

That is: none = ()

The None Type

o The none type plays an important role in many modern
programming languages

Python: NoneType - None
Rust: Unit - ()
Asteroid: none - none or ()

o The none type is employed when something like a
function needs to return a value, but no such value
exists, e.g. Python

>>> from fypes ihborE NoneType
>>> def fool():
pass

>>> type(foo()) is NoneType
True
>>> |

https://en.wikipedia.org/wiki/Unit_type

https://en.wikipedia.org/wiki/Unit_type

Other Data Types

o In Asteroid we also have additional data
types:
function
pattern
user defined data types via structures

load system type.

—— define a function In002/ftype.ast

function inc with x do
return x+1.

end

—— show that 'inc' is of type 'function’
assert (type @gettype(inc) == "function").

Reading

o The Basics
asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#the-basics

https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html

Team EXxercise

o Assignment #1 see BrightSpace

