
Imperative Programming –
Foundations
¢ The origins of imperative 

programming
¢ Types



The von Newman 
Architecture

¢ John von Newman’s 
computing model gave rise to 
the notion of imperative 
programming

¢ Assembly/machine 
instructions directly 
manipulate processor 
memory
l Imperative in the sense that 

each instruction states 
what memory will look like 
after it executes

¢ The contents of the memory 
defines the state of the 
computation at any particular 
point in time

Image source: https://www.geeksforgeeks.org/computer-organization-von-neumann-architecture

State

John von Newman, Hungarian
mathematician, 1903-1957.



The von Newman 
Architecture

¢ Memory state is 
defined by three three 
memory locations
l x,y,z

¢ The program changes 
the state by storing the 
sum of locations x and 
y into location z

¢ Here [<location name>] 
means reading/writing 
the value stored at that 
location



Imperative Programming –
Foundations 
¢ In higher-level languages memory locations are 

abstracted into variables
l This includes array/list variables

¢ Assembly/machine instructions are abstracted 
into programming language syntax
l BUT, the assignment statement is still 

imperative, it tells us exactly what memory looks 
like after it executes.



Imperative Programming –
Foundations

Imperative programming –
l Explicit statements that 

change the program 
state

l The program state is 
defined by the values 
assigned to the 
variables in a program

l The most common way 
to change the state in 
imperative programming 
is through an explicit 
assignment of a new 
value to an existing 
variable 

Image source: https://practical.li/clojure/concepts/what-is-functional-programming.html



Imperative Programming –
Foundations 
¢ Another example of an imperative 

program

ln002/sum1.ast



Imperative Programming –
Foundations
¢ Let’s review basic type theory for 

programming languages
¢ This is important in order to 

understand 
l Type hierarchies
l Type checking
l Type promotion



Reading

¢ Section 1 of the paper “Type 
Systems” by Luca Cardelli, Microsoft 
Research
l lutzhamel.github.io/CSC493/docs/typesystems.pdf

https://lutzhamel.github.io/CSC493/docs/typesystems.pdf


Types

A Type is a Set of Values

Consider the Rust statement:

let n : i32 = 3;

Here we constrain n to take on any value from the set of all 32bit integer values.



Types

Def: A type is a set of values.

Def: A primitive type is a type that is built into the language, e.g., integer, string.

Def: A constructed type is a user defined type, e.g., any type introduced by the user.  
In Asteroid this is done through the ‘structure’ statement. 

Example: Asteroid, primitive type

q:%real = 1.1;

type real Þ set of all 
possible real values

q is of type real, only
a value that is a member 
of the set of all real
values can be assigned to q.



Types
Example: Rust, constructed type

Now the variable r only accepts values that are members of type Rectangle;
F object instantiations of struct Rectangle.



Types
Example: Asteroid, constructed type

an element of
type Rectangle.



Subtypes
Def: a subtype is a subset of the elements of a type.

Example: C

Short is a subtype of int:    short < int

Observations:
(1) converting a value of a subtype to a values of the super-type is

called widening type conversion. (safe)
(2) converting a value of a supertype to a value of a subtype is

called narrowing type conversion. (not safe)

Example: C, partial type hierarchy

char < short < int < float < double

Subtypes give rise to type hierarchies and
type hierarchies allow for automatic type
coercion – widening conversions!

The notation A < B means
A is a subtype of B.



Subtypes

¢ A convenient way to 
visualize subtypes is using 
Venn diagrams

¢ Consider,
short < int 

¢ It is easy to see that the 
shorts are a subset of the 
integer values

¢ The green arrow represents 
a widening type conversion 
is always safe

¢ The red arrow represents a 
narrowing type conversion 
and is never safe

int

short

e.g. In Rust we have i16 < i32



Why do we use types?
¢ Types allow the language system to assist the 

developer write better programs. Type 
mismatches in a program usually indicate 
some sort of programming error.
l Static type checking – check the types of all 

statements and expressions at compile time.
• Rust

l Dynamic type checking – check the types at 
runtime.

• Asteroid
• Python



Type Equivalence

¢ Fundamental to type checking is the 
notion of type equivalence:
l Figuring out whether two type 

description are equivalent or not
l This is trivial for primitive types
l But not so straight forward for 

constructed types like class/struct 
objects.



Type Equivalence
I. Name (nominal) Equivalence – two objects are of the same type if and only

if they share the same type name.

Example: Rust – constructed type

Error; even though the types look
the same, their names are different,
therefore, Rust will not compile.

FRust uses name equivalence



Type Equivalence
II. Structural Equivalence – two objects are of the same type if and only if

they share the same type structure.

Example: Haskell

Even though the type names are different, 
Haskell correctly recognizes this 
statement.

F Haskell uses structural equivalence.



Type checking

¢ Type checking refers to the process of 
making sure that all expressions and 
statements are properly typed.



Type Checking

¢ Here is the Python type checker in action
l int and str are not part of a common type 

hierarchy.



Type Checking
¢ Here is the type checker of the Rust 

compiler in action
l i16 < i32



Type Checking in Asteroid

¢ The Asteroid type checker in action
l Integer < real



Type Promotion

¢ Convert a subtype to a supertype 
(automatically)
l Widening conversion

¢ This usually happens at the operator 
level 



Type Promotion - Python

¢ The addition operation is only defined for 
operands of the same type

¢ In order to apply the operator in a mixed-type 
situation one of the operands needs to be 
promoted
l If promotion is not possible then flag a type error

Promotion int → float



Type Promotion - Asteroid

Promotion integer → real



Type Promotion – Rust 

¢ Rust does not perform any automatic type 
promotion!

Explicit conversion



Imperative Programming –
Asteroid 
¢ Let’s take a closer look at the 

imperative aspects of Asteroid
¢ We start with the type system



Primitive Types & Constants 
in Asteroid
¢ Constants are available for all the 

primitive data types,
• integer, e.g. 1024
• real, e.g. 1.75
• string, e.g. "Hello, World!"
• boolean, e.g. true



Type Hierarchies

¢ Asteroid arranges primitive data types 
in a type hierarchy,
l boolean < integer < real < string

¢ As we have seen, type hierarchies 
facilitate automatic type promotion

Type promotion: plus as string concatenate op

ln002/let2.ast



Structured Data Types

¢ Asteroid also supports the built-in data 
types:
• list
• tuple

¢ These are structured data types in that they 
can contain entities that belong to other 
data types.

¢ Lists are mutable objects whereas tuples are 
immutable.

¢ Some examples, Note: (1,) ≠ (1)

ln002/let1.ast



Structured Data Types

¢ Lists and tuples themselves are also 
embedded in type hierarchies, although very 
simple ones:
• list < string
• tuple < string

¢ That is, any list or tuple can be viewed as a 
string. This is very convenient for printing 
lists and tuples,



The None Type

¢ Asteroid supports the none type.
¢ The none type has only one member

l A constant named none. 
l The empty set of parentheses () can be 

used as a shorthand for the none 
constant.

l That is: none = ()



The None Type

¢ The none type plays an important role in many modern 
programming languages
l Python: NoneType – None 
l Rust: Unit – ()
l Asteroid: none – none or ()

¢ The none type is employed when something like a 
function needs to return a value, but no such value 
exists, e.g. Python

https://en.wikipedia.org/wiki/Unit_type

https://en.wikipedia.org/wiki/Unit_type


Other Data Types

¢ In Asteroid we also have additional data 
types:
l function
l pattern
l user defined data types via structures

ln002/ftype.ast



Reading

¢ The Basics
l asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#the-basics

https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html


Team Exercise

¢ Assignment #1 see BrightSpace


